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Abstract—Multi-cell interference management techniques typ-
ically require sharing channel state information (CSI) among
all cells involved, making the algorithms ineffective for practical
uses. To overcome this shortcoming, an interference mitigation
technique that does not require explicit CSI or coordination
among neighboring cells is developed in this paper. The algorithm
leverages distributed deep reinforcement learning to this end and
delivers a faster and more spectrally-efficient solution than state-
of-the-art centralized techniques. An important aspect of our
proposed solution is that it scales very well with the number of
cells in the network. The effectiveness of the proposed algorithm
is verified by simulation over millimeter-wave networks with two
to seven cells. Interestingly, the penalty for not sharing CSI
decreases as the number of cells increases. In particular, for
a 7-cell network, the proposed algorithm without sharing CSI
achieves 92% of the spectral efficiency obtained by sharing CSI.

I. INTRODUCTION

Spectral efficiency improvement is a crucial objective for
modern multi-cell networks that employ tight or global fre-
quency reuse. This tight frequency reuse creates inter-cell in-
terference, also known as co-channel interference, which hin-
ders high throughput and spectral efficiency in current network
[1]–[3]. Inter-cell interference management has been studied
extensively in the literature [1]–[4]. Interference alignment [1],
[2] is a recent breakthrough in interference management that
is much more efficient than time-division multiple access in
theory. However, it has not entered wireless standards as it
requires global channel state information (CSI), i.e., the CSI
of the interfering cells should be known by the serving cell,
which is not practical [3]. Coordinated multi-point (CoMP)
[5] is another well-known solution to the inter-cell interference
problem in which data and CSI are shared among neighboring
cellular base stations (BSs) to coordinate their transmissions
in the downlink and jointly process the received signals in
the uplink. CoMP requires a high-speed backhaul network for
enabling the exchange of information between the BSs [6].

As a cutting-edge tool, deep learning holds significant po-
tential in offering solutions to complex problems. Particularly,
deep reinforcement learning (DRL), a sub-field of deep learn-
ing, has been successfully used to solve several communication
problems in the physical layer, such as beamforming, power
allocation, and interference cancellation in various settings [7],
[8]. In reinforcement learning [9] an agent learns to interact
with an environment (the multi-cell network in this work) by

taking a sequence of actions to maximize a cumulative reward,
e.g., the spectral efficiency or any other desired quantity. Cen-
tralized DRL where the training is done at a central position
and all the BSs shares their information, performs well as it
requires information from all cells. This performance, though,
comes with two unfavorable trade-offs: first, the algorithm
must be optimized across all cooperating BSs, which results
in extremely high computational complexity; second, it needs
a significant exchange of network CSI between cooperating
BSs [10]. Consequently, these methods do not scale well for
deployment in real-world wireless networks as they require en-
suring this strict level of cooperation and information sharing
across the network.

Distributed DRL (multi-agent DRL), where training is done
at individual BS, has recently received a lot of attention since
it can reduce the need for information exchange between the
agents. The problem may be approached as a non-cooperative
game in which the BSs attempt to develop an acceptable power
distribution plan utilizing best-response dynamics without
having access to the entire network CSI [11]. In [12]–[14]
multi-agent DRL approach is used to solve the problem of
maximizing the spectral efficiency but all methods require
coordination between cooperating BSs.

In this paper, we propose a distributed DRL algorithm to
be employed by all BSs to mitigate inter-cell interference in a
multi-cell network with limited information sharing between
the neighboring cells and by only relying on the power
measurement at the desired cell and user coordinates. The
algorithm works for an arbitrary number of cells. The goal is
to maximize the spectral efficiency of the network, manifested
by network sum-capacity, through optimizing transmit power
and beamforming vectors. Simulation results show that the
proposed algorithm can be almost as effective as the central-
ized technique. More importantly, the spectral efficiency scales
with the number of cells, and its value using the distributed
technique gets closer to that with centralized technique as the
number of cells increases.

