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IRS-Assisted Physical Layer Security in MIMO-NOMA Networks

Yue Qi , Member, IEEE, and Mojtaba Vaezi , Senior Member, IEEE

Abstract— In this letter, we propose deploying the intelligent
reflecting surface (IRS) to enhance the physical layer security in
non-orthogonal multiple access (NOMA). The secrecy sum-rate
of IRS-assisted multiple-input multiple-output (MIMO) NOMA
is maximized in the presence of an eavesdropper. Because of the
discrete unit-modulus constraint and the nonconvex property,
the secrecy sum-rate maximization problem is hard to solve.
We reformulate the original problem into an equivalent param-
eterized optimization using rotation matrices and apply the par-
ticle swarm algorithm for global optimization. Simulation results
verify that the performance of the proposed algorithm is close to
the secrecy capacity of the channel, realized by exhaustive search,
and outperforms other methods like alternating optimization and
zero-forcing in terms of complexity and achievable rates.

Index Terms— IRS, MIMO-NOMA, physical layer security,
sum-rate, particle swarm optimization.

I. INTRODUCTION

NON-ORTHOGONAL multiple access (NOMA) is a
promising technique for allowing multiple users to share

a single wireless resource. However, due to the broadcast
nature of the physical medium, NOMA users are highly vul-
nerable to eavesdropping. To fulfill the security requirements
of NOMA networks, existing security techniques such as
artificial noise and cooperative relaying have been proposed
to enhance the security against eavesdroppers.

Lately, intelligent reflecting surface (IRS) has drawn par-
ticular attention to enhancing the security performance in
wireless networks [1]. A passive IRS consists of several pas-
sive reflecting components, each of which can independently
control phase and/or amplitude. By deploying an IRS and
smartly coordinating the reflections, the signal propagation
between transmitters and receivers can be flexibly reconfigured
to compensate for fading impairment and interference, and
achieve desired performance. Unlike relay and artificial noise-
assisted approaches, the IRS requires no additional power
consumption and has better performance, especially for a large
number of metasurfaces and a few eavesdroppers [2].

There are some pioneering works on the deployment of IRSs
in NOMA networks to enhance security [3], [4], [5]. The
secrecy outage probability of the IRS-aided two-user NOMA
network has been analyzed under both external and internal
eavesdropping scenarios [3], [4]. Joint optimization of trans-
mit beamforming and phase shifts of IRSs has been studied
in [5] using alternating optimization (AO). These works have
considered single-antenna systems and applied superimposed
coding and successive interference cancellation (SC-SIC).
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However, it is known that SC-SIC is not capacity-achieving
in multiple-input multiple-output (MIMO) systems and dirty
paper coding (DPC) with stochastic encoding is optimal in
MIMO-NOMA with external eavesdroppers [6].

The goal of this letter is to maximize the secrecy perfor-
mance of a two-user IRS-assisted MIMO-NOMA communi-
cation system with an external eavesdropper. The formulated
problem for maximizing the secrecy sum-rate is subject to the
discrete unit-modulus reflection and total power constraints.
For a practical IRS, it is more cost-effective to implement
discrete phase shifts. Because of the discrete unit-modulus
constraint and the non-convex objective functions, AO has
been commonly used to solve IRS-based communications
problems [3], [5], [7]. However, this method divides the orig-
inal problem into several sub-problems, which may result in
local optimum. In addition, it is known that heuristic artificial
intelligence techniques, like swarm intelligence techniques,
can be used to address complex nonlinear problems and reach
the global optimum. Particularly, particle swarm optimization
(PSO) [8] is one of the swarm intelligence algorithms that
can be used to find approximate solutions for challenging
problems with low-cost complexity and stable convergence
characteristic [9]. PSO is usually the best choice for large
hyper-parameter space, and is superior to other algorithms
such as the genetic algorithm in terms of complexity, accuracy,
and simplicity of finding the optimal solution [10]. For this
reason, we apply PSO to the optimization problem associated
with the IRS-assisted secure MIMO-NOMA and compare it
with AO.

