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Abstract—A deep autoencoder (DAE)-based communication
over the two-user Z-interference channel (ZIC) is introduced in
this paper. The proposed DAE-ZIC is designed to minimize the
bit error rate (BER) in the presence of interference by jointly
optimizing the encoders and decoders. Effectively, this is an end-
to-end communication that designs new constellations for the
ZIC. Normalization layers are embedded in the proposed DAE
design to realize an average power constraint so that there are
no regular shape restrictions on the constellation symbols. We
compare the performance of the DAE-ZIC with two baseline
methods, which are ZIC with regular and rotated constellations.
Simulation results show a significant gain in BER reduction. On
average, in weak, moderate, and strong regimes, 31%–75% BER
improvement is achieved compared to the best existing methods.

I. INTRODUCTION

Interference is a central issue in today’s multi-cell networks.
The information-theoretic model for a multi-cell network is the
interference channel (IC). The capacity region of the two-user
IC is only known for strong and very strong interference [1]
where decoding and canceling the interference is optimal [2].
Also, at very weak interference, sum-capacity is achievable
by treating interference as noise [3]–[5]. In general, Han-
Kobayashi encoding, which decodes part of the interference
and treats the remaining as noise, is the best achievable scheme
[6]. The two-user Z-interference channel (ZIC), also known as
one-sided IC [7], is a special case of the two-user IC in which
only one user suffers from interference. The capacity region
of the ZIC is only determined in the strong and very strong
interference regimes with Gaussian signaling [7], [8].

The above Shannon-theoretic works are based on Gaus-
sian inputs. Despite being theoretically appealing, Gaussian
alphabets are continuous and unbounded, and thus, are rarely
applied in real-world communication systems. In practice,
signals are generated using finite alphabet sets and the com-
mon practical approaches for the IC are orthogonalizing the
time/frequency and treating interference as noise. Although
treating interference as noise is sum-capacity optimal at very
weak interference [3]–[5], such an approach is very inefficient
when interference is moderate or strong.

Some work has considered the ZIC when the channel inputs
are restricted to finite alphabet sets for specific regimes. In
[9], it is shown that rotating one input alphabet can improve
the sum-rate of the two-user IC in strong/very strong inter-
ference regimes. The performance of the ZIC with regular
constellations can be improved by the rotation constellations.
Later, an exhaustive search for finding the optimal rotation of

the signal constellation was presented in [10]. Transmission
strategies in both low and high SNRs for the multi-antenna IC
are studied in [11]. The focus of the aforementioned works is
to maximize the mutual information and sum-rate, while bit
error rate (BER) performance has rarely been analyzed.

Recently, several researchers have studied the performance
of the IC using new tools from deep learning. Notably, an
end-to-end learning-based approach is introduced for the two-
user IC [12], [13] by using a channel autoencoder-based
deep learning technique. By jointly training autoencoders for
very short blocklengths, it was shown that neural network-
based systems can outperform time-sharing schemes [13]. An
adaptive deep learning algorithm for the multi-user IC is
proposed in [14]. This approach can learn and predict dynamic
interference by utilizing pilot signals to estimate the strength
of interference. This method is shown to outperform the
conventional system using uncoded phase-shift keying (PSK)
or quadrature amplitude modulations (QAM). However, the
above papers focus on symbols with equal power and compare
their results with baselines that use QAM signals, whereas
there are more competitive conventional methods like rotated
QAM in the literature.

In this paper, we introduce using deep autoencoder (DAE)-
based communication in the two-user ZIC with finite-alphabet
inputs. In our design, two DAE pairs are considered for the
two transmitters and receivers. By adapting their constellations
to the interference intensity, the two DAEs cooperate to avoid
interference as far as possible. The main contributions of the
paper are as follows:

• We design a DAE-based transmission for the ZIC with
finite alphabets at different interference regimes, includ-
ing weak, moderate, and strong interference. The con-
stellations designed by the DAE-ZIC are adaptive to the
interference intensity at a variety of channel conditions.