The remainder of the paper is organized as follows. The
system model and problem formulation of a multi-cell wireless
network are described in Section II. In Section III, distributed
DRL-based interference management is designed. Section IV
discusses the training setup and simulation results. The paper
is concluded in Section V.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink cellular network consisting of L
cells, each of which consists of a multi-antenna BS and a
single-antenna user equipment (UE). The users share the same
frequency range in all cells, resulting in inter-cell interference.
We assume that all BSs are equipped with a uniform linear
array having M antenna elements. Hence, the received signal
at a given UE at cell ℓ ∈ {1, . . . , L} can be written as

yℓ = hH
ℓ,ℓwℓxℓ +

∑
j ̸=ℓ

hH
ℓ,jwjxj + nℓ, (1)

where hℓ,ℓ and hℓ,j ∈ CM×1 are the downlink channel vectors
between the user and ℓth and jth BSs respectively, wℓ and
wj ∈ CM×1 are analog beamforming vector, nℓ ∈ N (0, σ2)
is the noise at the UE sampled from a complex Normal
distribution with zero-mean and variance σ2, and xj ∈ C is
the transmitted symbol from jth BS, where the transmitted
signal must satisfy the average power constraints E[|xj |2] =
Pj , where Pj is the transmit power of BS j. Each UE decodes
only the message from its associated BS, and thus, signals
from the other BSs are viewed as interference. The signal-to-
interference-plus-noise-ratio (SINR) and the sum achievable
rate of UE located at cell ℓ are given by

γℓ =
Pℓ|hH

ℓ,ℓwℓ|2

σ2 +
∑

j ̸=ℓ Pj |hH
ℓ,jwj |2

, (2)

Cℓ = log2(1 + γℓ), (3)

in which Pℓ and Pj are the transmit power of the serving BS
and the jth interfering BS.

We adopt the geometric channel model for the channels. If
we assume there are Np paths between the UE and each BS
and each path from the jth BS to the user has a complex gain
of αℓ,j,i, (i ∈ {1, ..., Np}) and angle of departure (AoD) is
ϕℓ,j,i, then hℓ,j can be written as

hℓ,j =

√
M

ρℓ,j

NP∑
i=1

αℓ,j,ia
∗(ϕℓ,j,i), (4)

where a∗(ϕi
ℓ,j) is the array response vector associated with the

angle of departure, and ρℓ,j, represent the path loss between
the jth BS and user at cell ℓ. For a two-dimensional channel
model, the transmit antenna array is described by its array
steering vector. The steering vector a(θ) depends on the
angular directions of the departing plane wave, and for an
M -element uniform linear array is given by

a(θ) =
[
1, e−j2π d

λ cos(θ), . . . , e−j2π d
λ (M−1) cos(θ)

]T
, (5)

where θ ∈ [−π
2 ,

π
2 ] is a physical angle of departure and d and

λ, respectively, are the antenna spacing and the wavelength
of operation. Due to the hardware constraints on large-scale
multiple-antenna systems, the BSs normally use pre-defined

BS1

BS2

BS3

StateState Agent State Agent 

StateState Agent State Agent 

StateState Agent State Agent 

Fig. 1: Distributed DRL where the BSs simultaneously and in-
dependently determine their power and beamforming vectors.

beamforming codebooks (such as DFT codebooks [15]) that
scan all possible directions for data transmission. Let W
represents the beamforming codebook adopted by the BSs.
For r-bit quantized phase shifters

w =
1√
M

[
ejθ1 , . . . , ejθM

]T
, (6)

where the phase shift θm, 1 ≤ m ≤ M , is selected from a
finite set Θ with N = 2r possible discrete values uniformly
drawn from [0, π]. That is, Θ = [0, π

N , 2π
N , . . . , (N−1)π

N ]. To
simplify the design, one may use constant modulus constraints
on the entries of the beamforming vector [15]. In such a case,
w = a(θ) where θ is an angle in Θ. We use N = M in this
paper.