The contributions of this letter are summarized as follows:
• We propose using an IRS for enhancing the security of

MIMO-NOMA transmission. To maximize the secrecy
sum-rate under the total power and discrete unit-modulus
constraints, we propose a rotation-based PSO (R-PSO)
algorithm. We first reformulate the optimization problem
into multi-variable parameter optimization using rotation
modeling, which parameterizes the covariance matrices
into rotation angles and power allocation coefficients.
We then apply PSO to find these parameters together with
the phase shift reflection coefficients of the IRS for global
optimization.

• We also apply the AO method to this problem by dividing
it into two sub-problems. We show that although AO is
commonly applied in IRS-assisted scenarios, it may result
in local optimum and requires higher computational com-
plexity. PSO algorithm, on the other hand, can perform a
globally and locally balanced optimization and achieves
better performance.

Notation: tr(·) and (·)† denote trace and Hermitian of
matrices. Q ≽ 0 means that Q is a positive semidefinite
matrix. In is the identity matrix of size n. |Q| represents the
determinant of Q, and ∪ denotes the union operation.
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Fig. 1. An illustration of the downlink transmission in the two-user IRS-aided
MIMO-NOMA system with an external eavesdropper.

II. SYSTEM MODEL

A. Channel Model

The system model of the IRS-assisted MIMO-NOMA with
an external eavesdropper (named Eve) is shown in Fig. 1. The
transmitter (Tx) superimposes two independent confidential
messages and broadcasts the superimposed signal. The mes-
sages should be kept secret from Eve. The system includes
an IRS which is equipped with M reflecting units1 and can
re-scatter the signals with adjustable amplitude and/or phase.
The Tx, each legitimate NOMA user k for k = 1, 2, and
the eavesdropper are equipped with nt, nk, and ne antennas,
respectively. Let Hk ∈ Cnk×nt and He ∈ Cne×nt denote
the direct channels from the Tx to user k and Eve, and
T ∈ Cnt×M be the channel from the IRS to the Tx. Due
to the channel reciprocity, the channel from the Tx to the IRS
is T† ∈ CM×nt . Also, Gk ∈ Cnk×M and Ge ∈ Cne×M are
the channels from the IRS to user k and Eve, respectively. The
channel state information (CSI) of the channels of the users
and the eavesdropper is assumed to be perfectly known to the
Tx and IRS.

A passive IRS element practically consumes zero direct-
current power and its thermal noise is negligible. The diagonal
phase shift reflection coefficient matrix of the M -element
IRS is Φ ≜ diag(β1e

jθ1 , β2e
jθ2 , . . . , βMejθM ) ∈ CM×M ,

where βm ∈ [0, 1) is the amplitude reflection coefficient of
the IRS, ejθm represents the phase shift caused by the mth
IRS element, ∀m = 1, 2, . . . ,M , and θm ∈ [0, 2π). In order
to simultaneously control multiple IRS elements and reduce
the hardware cost, we assume that βm = 1, and consider the
practical discrete unit-modulus constraint F = {ejθm |θm ∈
{0, ∆θ, . . . , (L − 1)∆θ}}, m = 1, 2, . . . ,M , for each phase
shift coefficient, in which ∆θ = 2π/L with L representing
the number of discrete phase-shift levels [11]. By properly
adjusting Φ to manipulate the signals reflected by the IRS
elements, a higher array gain can be achieved.

The received signals at the legitimate user k, k = 1, 2 and
at the eavesdropper are given by

yk = H̃kx + wk = (Hk + GkΦT†)x + wk, (1a)

ye = H̃ex + we = (He + GeΦT†)x + we, (1b)

1M can also be considered as a sub-surface within which multiple adjacent
elements share a common reflection coefficient for reducing the implementa-
tion complexity [7].

in which the effective channels from the Tx to user k and Eve
are H̃k ≜ Hk + GkΦT† and H̃e ≜ He + GeΦT†, which
include the direct and reflected links. The two independent
signals are superimposed and encoded by a Gaussian code-
book [6], thus, the transmitted signal is x = x1 + x2 where
xk ∼ CN (0,Qk). Qk ≽ 0 represents the covariance matrix of
user k. Also, wk and we denote the additive white Gaussian
noise vectors at user k and Eve, whose elements are zero mean
and unit variance.