• Different from the existing DAE designs [12]–[14], an
average power constraint normalization layer is designed
which allows the nonuniform distribution of constella-
tions. Thus, the in-phase and quadrature-phase (I/Q) plane
is used more efficiently.

• The BER of the proposed DAE-ZIC is noticeably lower
than the ZIC with a rotated QAM constellation which is
the best conventional ZIC. Specifically, there is 31%-75%
reduction in BER depending on the interference regime
(weak, moderate, and strong interference).

The remainder of this paper is organized as follows. We
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(a) Original system model

(b) Equivalent system model

Fig. 1: The equivalent system model of the ZIC.

elaborate on the ZIC system model in Section II. The DAE
design and the training approach are introduced in Section III.
Numerical results are presented in Section IV, and the paper
is concluded in Section V.

II. SYSTEM MODEL OF THE ZIC

Figure 1(a) shows the system model of a two-user single-
input single-output (SISO) ZIC. The two transmitter-receiver
pairs wish to reliably transmit their messages while the trans-
mission of the first pair interferes with the transmission of the
second. The four nodes are named Tx1, Tx2, Rx1, and Rx2,
as shown in Fig. 1(a). hij is the channel coefficients from the
ith transmitter to the jth receiver and i, j ∈ {1, 2}. For ZIC,
h21 = 0. The received signals at the receivers can be written
as

y1 = h11x1 + h21x2 + n1, (1a)
y2 = h22x2 + n2, (1b)

in which x1 and x2 denote the transmitted symbols of Tx1 and
Tx2. The transmitted signals are complex-valued with finite-
alphabets and variances E{|x1|2} = P1 and E{|x2|2} = P2 in
which P1 and P2 are the power budgets of the two transmitters.
The channel coefficients are

hij , rije
jθij ∼ CN (µH , σ

2
H), (2)

where µH and σ2
H are the mean and variance of the channel.

n1 and n2 are the complex-valued independent and identically
distributed (i.i.d.) additive white Gaussian noise with zero
means and variances σ2

1 and σ2
2 .

In some papers [8], [15], [16], the channel gains of the
direct transmission links are directly modeled as one, shown
in Fig. 1(b). The interference gain is also real-valued for both
real- and complex-valued systems. If channel coefficients are
available and we apply pre- and post-processing illustrated in
Fig. 1(a), the system model in Fig. 1(a) is equivalent to that of
Fig. 1(b). The Tx2 applies ej(θ11−θ21) to cancel the phase of
h21. The Rx1 and Rx2 apply h−1

11 and h−1
22 e

jθ21 to normalize

the channel gain to one. Then, the received post-processed
signals are

ȳ1 = h−1
11 y1 = x1 + r21r

−1
11 x2 + n1h

−1
11 , (3a)

ȳ2 = h−1
22 e

jθ21y2 = x2 + ejθ21n1h
−1
22 . (3b)

By defining
√
α , r21r

−1
11 , n̄1 , n1h

−1
11 , and n̄2 ,

ejθ21n1h
−1
22 , we have the system model in Fig. 1(b) as

ȳ1 = h̄11x1 +
√
αx2 + n̄1, (4a)

ȳ2 = h̄22x2 + n̄2. (4b)

where h̄11 = h̄22 = 1 and h̄21 =
√
α are the equivalent

channel gains.
Thus, the two system models in Fig. 1 are equivalent.

Hence, we follow existing studies and use the system model
in Fig. 1(b), and consider a fixed

√
α at each time. It is worth

mentioning that both actual channel gains and noise (hij and
ni, i, j ∈ {1, 2}) are Gaussian. In this paper, we assume a
slow fading scenario. The n̄i is normal and

n̄i ∼ CN (0, σ2
i r

−2
ii ). (5)

III. DEEP AUTOENCODER FOR THE ZIC

Existing studies on finite-alphabet ZIC [9], [10] use standard
QAM constellations. Such constellations are fixed and are not
adjustable according to the interference intensity. To further
improve the transmission performance, we propose a DAE-
based transmission for the two-user ZIC, named the DAE-ZIC.
The architecture is shown in Fig. 2.