B. Problem Formulation

Sum achievable rate, or simply sum-rate, is a common mea-
sure of spectral efficiency in cellular networks. Considering
this, our goal is to find the arguments that maximize the
network sum-rate we can solve

max
Pℓ,wℓ

L∑
ℓ=1

Cℓ

s.t. Pℓ ∈ P, wℓ ∈ W,

(7)

in which P is the set of possible transmit powers and W is
beamforming codebook from which wℓ is selected.

The above optimization problem is nonconvex and is hard
to solve due to the constant modulus constraints. Most of the
recent methods will need global CSI knowledge, i.e., hℓ,j for
all ℓ and j. This is not, however, practical since CSI overhead
will consume a big portion of the bandwidth when L is large
and reduce the spectral efficiency.
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In the following, we proposed a distributed DRL method
that requires knowing only the serving cell channel hℓ,ℓ or
Pℓ, the power of the serving cell. That is, it does not need to
know the global CSI (hℓ,j for j ̸= ℓ) or there is no need for
coordination between the BSs, which is a big advance.

III. DISTRIBUTED DRL-BASED INTERFERENCE
MANAGEMENT

A. Motivation for distributed DRL-based Solution

A centralized interference management requires information
exchange, which grows exponentially with the number of
cells. Besides, the state and action spaces’ expansion sizes
cause convergence to happen very slowly. This problem, often
known as the “curse of dimensionality,” makes the centralized
DRL technique unsuitable for large wireless networks since
the corresponding training periods grow impractically long.
From a computational standpoint, multi-agent techniques are
appealing since the network only computes the actions for one
agent, avoiding the issue of the state and action spaces nec-
essarily growing in size with a centralized approach. Training
a single deployment strategy across all BSs appears to enable
network scaling without necessarily requiring longer training
times. As a result, rather than using single-agent techniques,
multi-agent approaches are typically used to handle large-
scale reinforcement learning issues. We structure the learning
process such that these agents learn under a shared incentive
of the network’s spectral efficiency. We consider each BS in
the network to be a separate agent as shown in Fig. 1 with no
access to network information.

B. System Operation

In this subsection, we discuss how to acquire the power
measurements to evaluate the objective function of (7). The
power of the signal received from the intended transmitter as
well as the power of interference caused by other transmitters
must be measured specifically. UEℓ can coordinate with the
serving BSℓ to determine when it is transmitting, and this
coordination might be used to provide the necessary power
measurements. To evaluate γℓ in (2), the UE first measures
the interference plus noise level

I +N =
∑
j ̸=ℓ

Pj |hH
ℓ,jwj |2 + σ2, (8)

when the serving BS is not transmitting. To get the interference
plus noise level, we can use zero power CSI reference signal
(CSI-RS) in 5G New Radio [16]. Then, when the serving BS
starts transmission, the UE measure the signal plus interference
plus noise level

S + I +N =Pℓ|hH
ℓ,ℓwℓ|2 +

∑
j ̸=ℓ

Pj |hH
ℓ,jwj |2 + σ2, (9)

The receive power of the UE can hence be determined by
subtracting two power measurements, and the SINR can be
approximately obtained from (2), by using these measured
powers. This measured SINR is sent back to the serving BS.

Action

Reward
Replay Buffer

Experience 
Replay

Measure
S+I+N

Measure
I+N

Sync with 
User 

Beamforming and power

Environment
(Cellular 

Network)

Environment
(Cellular 

Network)State

Fig. 2: An illustration of the operational flow of the proposed
distributed DRL solution for interference management, where
the signal power is estimated by the UE.

C. Distributed deep Q-network (DQN) Algorithm

Our goal is to develop an algorithm for interference man-
agement without coordination between cooperating BSs. In the
following, we describe the main elements of a DRL system
and specify them in our proposed algorithm. Besides the agent
(each BS), and the environment there are three other basic
concepts in DRL: state, action, and reward.