B. Secrecy Sum-Rate

The secrecy sum capacity is the highest achievable secrecy
sum-rate under a sum power constraint. The secrecy sum
capacity of MIMO-NOMA is achieved by applying stochastic
encoding and DPC [6]. By deploying an IRS, the achievable
secrecy rates for user 1 and user 2 can be written as [6]

R1 ≤ log |In1 + (In1 + H̃1Q2H̃
†
1)
−1H̃1Q1H̃

†
1|

− log |Ine
+ (Ine

+ H̃eQ2H̃†
e)
−1H̃eQ1H̃†

e|, (2a)

R2 ≤ log |In2 + H̃2Q2H̃
†
2| − log |Ine

+ H̃eQ2H̃†
e|, (2b)

in which In1 , In2 , and Ine
are identity matrices. Assume no

power is consumed by a passive IRS. Therefore, the secrecy
sum-rate maximization problem subject to the power constraint
at the Tx can be formulated as follows2:

P1 : max
Q1,Q2,Φ

R1 + R2

s.t. tr(Q1 + Q2) ≤ P, (3a)
Q1 ≽ 0,Q2 ≽ 0, (3b)

ejθm ∈ F , (3c)

where P is the total power of the system, and F is the set
of practical discrete unit-modulus constraint. Problem P1 is a
non-convex optimization problem with a discrete unit-modulus
constraint. To solve it, we reformulate and parameterize the
problem, and apply the PSO algorithm.

III. IRS-AIDED SECRECY RATE MAXIMIZATION

In this section, we illustrate the R-PSO algorithm. First,
we reformulate the problem as an equivalent parameterized
optimization problem, and then apply PSO to the reformulated
problem. In addition, we show that the commonly applied AO
method is not as competitive. One reason is that AO could
be trapped in local optimum due to the two-step optimization
instead of optimizing the two parameters simultaneously.

A. Reformulated Optimization Problem

We reformulate the problem into a parameterized optimiza-
tion. The phase shift reflection matrix Φ includes M param-
eters. We can parameterize the covariance matrices Q1 and
Q2 with linear precoder and power allocation coefficients by
applying a rotation-based method [12], [13]. In [12], it is
proposed that, without loss of generality, a rotation matrix can
be used to parameterize the eigenvalue matrix for nt = 2 and
nt = 3. The proposed solution has been generalized into

2The sum-rate maximization can be extended to multiple users with K
covariance matrices Q1,Q2, · · · ,QK .
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an arbitrary nt in [13]. In particular, the covariance matrices
Qk, k = 1, 2, can be eigendecomposed as Qk = VkΛkV

†
k

in which Λk, is a diagonal matrix whose diagonal elements
[λk1, . . . , λknt ] are non-negative. Moreover, the average power
constraints in (3a) are equivalent to

∑nt

i=1(λ1i+λ2i) ≤ P . Vk,
k = 1, 2 is the eigenvectors matrix corresponding to Qk. It can
be modeled by complex rotation matrix as

Vk =
nt−1∏
a=1

nt∏
b=a+1

Vab, (4)

where Vab is equal to an identity matrix I ∈ Cnt×nt except
for the following four elements[

vaa vab

vba vbb

]
=

[
cos αab −e−jφab sin αab

ejφab sin αab cos αab

]
, (5)

in which αab and φab ∈ R are rotation angles. The left hand
side of (5) include four elements of matrix Vab, for example,
αab represents the entry of row a and column b of Vab.
In general, nt(nt − 1) rotation angles are needed to represent
Vk in (4) [13]. With this, the optimization on Q1 and Q2 can
be equivalently transferred to optimize the parameters with
linear constraints.