A. The Architecture of the DAE-ZIC

The DAE-ZIC consists of two pairs of DAEs. Each pair
performs an end-to-end transmission, which includes input bits
and h̄ =

√
α, autoencoder at the transmitter, channel and noise

layers, autoencoder at the receiver, and final output bits.
1) Network Input: Each transmitter sends Ns bits to the

corresponding receiver. The interference channel coefficient√
α is known at the transmitter and receiver and is appended to

the input bit vector. Then, both the transmitters and receivers
know the channel coefficients. The two transmitters are ex-
pected to jointly design their constellations and the receivers
will decode correspondingly.

2) Transmitter DAE: As shown in Fig. 2, the DAE of
the transmitter contains two sub-networks: Sub-network 1 and
Sub-network 2. Sub-network 1 converts the input bit-vector to
symbols taking the value of h21 into account. Sub-network 2
performs power allocation, which controls the power of the I/Q
components. The batch normalization in sub-network 1 and
sub-network 2 together realize the average power constraint
at the transmit antenna. This is different from the existing
DAEs designs [12]–[14], [17] which generate symbols with
fixed power. Having an average power constraint is necessary
especially for SISO systems. In this way, the I/Q plane is
used efficiently, like QAM. Otherwise, the DAE can only use
pulse-amplitude keying (PAM) which is not energy efficient.
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Fig. 2: The architecture of the two-user DAE-ZIC implemented by two pairs of deep autoencoders. Each transmitter of the
ZIC contains two sub-networks. Sub-network 1 mainly generates the constellation and sub-network 2 is used to implement the
average power constraint. The receivers decode their bits from the received signal. This architecture is based on the system
model in Fig. 1(b). η is a power control parameter defined in (12).

The main components of sub-network 1 are fully connected
layers (FCNN), residual connections, and the output batch
normalization layer.1 The activation function of the FCNN
layers is tanh except for the last layer, which has two hidden
nodes and no activation function. Assume the batch size is
NB , and the output of the last FCNN is

Xfcnn , [xI
fcnn, x

Q
fcnn], (6)

where xI
fcnn and xQ

fcnn ∈ RNB×1 are the outputs of the two
hidden nodes and represent I/Q of the complex-valued signal.

Since the FCNN cannot achieve any power constraint for
the transmission, we propose a DAE design to achieve the
average power constraint at the antenna. First, we use batch
normalization in sub-network 1 to unify the statistics of the
input to the next layer. The batch normalization layer linearly
normalizes the average power of xI

fcnn and xQ
fcnn independently.

The normalized vectors xI
B and xQ

B are given by

xI
B , βI · xI

fcnn, xQ
B , βQ · xQ

fcnn, (7)

where β , [βI, βQ]T contains two factors for normalization.
Then, the powers of xI

B and xQ
B are modified by sub-

network 2. Sub-network 2 has two output values: γI and
γQ. The FCNN layers in sub-network 2 determine the power
allocated of the I/Q components based on the input value√
α. The power normalization block in sub-network 2 limits

the total power to Pt. Defining γ , [γI, γQ]T ∈ R2×1,
we should have γTγ = Pt. Such an operation can be done

1The FCNN and residual connections inherit the design of the point-to-point
MIMO transmission in [17].

via the Lambda layer in KERAS. Finally, the outputs of the
batch normalization and power normalization are multiplied
together, i.e.,

xI
out , γI · xI

B , xQ
out , γQ · xQ

B . (8)

The powers of xI
out and xQ

out are γI and γQ, respectively.
To summarize, the batch normalization is applied to the I/Q
components along the time axis, while the power normal-
ization normalizes the I/Q components at each time. Hence,
the two normalization operations are implemented in different
dimensions. In this way, a average power constraint is reached.
The final output of the transmitter is

X = [xI
B , x

Q
B ] · diag(γ)

= [xI
fcnn, x

Q
fcnn] · diag(β) · diag(γ). (9)

where xI
fcnn and xQ

fcnn are the output of the FCNN layer in
sub-network 1 and represent the preliminary I/Q signals, β
normalizes the power, and γ controls the power of the I/Q
signals.