• The state sℓ,t ∈ S represents the features extracted by
agent ℓ from the environment that describes the current
situation. It is what agent ℓ observes at time step t

– xℓ[t]: the x coordinates of the UE of cell ℓ.
– yℓ[t]: the y coordinates of the UE of cell ℓ.
– Pℓ[t]: the transmit power of the BS of cell ℓ.
– wℓ[t]: the index of beamforming vector code book

of the BS of cell ℓ, all at time t.
• The action aℓ,t ∈ A is the move taken by an agent ℓ

within the environment at time step t. The action aℓ,t will
advance the state sℓ,t to sℓ,t+1. In our problem, actions
are to change the power and beamforming vector of BS.
To be more specific, the action aℓ,t taken by each agent
is a binary vector of length 2 (aℓ,t ∈ R2) in the following
form

aℓ,t = { a1︸︷︷︸
power control

, a2︸︷︷︸
beamforming

}, (10)

and element of the action is either ‘0’or ‘1’. More
specifically, for any ℓ, we have

– a1 = 0: decrease the transmit power of BS ℓ by 1dB.
– a1 = 1: increase the transmit power of BS ℓ by 1dB.
– a2 = 0: step down the beamforming codebook index

of BS ℓ.
– a2 = 1: step up the beamforming codebook index of

BS ℓ.
The change in the transmit power of the BS ℓ at time
step t due to agent ℓ is given by

Pℓ[t] := min (Pmax
BS , Pℓ[t− 1] + PCℓ[t]), (11)
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in which Pmax
BS is the maximum allowable power of

the BS and is set the same for all BSs and PCj [t] is
the power control command at BSℓ which is +1dB or
−1dB depending on the action related to that command.
For beamforming, we start with a random beamforming
vector in the codebook (random index) and move to the
previous or next beamforming vector in the codebook.
It is seen that, by taking action aℓ,t, the agent ℓ is
changing the beamforming vectors as well as transmit
power for serving BS.

• The reward is an incentive mechanism that tells each
agent ℓ the consequence of an action. The agent’s final
objective is to maximize the total cumulative reward. The
setting of the reward is based on the objective function
(7) and is given as

rt+1 =
L∑

ℓ=1

Cℓ, (12)

where Cℓ is the achievable rate received by the UE at
cell ℓ when action aℓ,t is taken by the agent ℓ.

• The episode (E) is a time frame within which all the agent
interacts with the environment. Each episode has T time
steps.

These elements interact with each other and are governed by
the goal of maximizing the future discounted reward for every
action taken by the agent ℓ that changes the environment.

It is expected that Qπ
ℓ (sℓ,t,aℓ,t) will converge to the optimal

state-action value functions as t → ∞ as it is updated at each
time step [9]. However, it could be difficult to achieve. There-
fore, a neural network-based function approximator aligned
with [17] is used in this paper. We define Θℓ,t ∈ Ru×v to
represent the weights of neural networks at time steps t for
each agent ℓ, where u is the number of hidden nodes and v is
the number of layers. We define θℓ,t ≜ vec(Θℓ,t) ∈ Ruv and
use this as a function approximator. We choose the sigmoid
activation function to compute the hidden layer values and has
the following form

f(x) =
1

1 + e−x
, (13)

For every agent ℓ, DQN with the initial weight θℓ,t is adjusted
at every time step t to reduce the error via the mean-squared
error loss function Lℓ,t(θℓ,t)

min
θℓ,t

Lℓ,t(θℓ,t) ≜ Esℓ,t,aℓ,t

[
(yℓ,t −Qπ

ℓ (sℓ,t,aℓ,t;θℓ,t))
2
]
,

(14)

in which

yℓ,t := Esℓ,t,aℓ,t
[rℓ,t+1 + α max

aℓ,t+1

Qπ
ℓ (sℓ,t+1,

aℓ,t+1;θℓ,t−1|sℓ,t,aℓ,t)]

is the estimated function value at time step t given state sℓ,t
and have an action aℓ,t. We will try to reduce this loss in
every iteration for agent ℓ. The objective of the distributed
DQN algorithm is to find a solution that optimizes the state-
action value function for each agent ℓ.