The parameter vector related to the covariance matrices can
be defined by the following vector

r ≜ {λk, αk, βk|k ∈ {1, 2}}, (6)

where λk = [λk1, . . . , λknt ], αk and βk include the rotation
angles in the real and complex components of Vab, respec-
tively, which are

αk = [α11, · · · , αab, · · · , α(nt−1)nt
], (7)

βk = [φ11, · · · , φab, · · · , φ(nt−1)nt
]. (8)

There are in total 2n2
t parameters in r. Replacing the rotation-

parameterized Qk in P1, the following problem which is
equivalent to the original problem in (3) is obtained:

P2 : max
r,Φ

log
∣∣∣∣H̃1(V1Λ1V

†
1 + V2Λ2V

†
2)H̃

†
1

I + H̃1V2Λ2V
†
2H̃

†
1

∣∣∣∣
+ log |I + H̃2V2Λ2V

†
2H̃

†
2|

− log |I + H̃e(V1Λ1V
†
1 + V2Λ2V

†
2)H̃

†
e|, (9a)

s.t.
nt∑

i=1

(λ1i + λ2i) ≤ P, (9b)

λ1i ≥ 0, λ2i ≥ 0, i = 1, 2, . . . , nt, (9c)

ejθm ∈ F . (9d)

This reformulated problem on variable vectors r and Φ
has two advantages: 1) it is an equivalent parameterized
optimization of the original problem. We can optimize power
parameters, rotating angles, and IRS reflection coefficients
together. 2) It has removed positive semi-definite constraints
of (3b) and parameterized Q1 and Q2 with scalar parameters.

B. R-PSO Optimization
PSO imitates the foraging process of a flock of birds [8].

As a heuristic-learning based optimization tool, PSO provides
a population-based search procedure in which the particles

move around in a multidimensional search space and change
their positions every iteration. During the movement, each
particle adjusts its position according to the experience of
neighboring particles and its own experience [9].

Assume the total number of particles is N . Denote xl and
vl as the position of lth particle and its corresponding speed.
In this problem (9), the particle xl includes all the variables in
r and Φ. Thus, xl has 2n2

t +M elements. The velocity of the
elements in the lth particle is within the range [vmin, vmax] in
which the minimum velocity vmin is set as 0 and the maximum
velocity vmax is 1.

The best previous position of the lth particle is represented
as pl. The best particle among all the particles in the group
is g. The rate of the velocity for particle l is vl. The particles
are updated according to the current particles at the current
iteration t using the following equations [8]:

v(t+1)
l = ξv(t)

l + c1 · r1(pl − x(t)
l ) + c2 · r2(g − x(t)

l ),
(10a)

x(t+1)
l = x(t)

l + v(t+1)
l , (10b)

in which c1 and c2 are cognitive and social parameters indi-
cating how much the particle is pulled toward the positions.
The constants c1 and c2 are often set to be 2 [9], [14]. Further,
r1 and r2 are two uniform random values in the range [0, 1],
and ξ ∈ [0.1, 1.1] is an inertia weight factor that provides a
balance between global and local search.

To satisfy the total power constraint in (9b), the coefficients
λ1i and λ2i, i = 1, 2, · · · , nt, are first generated within [0, P ],
and then linearly normalized by dividing them to their sum.
For constraint (9c), we first randomly generate the phase shift
element θm ∈ [0, 2π), m = 1, 2, · · · , M . Then, we quantize
the variables based on L discrete phase-shifts.

C. R-PSO Versus AO

The AO method is commonly applied in IRS-aided commu-
nication scenarios. So far, as suggested and analyzed in [7],
there is no standard method to efficiently find optimal solu-
tions for non-convex problems with discrete unit-modulus
constraints. Following the common approach, we solve the
original problem P1 using the AO method by decomposing
the problem into two sub-problems. The goal is to show this
common method is not as good as R-PSO. We first optimize
the covariance matrices Q1 and Q2 with a fixed Φ. Then,
we optimize the discrete unit-modulus elements in Φ with
fixed covariance matrices. We repeat this until convergence.

