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Abstract—This paper deals with distributed joint source-channel
coding (DJSCC) of analog signals over impulsive noise channel.
DJSCC, and distributed source coding (DSC), of analog sources
is commonly realized by quantizing the source and using binary
channel codes for coding, i.e., binning is realized in the binary
domain. To achieve lower delay, we perform binning in the analog
domain. Specifically, a single discrete Fourier transform (DFT)
code is used both for compression and protection of signal. To do
so, parity samples, with respect to a good systematic DFT code, are
generated, quantized, and transmitted over a noisy channel. To
improve the decoding performance, we leverage subspace-based
error correction. The performance of the proposed system is
analyzed for Gauss-Markov sources over impulsive noise channel.

I. INTRODUCTION

Motivated by its applications in delay-sensitive sensor net-
works, we consider a low-delay communications system with
two statistically dependent analog signals, x and y, in which
the encoders do not communicate with each other, whereas the
receiver performs joint decoding. We focus on the asymmetric
scenario where in the compression of x the encoder has no
knowledge of y but the decoder knows it, as side information.

In practice, lossy DSC systems generally use a quantizer to
convert a continuous-valued sequence to a discrete-valued one,
and then apply Slepian-Wolf coding in the binary field [1]–
[5], where binning is usually done by using capacity-achieving
LDPC and turbo codes. Although such an scheme is nearly
optimal when code-length goes to infinity, it implies excessive
decoding delay due to long code-length and iterative decoding.
The other extreme case, i.e., zero delay source-channel coding,
can be achieved through the use of analog mapping [6]–
[9]. These schemes have lower complexity but do not benefit
from the advantages of digital communications as they use
analog communications; they are also far from the theoretical
limits. A third approach is to take the advantage of analog
binning and digital communications. In such a framework [10],
compression is done before quantization, i.e., the Wyner-
Ziv encoder is realized by Slepian-Wolf coding in the real
field followed by a quantizer. Specifically, the compression is
achieved by generating either syndrome or parity samples of
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the input sequence with respect to DFT codes, a class of Bose-
Chaudhuri-Hocquenghem (BCH) codes in the real field. The
syndrome or parity samples are then quantized and transmitted
over a noiseless channel. This implies separate source and
channel coding.

The separation theorem however, is based on several as-
sumptions such as the source and channel coders not being
constrained in terms of complexity and delay. It breaks down,
for example, for non-ergodic channels and real-time communi-
cation. In such cases, it makes sense to integrate the design of
the source and channel coder systems, because joint source-
channel coding (JSCC) performs better given a fixed com-
plexity and/or delay constraints. Likewise, distributed JSCC
(DJSCC) is shown to outperform separate distributed source
and channel coding in some practical cases [11]. DJSCC has
been addressed in [5], [11]–[13], using different binary codes.

The main contribution of this paper is to introduce DJSCC
using real field codes. To do so, we use a single DFT code
both to compress x and protect it against channel variations.
This scheme is advantageous mainly because the correlation
channel models the variations between the continuous-valued
sources rather than the quantized ones and thus it can be
more accurate.1 Besides, owing to DFT codes, this scheme can
exploit temporal correlation typically found in many sources.
The proposed scheme maps short source blocks into channel
blocks and thus it is well suited to low-delay coding. Another
contribution of this paper is to apply subspace-based decoding
in the context of DSC which improves the error localization as
well as error detection steps. Numerical results, including the
mean-squared error (MSE), for DJSCC of Gauss-Markov se-
quences are presented. While the MSE performance of DJSCC
systems with binary codes is limited to the quantization error
level, the proposed scheme breaks through this limit.

The rest of this paper is organized as follows. We briefly
explain the construction and decoding of DFT codes in Sec-
tion II, and apply and modify subspace error localization to
DSC in Section III. We introduce DJSCC based on DFT codes
in Section IV, and evaluate the proposed system by performing
simulation in Section V. Section VI concludes the paper.

1A relevant work can be found in [14] where it is shown that, in distributed
compressed sensing scenarios, exploiting the correlation statistics in the
recovery process leads to performance gains.
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II. SYSTEMATIC REAL BCH-DFT CODES

A. Encoding

A BCH-DFT code [15] is a BCH code over real or complex
field whose parity-check matrix H is defined based on the
DFT matrix. H is a null space of G, the generator matrix of
the code. An (n, k) BCH-DFT code inserts n − k cyclically
adjacent zeros in the spectrum of any codevector, and thus it
is capable of correcting up to t = bn−k2 c errors [15]–[18].
From a frame theory point of view, BCH-DFT codes are the
well-known harmonic frames. A systematic DFT code is a
code whose generator matrix G includes the identity matrix
of size k as a submatrix. To form the generator matrix for
a systematic, real BCH-DFT code we can right multiply G
by G−1k , where Gk is a subframe of G that includes k rows
of G [18]. These rows can be chosen arbitrarily, resulting
in
(
n
k