3) Receiver DAE: The received signals are ȳ1 and ȳ2. To
ensure the receiver networks have a finite input range, we use
Batch Normalization layers in KERAS unifying the power of
the received signals, i.e.,

yB,i = ξ · ȳi, E{|yB,i|2} = 1, ∀i ∈ {1, 2}, (10)

where ξ is a coefficient to reach the unit power. The process
details and settings are the same as the ones in the transmitter.

We further define the desired signal for Rx1 as

xD,1 , x1 +
√
αx2. (11)
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xD,1 contains the truly desired signal x1 and the interference√
αx2. The goal of the receiver is to decode x1 for an

arbitrary x2 in its constellation. The desired signal of Rx2
is xD,2 , x2. Since the normalization in (10) is performed on
the desired signal with AWGN, the autoencoder should adjust
the decoding boundary according to the noise power, which is
an extra burden. To eliminate the effect of the noise, we use a
linear factor, η, multiplied by the batch normalization output,
i.e.,

yD,i = η · yB,i, η ,
√

1 + PD,iσ
−2
N , ∀i ∈ {1, 2}, (12)

where PD,i is the power of the desired signal xD,i and σ2
N is

the noise power. In short, batch normalization normalizes the
desired signals using pre-processing η. Then, the normalized
signal, yD,i, together with the feature of the ZIC, h21 =

√
α,

are sent to the rest of the FCNN layers. The final output of
the DAE is an estimation of the transmitted bit-vectors, ŝ1 and
ŝ2, as shown in Fig. 2. The output layer uses soft-max. More
specifically, the activation function is sigmoid.

4) Loss Function: In our DAE-ZIC, each receiver has their
own estimation of the transmitted bits. Then, the overall loss
function of the DAE-ZIC is L = L1 + L2, where L1 and
L2 are the loss at Rx1 and Rx2. In this paper, we use binary
cross-entropy as the loss function, i.e.,

Li =
1

NB

NB∑
n=1

(si,n)T log ŝi,n + (1− si,n)T log(1− ŝi,n),

(13)

where i ∈ {1, 2} distinguishes the users, NB is the batch
size, si,n is the nth input bit-vector in the batch, and ŝi,n is
corresponding the output. The loss function treats each element
of the DAE output as a zero/one classification task. Cross-
entropy is used to evaluate each classification task. Finally,
the loss is the summation of the loss of Ns tasks, where Ns is
the number of bits in the transmission. In the training process,
the back propagation algorithm passes L1 to Rx1 and it will
further go to Tx1 and Tx2. The L2 affects the Rx2 and Tx2.

B. Training Procedure of the DAE-ZIC

To reduce the difficulty in training, we use separate in-
stances of DAEs to realize a wide choice of interference gains
α. In each training, we select an Ns and the desired range
for α ∈ [αmin, αmax]. We train the DAE repeatedly using
random values of α in this interval. For each α, the DAE is
trained through epochs Ep, mini-batch size NB , and a constant
learning rate lr. After training the DAE for Nd different values
of α, the learning rate is reduced to drlr. The detailed training
procedure is summarized in Algorithm 1. Also, we choose the
best DAEs from five realizations trained alone with the same
hyperparameters. The best is defined on the average loss value
on ten random generated αs in [αmin, αmax].