1) Optimizing Covariance Matrices: We apply block suc-
cessive maximization method (BSMM) [15] to the Lagrangian
problem of (2). The BSMM is a capacity-achieving method in
the secure MIMO-NOMA without IRS [16]. BSMM updates
covariance matrices by successively optimizing a lower bound
of the local approximation of the Lagrangian problem [15].
Then, each iteration can be written into a summation of
concave and convex functions by fixing the other variable.
The details of the functions are omitted for space limitations.
Interested readers can refer to [15] and [16] for more details.

2) Optimizing Phase Shift Reflection Coefficients: A bench-
mark approach is to search for all possible combinations of
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TABLE I
THE PARAMETERS FOR THE SIMULATION

discrete phase shifts at all sub-surfaces and choose the one
that achieves the highest sum-rate.

D. Algorithm Analysis

In the R-PSO algorithm, we have N particles in total and
2n2

t +M dimensions for each. The computational complexity
of the standard PSO algorithm requires 5(2n2

t +M)N multipli-
cations per iteration [17], thus resulting in a total complexity
of O(Iitr(Nn2

t + MN)) in which Iitr denotes the number of
iterations in PSO.

Without IRS, BSMM requires the computation of matrix
multiplications and matrix inverse, which has the complexity
of O(ϖ3) and ϖ = max(nt, nk, ne). In general, BSMM
has the complexity of O(ϖ3

ϵ2
log(1/ϵ1)) [15], where ϵ1 is the

search accuracy and ϵ2 is the convergence tolerance. AO with
BSMM requires an exhaustive search over the phase shifts
in IRS, the total complexity for it is O(LM (ϖ3

ϵ2
log(1/ϵ1))).

The complexity of the exhaustive search is exponential over
M [11]. Overall, the proposed R-PSO is the most computa-
tionally efficient approach.

IV. SIMULATION

We perform numerical simulations to evaluate the per-
formance of the proposed R-PSO in IRS-aided secure
MIMO-NOMA networks. The IRS is deployed to provide
high-quality links between the Tx and users. We assume that
the line of sight (LoS) component is included in the channels
between Tx and IRS, IRS and users, and IRS and Eve. Two
path loss models characterized by the large-scale fading for the
weak (PLw) and strong (PLs) links are set according to the
3GPP standard [18, Table B.1-2] as PLw = 36.7 log d+22.7+
26 log fc and PLs = 22.0 log d + 28.0 + 20 log fc, where d is
the distance between two nodes. The carrier frequency fc is
set as 2.4GHz. For small-scale fading, we adopt Rician fading
channel model for all channels involved. Thus, an arbitrary
channel matrix H is generated by:

H =
√

PL

(√
κ

κ + 1
HLoS +

√
1

κ + 1
HNLoS

)
, (11)

in which PL is the corresponding path loss of H, and κ is
the Rician factor. In particular, we assume κ = 10 [19]. HLoS

and HNLoS denote the deterministic LoS and Rayleigh fading
components, respectively. We model fading channels by the
spatially correlated Rician fading model following [19].

Unless otherwise mentioned, we set the simulation parame-
ters as in Table I, where de is the horizontal distance between
the transmitter and the eavesdropper. The results are averaged
over 100 independent fading channel realizations. For perfor-
mance benchmarks, we consider the following schemes:

Fig. 2. Secrecy rates versus transmit power with M = 2 and de = 130.

• R-PSO (proposed): It stands for the reformulated param-
eterized problem proposed in (9). Then, to optimize the
reformulated problem with covariance matrix parameters
r and phase shift reflection coefficients Φ, we apply PSO.
We set the number of particles in the swarm as 10 times
the variables, i.e., N = 10(2n2

t + M). The maximum
number of iterations Iitr for PSO is 200(2n2

t + M).
• AO with BSMM (AO-BSMM): The AO algorithm

is composed of sum-rate maximization using BSMM
in the MIMO-NOMA with an external eavesdropper
scenario [16], and brute-force search over all possible
phase shift reflection coefficients. We set ϵ1 and ϵ2 in
AO-BSMM [15], [16, Algorithm 1] as 10−4, and use a
maximum of 100 iterations.