0 10 20 30 40 50 60
SINR, [dB]
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Centralized DQN
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Fig. 3: Coverage plots for different methods for M = 4.

D. Training and Evaluation

The algorithm has two phases: training and testing phases.
During the training phase, the agents are trained offline before
it becomes active in the network. In this phase, the weights of
the neural network are optimized using the stochastic gradient
descent algorithm on the batches of the dataset taken from the
replay buffer R each agent ℓ. Having a replay buffer allows
each agent ℓ to use a more diverse mini-batch for performing
updates during the training process. It also allows each to take
larger mini-batch sizes B. Further, by sampling at random
from the replay buffer, the updates to the neural network will
have low variance since the data entering the optimization
method look independent and identically distributed.

We define the state-action value function estimated by the
DQN in agent ℓ, Qπ

ℓ (sℓ,t,aℓ,t) as

Qπ
ℓ (sℓ,t,aℓ,t) = E [rℓ,t+1 + αQπ

ℓ (sℓ,t+1,aℓ,t+1)|sℓ,t,aℓ,t] ,
(15)

This is also known as the Bellman equation, in which α is
a discount factor whose range is [0, 1], sℓ,t+1 and aℓ,t+1 are
the new state and action, respectively, rℓ,t+1 is the reward
achieved when moving to the new state

At each round of the training process, each agent ℓ strikes
a balance between exploring the environment and exploit-
ing the knowledge of best action accumulated through such
exploration. We adopt an ϵ-greedy policy [9], where ϵ :=
max(ϵδ, ϵmin) is the exploration rate, δ is the exploration
decay rate, and ϵmin is the minimum exploration rate. The
exploration rate decays in every episode until it reaches ϵmin.
We exploit if p > ϵ where p is randomly drawn from
Unif(0, 1); we explore otherwise. Based on the selected action
aℓ,t+1, each agent ℓ computes its reward function according to
(12). A summary of the training phase is given in Algorithm 1.

After the convergence of the training, we use the optimized
weights for the evaluation (testing) of the DRL algorithm to
assess the quality of the learned policy [18]. The evaluation
can be performed during training or after that. In this phase,
agent ℓ chooses its actions greedily (no exploration) for each
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Algorithm 1 Training phase of the proposed DQN algorithm

1: Randomly initialize network Qπ
ℓ (sℓ,t,aℓ,t) with weight

θℓ,t
2: Initialize time, states, actions, minibatch size B and R
3: for episode 1 to E do
4: for t=1 to T do
5: for ℓ=1 to L do
6: Receive observation state sℓ,t for BS ℓ
7: Step 1: Action selection
8: if p > ϵ then
9: argmaxaℓ,t+1

Qπ
ℓ (sℓ,t,aℓ,t+1;θℓ,t)

10: else
11: randomly chosen from A
12: Step 2: Reward calculation
13: Calculate rewards based on (12)
14: Store (sℓ,t,aℓ,t, rℓ,t) in Rℓ,t

15: end for
16: Calculate the network sum-rate, rt =

∑L
ℓ=1 rℓ,t

17: Step 3: DQN update
18: for ℓ=1 to L do
19: Observe the next state sℓ,t+1

20: Store (rt, sℓ,t+1) in Rℓ,t

21: Sample a random minibatch of size b
b = min(B, T (E − 1) + t), from Rℓ,t

22: Set yℓ,t =
[
rℓ,t+1 + αmaxaℓ,t+1

Qπ
ℓ (sℓ,t+1,aℓ,t+1;θℓ,t)]

23: Perform SGD on (yℓ,t −Qπ
ℓ (sℓ,t,aℓ,t;θℓ,t))

2

to find θ∗
ℓ,t

24: Update θℓ,t = θ∗
ℓ,t in the DQN

25: end for
26: end for
27: end for

state. Actions for agent ℓ are a sequence of power control and
beamforming selection to solve (7).