IV. PERFORMANCE ANALYSIS

The performance is evaluated and compared for the three
methods below:

Algorithm 1 Training Procedure for the DAE-ZIC

1: Fix Ns, αmin, and αmax.
2: Set Pt = 1W, SNR= 10dB, and Nα = 30, 000.
3: Set Ep = 10, and NB = 104.
4: Set lr = 10−2, the initial learning rate, which will drop

to drlr = 0.95lr after every Nd = 200 trained channels.
5: Initialize the DAE-ZIC network.
6: for index iα from 1 to Nα do
7: Uniformly and randomly select one α ∈ [αmin, αmax].
8: Randomly generate h11 and h22 using (2).
9: Normalize the channel using (4).

10: Set the variance of the noise layer according to (5).
11: for index ie from 1 to Ep do
12: Randomly generate NB bit vectors.
13: Update the weights of the DAE-ZIC using Adam.
14: end for
15: Set learning rate lr = drlr if iα/Nd is an integer.
16: end for

• DAE-ZIC: The proposed method which designs new
constellations based on the interference intensity.

• Baseline-1: The transmitters directly use standard QAM.
• Baseline-2: Tx1 uses standard QAM, while Tx2 rotates

the standard QAM symbols based on the interference
intensity [9], [10].

An illustrative example of the difference between the two
baselines is shown in Fig. 3 in which M1 = M2 = 4 and
α = 0.2. The optimal angle of the rotation in Baseline-2 is
13◦. The distance among the symbols at Rx1 is enlarged by
the rotation.

Fig. 3: An example constellations in Baseline-1 and Baseline-
2 when M1 = M2 = 4, α = 0.2, and θ = 13◦. In the two
methods, d∗1 < d∗2 are minimum symbol distances in which
the angles are 0◦ and 13◦, respectively.

Next, we illustrate the constellations given by the proposed
DAE-ZIC method and analyze its performance.

A. Constellation analysis for the DAE-ZIC

The received constellations at Rx1 generated by the base-
lines and the proposed DAE-ZIC are shown in Fig. 4. In
this simulation, we set Ns = 2 so that each user has
2Ns = 4 information symbols. The channels are known as
h11 = h22 = 1 and h21 =

√
α. The transmit power is unit

one and the SNR is 8dB.
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(a) Baseline-1, α = 0.5
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(b) Baseline-2, α = 0.5
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(c) DAE-ZIC, α = 0.5
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(d) Baseline-1, α = 1
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(e) Baseline-2, α = 1
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(f) DAE-ZIC, α = 1
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(g) Baseline-1, α = 2
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(h) Baseline-2, α = 2
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(i) DAE-ZIC, α = 2

Fig. 4: Constellations of the DAE-ZIC and the two baselines
at Rx1 for three values of α.

Each sub-figure of Fig. 4 contains four symbol clusters
differentiated by different colors. Each cluster refers to a
symbol transmitted to Rx1. Within each cluster, there are four
symbols, which are the symbols of Rx2. For example, the
blue colors together denote symbol 1 for Rx1, and the four
blue symbols individually correspond to the four symbols of
Rx2. These symbols are polluted by interference from the
other user and AWGN noise. It can be seen that the location
and distribution of symbols are different in each method. The
constellations of Baseline-1 (left column) are very crowded
and even overlapped when α = 1 in Fig 4(d). This is because
Tx2 strongly interferes with the transmission between Tx1 and
Rx1 by directly applying 4-QAM. Baseline-2 (middle column)
rotates the constellation of Tx2, which enlarges the space
between symbols and thus makes the decoding easier. The
proposed DAE-ZIC (right-column) creates the most separable
constellations. It can better make use of the I/Q plane in con-
stellation design based on the interference intensity. The two
cooperating DAEs can intelligently choose and adjust various
scaled constellation types to avoid constellation overlapping.
When α = 0.5, the DAE-ZIC designs a parallelogram-shape
constellation compared with the square-shape constellations in
the baselines. When α = 1, both Tx1 and Tx2 choose PAM.
The two PAM constellations are perpendicular to each other
hence the overlapping is eliminated. When α = 2, Tx1 uses a
parallelogram-shape QAM and Tx2 uses a PAM. By adapting
their constellations to the interference intensity, the two DAEs
cooperate to avoid constellation overlap as much as possible.
This is the main reason that the DAE-ZIC outperforms the
baselines.