• Zero-forcing (ZF): This is a beamforming method that
projects the channels H̃1 and H̃2 into the null space of
H̃e such that H̃eQk = 0, ∀k.

• Exhaustive search: It stands for the algorithm that tries
all possible values for all reflection coefficients to achieve
the maximum secrecy rate. To be more efficient, we apply
random search [12] and set the random generation times
as 106.

• Without IRS: The system ‘without IRS’ implies that we
do not use IRS and set Φ = 0.

Figure 2 depicts the secrecy sum-rate versus total power P
under different methods. de is set 130m. The performance gap
between the system with and without IRS is noticeably high,
which validates the advantages of the IRS. The exhaustive
search method achieves the highest secrecy rate and serves
as an upper bound for all feasible algorithms. The proposed
algorithm achieves a secrecy rate very close to the exhaustive
search method, which verifies the performance of the proposed
algorithm. AO-BSMM achieves good performance when the
power is low, but its performance degrades when increasing
the power. The reason may be that a higher search accuracy
and IRS parameters can degrade and slow the performance of
the AO. ZF beamforming can be seen as an orthogonal method
for the eavesdropper.

Figure 3 illustrates the secrecy rates versus the number of
reflecting units of IRS, i.e., M . First, we notice that increasing
the total power or M leads to a significant improvement in
secrecy rates. When there is no IRS, the information leakage to
Eve could be severe and the achievable secrecy rate degrades
to nearly zero, especially for small powers. The proposed
algorithm can nearly reach the capacity realized by exhaustive
search, yet with lower computational complexity especially for
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Fig. 3. Secrecy rates versus the number of IRS’s elements M for P = 10 and
40dBm.

Fig. 4. Secrecy rates versus the location of Eve for M = 2 and P = 10 and
40dBm.

TABLE II
SECURITY SUM-RATE (Bps/Hz) WITH LARGE M

small M . It also outperforms AO-BSMM and ZF no matter
how high the power is. AO-BSMM performs better than ZF
when the power is low, while there is performance degradation
at high powers. This is because AO-BSMM requires a higher
search accuracy and a higher number of iterations in this
case. On the other hand, the proposed algorithm also works
efficiently for large values of M . However, large M results
in more phase shift parameters, in which AO-BSMM and
exhaustive search can be excessively computationally expen-
sive. Thus, only the proposed one and ZF are compared in
Table II.

Transmitted secrecy rates with respect to the horizontal
distance de in the IRS-aided secure MIMO-NOMA are shown
in Fig. 4. We have observed the following: 1) The system
without IRS has the lowest performance. 2) The secrecy sum-
rate tends to increase when Eve is far away from the Tx or
IRS, especially with small powers. 3) There are some drops in
the secrecy rate at de = 170m and 210m because Eve and one
user are in the same direction from the IRS, and thus Eve’s
channel is also enhanced by the propagation from the IRS to
users. 4) R-PSO can achieve a higher secrecy rate regardless of
the location of the eavesdropper compared with other methods.

V. CONCLUSION

We have considered maximizing the secrecy sum-rate of
IRS-assisted MIMO-NOMA networks in the presence of an

eavesdropper. Due to the non-convexity of the secrecy sum-
rate maximization problem, we have reformulated the original
problem into an equivalent parameterized optimization and
applied the PSO for global optimization. Numerical results
validates the benefit of deploying an IRS when direct channels
are ineffective. In addition, the performance of the proposed
algorithm is very close to that of an exhaustive search method,
and it outperforms AO-BSMM and ZF beamforming in terms
of complexity and performance.

REFERENCES

[1] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent
reflecting surface-aided wireless communications: A tutorial,” IEEE
Trans. Commun., vol. 69, no. 5, pp. 3313–3351, May 2021.

[2] X. Guan, Q. Wu, and R. Zhang, “Intelligent reflecting surface assisted
secrecy communication: Is artificial noise helpful or not?” IEEE Wireless
Commun. Lett., vol. 9, no. 6, pp. 778–782, Jun. 2020.