)
systematic frames for an (n, k) DFT frame. We have

proved [19, Theorem 7] that when using these systematic
frames for error correction, the mean-squared reconstruction
error is minimized when the systematic rows are chosen as
evenly as possible. This implies n − bnk ck systematic rows
with successive circular distance dnk e. In the extreme scenario,
where the systematic rows are equally spaced, the systematic
frame is tight. This is realized only when n is an integer
multiple of k. Such a frame lends itself well to minimize
reconstruction error [20]. In this paper, we use these optimal
frames for encoding. Also, hereafter, we use “DFT code” and
“real BCH-DFT code” interchangeably.

B. Decoding

To do decoding, the extension of the Peterson-Gorenstein-
Zierler (PGZ) algorithm to the real field [15] can be applied.
This algorithm comprises three major steps, i.e., to find the
number, location, and magnitude of errors; these are usually
called error detection, error localization, and error calculation.
To this end, we need to find the syndrome of “error.” Then, the
exact value of errors is determined using the PGZ algorithm,
if the number of errors is within the capacity of the code and
there is no quantization. In the presence of quantization, the
decoding becomes an estimation problem. Then, it is necessary
to modify the PGZ algorithm to detect errors reliably [15].
The above algorithm further needs to be tailor-made for DSC,
both for the syndrome-based and parity-based approaches, as
explained in [10]. In the remainder of this paper, we first
improve the decoding algorithm and then extend parity-based
DSC to DJSCC.

III. MODIFIED SUBSPACE DECODING

A. Error Localization

We first apply subspace error localization [16], rather than
coding-theoretic approach, to the decoding algorithms in [10].
Subspace approach is more general than coding theoretic one
in the sense that it can use up to t+1−ν degrees of freedom
to localize ν errors, compared to just one degree of freedom in
coding the theoretic method. Hence, it is capable of improving

the error localization both for the syndrome- and parity-based
DSC similar to that in channel coding [16].

Let se = [s1, s2, . . . , sn−k] be the syndrome of error,
perturbed by quantization error, as defined in [10, eq.(5), (14)].
We can form the syndrome matrix

Sm =


s1 s2 . . . sd−m+1

s2 s3 . . . sd−m+2

...
...

. . .
...

sm sm+1 . . . sd

 , (1)

where d , n − k. We set m = t + 1,2 and eigen-decompose
the covariance matrix R = SmSH

m . This results in two sets
of vectors corresponding to two orthogonal subspaces, namely,
the error subspace and noise subspace. The first set of vectors,
which is composed of the ν eigenvectors corresponding to the
ν largest eigenvalues of R, forms a spanning basis for the
error subspace [16], [21]. Hence, the noise subspace is spanned
by the remaining m − ν eigenvectors. The vectors spanning
the noise subspace are use to localize errors by applying the
MUSIC- or ESPRIT-like algorithms,3 as detailed in [16]. We
use the MUSIC-based approach in this paper.

Error localization can be further improved for parity-based
DSC [10] as transmitted parity samples are noise-free and thus
the error locations are restricted in the codevectors. Therefore,
we can exclude the set of roots corresponding to the location of
the parity samples. In this context, again it makes sense to use
a systematic code with evenly-spaced parity samples so as to
optimize the location of error-free and error-prone samples in
the codevectors. For example, in an optimal (10, 5) systematic
code parity samples can only be in odd (even) positions while
data samples are placed in even (odd) positions. Apart from
keeping the effective range of parity samples as small as
possible, which improves the decoding performance [18], such
a code maximizes the distance between the error-prone roots of
the code; hence, it helps decrease the probability of incorrect
decision.

B. Error Detection

For error detection, we first find an empirical threshold θ
based on eigendecomposition of R when there is no error. Let
λmax denote the largest eigenvalue of R. We find θ such that

Pr(λmax < θ) ≥ pd, (2)

where pd is the desired probability of correct detection. In
practice, where errors can happen, we estimate the number
of errors by finding the number of eigenvalues of R greater
than θ. This one step estimation is better than the original
estimation in the PGZ algorithm where the last column and
row of Sm are removed until we come up with a non-singular
matrix [15], [24]. The improvement comes from incorporating

2Although ν+1 ≤ m ≤ d−ν+1, the best result is achieved for m = t+1
[16].