B. BER Performance of the DAE-ZIC

To evaluate the effectiveness of the DAE-ZIC, we compare
the BER of the three methods over SNR in [0, 20]dB and 0 ≤
α ≤ 3. For the DAE-ZIC, we divide interval α ∈ [0, 3] into
six sub-intervals, i.e, [0, 0.5), [0.5, 1), . . ., [2.5, 3]. For each
sub-interval of α, we train a DAE-ZIC through Algorithm 1.

The BER versus the SNR is shown in Fig. 5. In each sub-
figure, α is a fixed value. In general, the DAE-ZIC outperforms
the two baseline models, especially in moderate and strong
interference regimes. With Ns = 3, the performance of DAE-
ZIC drops at 0dB. The reason is we have trained the network
at SNR = 10dB but have tested it for a range of SNRs from 0
to 20dB. A potential way to improve is to train the DAE-ZIC
with a variety of SNRs.

The BER performance versus α at SNR = 10dB is shown
in Fig. 6. In Fig. 6(a) and Fig. 6(b), we set Ns = 2 and
Ns = 3, i.e., M1 = M2 = 4 and M1 = M2 = 8.
When interference is very weak, i.e., α ∈ [0, 0.25], the
three methods have similar BERs. The proposed DAE-ZIC
noticeably reduces the BER in weak, moderate, and strong
interference cases, where α ∈ [0.5, 2]. From Fig. 6(a), when
using DAE-ZIC over α ∈ [0, 3], BER is reduced 75.7%
and 44.29%, compared to Baseline-1 and Baseline-2. When
α ∈ [0.5, 2], the improvement becomes 80.3% and 51.5%.
When the interference gain is very strong, e.g., α > 2.5,
Baseline-2 outperforms DAE-ZIC. The reason could be that
4-QAM with rotation may achieve optimal performance [9].
For Ns = 3 in Fig. 6(b), 44.4% and 31.5% BER reduction is
reached by the DAE-ZIC over α ∈ [0, 3]. For α ∈ [0.5, 2],
DAE-ZIC outperforms the other two methods with 45.0%
and 33.4%. Baseline-1 performs poorly for α ∈ [0.5, 2],
because the two added QAM constellations may get crossed
and overlapped. Thus, Rx1 cannot decode its message. Such a
phenomenon is alleviated in Baseline-2 which simply rotates
one QAM constellation and the added constellations still have
a reasonable symbol distance. The normalization layer allows
the DAE-ZIC to design constellations without any regular-
shape restrictions. Thus, the minimum distance at receivers
can be enlarged which results in a lower BER.

V. CONCLUSION

A DAE design for communication over the single-antenna
two-user ZIC has been proposed. The DAE-ZIC minimizes
the BER by jointly designing transmit and receive DAEs and
optimizing them. The average power constraint is achieved by
a designed normalization layer. Thus, the DAE-ZIC is enabled
to design more efficient symbols to achieve a lower BER. The
effectiveness of the proposed structure is verified by simu-
lations. We have compared the performance of the proposed
DAE-ZIC with two baseline models, and the DAE-ZIC outper-
forms both. In general, there are significant improvements by
exploiting DAE in different interference regimes. Intuitively,
our DAE outperforms the baseline methods because it resigns
constellations to make the symbols separable at the interfered
receiver.
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Fig. 5: The maximum (worst) BER performance among the two users of DAE-ZIC versus SNR. The BER is averaged over
different interference gains which is uniformly distributed in the given interval.
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Fig. 6: The maximum (worst) BER performance versus inter-
ference gains. The SNR is fixed as 10dB.
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