[3] Z. Zhang, C. Zhang, C. Jiang, F. Jia, J. Ge, and F. Gong, “Improv-
ing physical layer security for reconfigurable intelligent surface aided
NOMA 6G networks,” IEEE Trans. Veh. Technol., vol. 70, no. 5,
pp. 4451–4463, May 2021.

[4] C. Gong, X. Yue, X. Wang, X. Dai, R. Zou, and M. Essaaidi, “Intelligent
reflecting surface aided secure communications for NOMA networks,”
IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 2761–2773, Mar. 2022.

[5] Z. Zhang, J. Chen, Q. Wu, Y. Liu, L. Lv, and X. Su, “Securing
NOMA networks by exploiting intelligent reflecting surface,” IEEE
Trans. Commun., vol. 70, no. 2, pp. 1096–1111, Feb. 2022.

[6] E. Ekrem and S. Ulukus, “The secrecy capacity region of the Gaussian
MIMO multi-receiver wiretap channel,” IEEE Trans. Inf. Theory, vol. 57,
no. 4, pp. 2083–2114, Apr. 2011.

[7] B. Zheng, Q. Wu, and R. Zhang, “Intelligent reflecting surface-assisted
multiple access with user pairing: NOMA or OMA?” IEEE Commun.
Lett., vol. 24, no. 4, pp. 753–757, Apr. 2020.

[8] Y. Shi and R. C. Eberhart, “Comparison between genetic algorithms
and particle swarm optimization,” in Proc. 7th Int. Conf. Evol. Program.
Berlin, Germany: Springer, Mar. 1998, pp. 611–616.

[9] Z.-L. Gaing, “Particle swarm optimization to solving the economic
dispatch considering the generator constraints,” IEEE Trans. Power Syst.,
vol. 18, no. 3, pp. 1187–1195, Aug. 2003.

[10] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, Nov. 2020.

[11] Q. Q. Wu and R. Zhang, “Beamforming optimization for wireless
network aided by intelligent reflecting surface with discrete phase shifts,”
IEEE Trans. Commun., vol. 68, no. 3, pp. 1838–1851, May 2020.

[12] M. Vaezi, Y. Qi, and X. Zhang, “A rotation-based precoding for MIMO
broadcast channels with integrated services,” IEEE Signal Process. Lett.,
vol. 26, no. 11, pp. 1708–1712, Nov. 2019.

[13] X. Zhang, Y. Qi, and M. Vaezi, “A rotation-based method for precoding
in Gaussian MIMOME channels,” IEEE Trans. Commun., vol. 69, no. 2,
pp. 1189–1200, Feb. 2021.

[14] R. Wan, L. Zhu, T. Li, and L. Bai, “A NOMA-PSO based cooperative
transmission method in satellite communication systems,” in Proc. IEEE
WCSP, Oct. 2017, pp. 1–6.

[15] D. Park, “Weighted sum rate maximization of MIMO broadcast and
interference channels with confidential messages,” IEEE Trans. Wireless
Commun., vol. 15, no. 3, pp. 1742–1753, Mar. 2016.

[16] Y. Qi, M. Vaezi, and H. V. Poor, “K-receiver wiretap channel: Optimal
encoding order and signaling design,” 2022, arXiv:2206.00717.

[17] M. S. Sohail, M. O. B. Saeed, S. Z. Rizvi, M. Shoaib, and
A. U. H. Sheikh, “Low-complexity particle swarm optimization for time-
critical applications,” 2014, arXiv:1401.0546.

[18] Further Advancements for E-UTRA Physical Layer Aspects (Release
9), document TS 36.814, 3rd Generation Partnership Project (3GPP),
Aug. 2010.

[19] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate
maximization for reconfigurable intelligent surface aided wireless net-
works,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3064–3076,
May 2020.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 28,2023 at 20:16:46 UTC from IEEE Xplore.  Restrictions apply. 