IV. TRAINING SETUP AND SIMULATION RESULTS

The training setup, simulation details, performance mea-
sures and numerical results are demonstrated in this section.

A. Network Setup and Performance Measures

We consider an L-cell network with hexagonal geometry
each with a cell radius of 112m and inter-site distance D =
225m. The operation frequency is 28 GHz and the propagation
model is COST231 [19]. UEs are uniformly distributed within
each cell and move at a speed of 2 km/h. In (6) to (2), where
needed d = λ

2 , Np = 4 with probability 0.8 and Np = 1
(line of sight channel) with probability 0.2, and radio frame
duration T = 10ms. The initial position of the UEs, the initial
power of the BSs, and initial the beamforming vectors are
selected randomly. In order to plot the effective SINR, we
set the minimum SINR as γmin = −3 dB which represents
the minimum SINR for any user in the cellular network. If
the SINR falls below the minimum value, the episode aborts

TABLE I: The distributed DQN parameters for agent ℓ.

Parameters Value
α 0.995
Initial, ϵ 1.000
ϵmin 0.1
Learning rate 0.01
u 24
v 2
δ 0.995
DQN batch size, B 32

which means the call is dropped. The training parameters of
the distributed DQN are listed in Table I.

Spectral efficiency (measured by achievable sum-rate) is
the main performance evaluation measure. We evaluate the
average network sum-rate by

Rsum =
1

E

E∑
e=1

L∑
ℓ=1

Cℓ, (16)

where E is the total number of episodes. Another performance
measure is overall network coverage, evaluated by the comple-
mentary cumulative distribution function (CCDF) of the SINR
(γℓ for all cells).

B. Results

In Fig. 3, the CCDFs of γℓ for different algorithms are
compared with the brute force method for M = 4. The
proposed distributed DQN results in a solution which is
close to that of the centralized DQN. For example, using the
proposed distributed DQN 18% of the time the UEs have
SINR > 20 dB, while this number is about 20% for the
centralized DQN. This is a good result as in the distributed
approach there is no the between cooperating BSs. In Fig. 4(a),
we see that as M increases, the probability of having higher
SINRs increases which is related to the fact that the array gain
increases with M . This figure shows that the algorithm scales
with the BS antennas. In Fig. 4(b), we see that the signal
power increases as the number of iteration increases.

The normalized run time of different algorithms are com-
pared in Fig. 4(c). We can see that distributed DQN is
faster than other algorithms as there is no information sharing
between the cells. Finally, Fig. 5 shows that the sum-rate of the
proposed distributed DQN algorithm scales with the number
of cells. The average per cell achievable rates are is 3.15, 3.30,
3.61 and 3.86 bps/Hz for L = 2, 3, 5 and 7, respectively. This
graph shows that with universal frequency reuse and without
coordination, the network capacity can be increased almost
linearly with L.

V. CONCLUSIONS

We have proposed a distributed DQN-based interference
management in multi-cell mmWave networks. The goal
is to maximize the network sum-rate without sharing CSI
information between the cells, rather only by relying on
the certain power measurements at the desired cell. The
BSs select their beamforming vector and power command
from finite sets. The input features of each agent are its
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Fig. 5: Network sum-rate for the proposed distributed DQN,
centralized DQN, and brute force method, for different num-
bers of cells.

user’s coordinates, BS power, and beamforming vector. The
output has a sequence of interference management along with
power control and beamforming that optimize the objective
function. Our proposed algorithm almost reaches the spectral
efficiency obtained by centralized DQN researching among
all possible beamforming vectors and BS powers. Also, the
performance of the algorithm improves as the number of cells
increases. Furthermore, the complexity of the method is much
lower, which makes it promising to be implemented in practice
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