3 The MUltiple SIgnal Classification (MUSIC) [22] and Estimation of
Signal Parameters via Rotational Invariant Techniques (ESPRIT) [23] are
subspace-based techniques for multiple frequency component estimation and
direction-of-arrival estimation.
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Fig. 1. The DJSCC using DFT codes. Gsys represents the generator matrix
of a systematic code.

all syndrome samples, rather than some of them, for the
decision making.

IV. DISTRIBUTED JOINT SOURCE AND CHANNEL CODING

The concept of lossy DSC and Wyner-Ziv coding using DFT
codes is explained in [10], both for the syndrome and parity
approaches. This is mainly motivated by taking advantage of
modeling the correlation between the analog sources before
quantizing them [10]. That is, given x and y, two sequences
of i.i.d. random variables x1 . . . xn, and y1 . . . yn, the x-
y dependency is defined by yi = xi + ei, where ei is a
real-valued i.i.d. random variable, independent of xi. This
model captures any variation of x and can be used to model
correlation between x and y precisely. Particularly, e can have
the Gaussian or Gaussian-Erasure distributions [25], [26].

In this section, we extend the parity-based Wyner-Ziv
coding of analog sources to the case where errors in the
transmission are allowed. Thus, we introduce distributed JSSC
of analog correlated sources in the analog domain. Specifically,
we consider transmission corrupted by impulsive noise. This
model is motivated by implementation of wireless sensor
networks in power substations [27], [28]. The impulsive noise
is prevalent in power substations since it is created by partial
discharges, corona noise and electrical arcs, hosted by high-
voltage equipment such as transformers, bushings, power lines,
circuit breakers and switch-gear [28]. The magnitude of the
impulses is assumed to have a Gaussian distribution; hence, the
Gaussian-Erasure channel is used to model the transmission
channel, as well.

A. Coding and Compression

To compress and protect x, the encoder generates parity
sequence p of n−k samples, with respect to a good systematic
DFT code. The parity is then quantized and transmitted over a
noisy channel, as shown in Fig. 1. To keep the dynamic range
of parity samples as small as possible, we make use of optimal
systematic DFT codes, proposed in [19]. This increases the
efficiency of the system for a fixed number of precision bits.
Using an (n, k) DFT code a total compression ration of k :
(n − k) is achieved. Obviously, if n < 2k compression is
possible. However, since there is little redundancy the end-to-
end distortion could be high. Conversely, a code with n > 2k
expands input sequence by adding soft redundancy to protect
it in a noisy channel.

B. Decoding

Let p̃ = p̂ + ec, be the received parity vector which is
distorted by quantization error q (p̂ = p+q) as well as channel
error ec. Also, let y = x+ ev denote side information where
ev represents the error due to the “virtual” correlation channel.
The objective of the decoder is to estimate the input sequence
from the received parity and side information. Although we
only need to determine ev , effectively it is required to find
both ev and ec. From an error correction point of view, this
is equal to finding the error vector e = [ev ec]

T that affects
the codevector [x p]T . Hence, to find the syndrome of error
at the decoder, we append the parity p̃ to the side information
y and form z̃, a valid codevector perturbed by quantization
and channel errors. Without quantization (q = 0)

z =

[
y
p̃

]
=

[
x
p

]
+

[
ev
ec

]
= Gsysx+ e, (3)

and, multiplying both sides by H , we obtain

sz = se, (4)

where sz ≡Hz and se ≡He. It should be emphasized that
in this case (q = 0), error vector can be determined exactly, as
long as the number of errors is not greater than t. In practice,
quantization is also involved and we have

z̃ =

[
x
p

]
+

[
ev
ec

]
+

[
0
q

]
= Gsysx+ e+ q′. (5)

Thus,

sz̃ = se + sq′ , (6)

in which sq′ ≡ Hq′. That is, we obtain a distorted version
of the syndrome of error. Knowing the syndrome of error, we
use the error detection and localization algorithm, explained
in Section III, to find and correct error.

Although the extension of parity-based DSC to DJSCC is
straightforward, it is not clear how to do this for syndrome-
based DSC. This is because, in a syndrome-based DSC with
noisy transmission, the decoder can only form sev +ec, where
sev is the difference between the transmitted syndrome and
syndrome of side information, i.e., sev = sy−sx, as it was in
the DSC [10]. However, with sev+ec the rank of the syndrome
matrix St is not necessarily equal to ν, even if quantization
error is assumed to be zero. Therefore, the PGZ and subspace-
based methods fail to find the number and location of errors.

V. SIMULATION RESULTS

To evaluate the performance of the proposed systems we
perform simulations over a Gauss-Markov source with mean
0, variance 1, and correlation coefficient 0.9. Parity samples
are generated using the (10, 5) DFT code, quantized with a
6-bit uniform quantizer, and transmitted over an impulsive
noise channel; the effective range of the input sequences is
assumed to be [−4, 4]. The “virtual” correlation channel and
transmission channel altogether insert up to t errors generated
by N (0, σ2

e). The decoder detects, localizes, and decodes
errors. To measure the end-to-end distortion, we compare
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Fig. 2. Histogram of λmax(R) for a quantized (10, 5) DFT code. Given
pd = 90%, we get θ = 0.0065.

the MSE between transmitted and reconstructed sequences.
For each channel-error-to-quantization-noise ratio (CEQNR),
defined as σ2

e/σ
2
q , we use 2× 105 input samples.

Simulation results are plotted in Fig. 3 - Fig. 6, by varying
CEQNR. Before doing so, based on Fig. 2, the threshold θ =
0.0065 is fixed for pd = 90%; it is used to estimate ν in Fig. 3.
Note that this threshold varies depending on the quantization.
The estimated number is then used to find the location of errors
in Fig. 4, both for the PGZ and subspace methods.4 Next, the
output of Fig. 4, for subspace method, is fed to the last step
to find the magnitude of errors and correct them. The MSE is
compared against the quantization error level, the ideal case
in the lossy source coding based on binary codes; though, this
ideal case is not necessarily attainable, even using capacity-
approaching codes [29]. To put our results in perspective, we
also calculate the MSE assuming perfect error localization; it
gives 0, 6.5×10−5, and 1.8×10−4 respectively for 0, 1, and 2
errors, in any CEQNR. This implies that there is still room to
improve the MSE performance of the proposed system, given
a better solution for error localization. It also indicates the
performance gap between this DFT code and binary codes in
the ideal case. Expectedly, for the same number of errors, high
rate codes have better performance. As an example, in Fig. 6
we show the MSE performance of a systematic (12, 5) code
constructed based on [19, Theorem 7]; θ = 0.0115 is used for
error detection.

Seeing that we do not use the ideal Slepian-Wolf coding
assumption, the gap between performance of our schemes
and Wyner-Ziv rate-distortion function is more than usual.
However, it should be noted that capacity-approaching channel
codes may introduce significant delay if one strives to ap-

4It is worth mentioning that if the amplitude of errors is fixed, as assumed
in [16], the results improves considerably. For one thing, at the CEQNR of
20dB the probability of correct localization becomes 1.
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Fig. 3. Relative frequency of correct estimation of the number of errors for
a (10, 5) DFT code.
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Fig. 4. Relative frequency of correct localization of errors, corresponding
to Fig. 3, for the PGZ and subspace methods.
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proach the capacity of the channel with a very low probability
of transmission error. Hence, those are out of the question for
delay-sensitive systems. In that case, it would be best to use
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Fig. 6. Reconstruction error for a (12, 5) DFT code.

channel codes of low rate and focus on achieving a very low
probability of error. The system we introduced is a low-delay
system which works well with reasonably high-rate codes.
Finally, the proposed scheme for DJSCC, and also parity-
based DSC, can be easily extended to rate-adaptive system,
by puncturing some parity samples. Rate-adaptive systems are
popular in transmission of non-ergodic data, like video [30].

VI. CONCLUSION

We have studied a low-delay scheme for lossy joint source-
channel coding with side information at the decoder. Unlike
the common approach where compression and channel coding
are done after quantization we perform them before quantizing
the sources. This introduces a new framework for DJSCC in
which binning is done in the real field and through the use of
a single DFT code. In addition to adopting the subspace-based
error localization to the context of DSC based on DFT codes,
we introduced a subspace-based approach for error detection.
Numerical results show the efficacy of the proposed scheme,
especially for impulsive channels and relatively sparse errors.
To further improve the MSE, one should come up with a better
algorithm for error localization.
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[20] J. Kovačević and A. Chebira, “Life beyond bases: The advent of frames
(Part I),” IEEE Signal Processing Magazine, vol. 24, pp. 86–104, July
2007.

[21] M. Vaezi and F. Labeau, “Extended subspace error localization for
rate-adaptive distributed source coding,” in Proc. IEEE International
Symposium on Information Theory (ISIT), 2013.

[22] R. O. Schmidt, “Multiple emitter location and signal parameter es-
timation,” IEEE Transactions on Antennas and Propagation, vol. 34,
pp. 276–280, March 1986.

[23] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via ro-
tational invariance techniques,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989.

[24] G. Takos and C. N. Hadjicostis, “Determination of the number of
errors in DFT codes subject to low-level quantization noise,” IEEE
Transactions on Signal Processing, vol. 56, pp. 1043–1054, March 2008.

[25] F. Bassi, M. Kieffer, and C. Weidmann, “Source coding with inter-
mittent and degraded side information at the decoder,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2941–2944, 2008.
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