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Abstract

Distributed source coding, separate encoding (compression) and joint decoding of statisti-

cally dependent sources, arises in an increasing number of applications like sensor networks

and multiview video coding. Many of those applications are highly interactive, requiring

the development of low-delay, energy-limited communication and computing schemes. Cur-

rently, this compression is performed by using capacity-approaching binary channel codes.

As a natural extension, distributed lossy source coding is realized by cascading a quantizer

and Slepian-Wolf coding in the binary domain. Despite big strides in practical distributed

source coding techniques, this problem is still demanding in terms of processing power,

bandwidth, and delay.

In this dissertation, we develop a new framework for distributed lossy source coding, in

which we use real-number codes for binning. Specifically, we use a class of Bose-Chaudhuri-

Hocquenghem (BCH) codes in the real/complex field known as the discrete Fourier trans-

form (DFT) codes. Contrary to the conventional scheme, we first compress the continuous-

valued sources and then quantize them. The new scheme exploits the correlation between

continuous-valued sources, rather than quantized ones, which is more accurate. Also, by

using short BCH-DFT codes, it reduces the complexity and delay and offers the potential to

avoid the problems of the conventional quantization and binning approach, with relatively

simple encoder/decoder.

We propose both syndrome- and parity-based schemes, and we extend the parity-based

scheme to distributed joint source-channel coding based on a single DFT code. Further, to

adapt to uncertainty in the degree of statistical dependence between the sources, we con-

struct rate-adaptive BCH-DFT codes. This allows the encoder to switch flexibly between

encoding sample rates, if the degree of statistical dependence varies. The construction of

rate-adaptive codes is based on transmission of additional syndrome samples and a simple

extension of the subspace-based decoding.

Another major contribution of this dissertation is to generalize the encoding/decoding of

BCH-DFT codes. We prove that the parity frequencies of a BCH-DFT code, or equivalently

the zeros of codewords in the frequency domain, are not required to be adjacent; we provide

the decoding algorithm as well. This offers flexibility in constructing BCH-DFT codes and

further improvement in the decoding which can be exploited in channel coding as well.
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Résumé

Le codage de sources distribué, c’est-á-dire l’encodage séparé et le décodage conjoint de

sources statistiquement dépendantes, survien dans un grand nombre d’applications telles

que les réseaux de capteurs et le codage de vidéos multi-vues. Plusieurs de ces applications

sont hautement interactives, ce qui demande le développement de communications et de

schémas de calcul á faibles délais et limités énergétiquement. Actuellement, cette compres-

sion est effectuée en utilisant des codes binaires pour approcher la capacité de canal. En

tant qu’extension naturelle, le codage de sources distribué avec pertes est réalisé en mettant

en cascade un quantificateur et un codage Slepian-Wolf dans le domaine binaire. Malgré

les grands progrés effectués dans les techniques pratiques de codage de sources distribué,

ce probléme reste exigeant en termes de puissance de traitement, de bande passante et de

délai.

Dans cette dissertation, nous développons un nouvel axe d’étude pour le codage de

sources distribué avec pertes, dans lequel nous utilisons des codes á nombre réels pour

l’encapsulage. Plus spécifiquement, nous utilisons une classe de codes Bose-Chaudhuri-

Hocquenghem (BCH) dans le domaine réel, plus connus sous le nom de codes de la trans-

formée de Fourier discréte (TFD). Contrairement au schéma conventionnel, nous compri-

mons d’abord les sources valeurs continues et nous les quantifions ensuite. Le nouveau

schéma exploite la corrélation entre les sources valeurs continues plutôt que celles quan-

tifiées, ce qui offre plus de précision. De plus, l’utilisation de codes BCH-TFD de petite

taille, réduit la complexité et le délai et permet d’éviter les problmes liés á la quantification

conventionnelle et á l’approche d’encapsulage, avec un encodeur/décodeur relativement

simple.

Nous proposons deux schémas: un basé sur le syndrome et l’autre sur la parité, et nous

étendons le schéma basé sur la parité au codage source-canal conjoint distribué á partir

d’un seul code TFD. Par la suite, pour s’adapter á l’incertitude du degré de dépendance

statistique entre les sources, nous construisons des codes BCH-TFD avec taux adapté. Cela

permet á l’encodeur de permuter facilement entre les taux de code, si le degré de dépendance

statistique varie. La construction de codes á taux adapté est basée sur la transmission

d’échantillons-syndrome supplémentaires et sur une simple extension du décodage de type

sous-espace.

Une autre contribution majeure de cette dissertation est la généralisation du processus
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encodage/décodage des codes BCH-TFD. Nous prouvons que les fréquences de parité d’un

code BCH-TFD, équivalents aux zéros des mots de code dans le domaine fréquentiel, n’ont

pas besoin d’être adjacents; nous fournissons l’algorithme de décodage également. Nous

apportons ainsi de la flexibilité lors de la construction des codes BCH-TFD et d’autres

améliorations au niveau du décodage, lesquelles peuvent également être exploitées au niveau

du codage de canal.
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Chapter 1

Introduction

We are living in a time of information explosion with ever-increasing demand for data

storage and communication. It is estimated that 90% of all the data the human race has

ever produced has been generated over the last two years [31]. The information age has been

revolutionized by Shannon’s fundamental work in 1948 [98]. In yet another change, during

the past decades, communications has shifted from simple, point-to-point communication

to network communication, with many senders and/or receivers. New network applications

are distributed in nature (peer-to-peer) and highly interactive, requiring the development of

new low-delay, energy-limited communication and computing schemes. In this thesis, we are

interested in a specific kind of networks, namely, wireless sensor networks, a new, emerging

field that is expected to play an important role in the future society and revolutionize

environmental sensing. The applications of sensor networks are diverse; some broad range

of applications areas are health, military, agriculture, and home [4], and new applications

are continuously being discovered as the technology develops.

The emergence of distributed systems has intensified requirement for the efficient use

of expensive and limited resources, such as bandwidth and power, so that a major concern

in design and operation of wireless sensor networks is the energy-efficiency. This is because

the sensors usually run on batteries and it is required that the battery last for the entire

lifetime of the sensor. Reducing the amount of information to be transmitted is then sought-

after to reduce the energy spent on communication and increase the battery lifetime. To

this purpose, distributed source coding (DSC) is a key “enabling” technology. DSC refers

to the compression of multiple, statistically dependent sources (e.g., neighboring sensors’
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output) that do not communicate with each other and therefore are encoded in a distributed

manner. In such a setting, the sensor nodes send their compressed outputs to a common

center where joint decoding is performed. Distributed (separate) encoding is crucial to

prevent unnecessary energy consumption for communication and coordination between the

sensors.

A seminal work by Slepian and Wolf in 1973 [99] laid the foundation of distributed

source coding, in which the authors proved the counter-intuitive result that separate en-

coding (with joint decoding) achieves the same compression rate as joint encoding does.

Essentially, to realize a Slepian-Wolf encoder, one can partition all possible source outcomes

into bins indexed by syndromes of some “good” linear channel code for the specific source

correlation model [128]. In other words, the alphabets of the source are divided into cosets,

and the cosets’ indices are transmitted.1 The Slepian-Wolf theorem deals with lossless

compression of two correlated signals. A few years after this work, Burger and Tung [108]

studied the lossy counterpart of this problem, i.e., lossy compression of correlated signals.

A special case of distributed lossy source coding, namely, lossy source coding with side in-

formation at the decoder, which had already been studied by Wyner and Ziv [126], received

much more attention in the literature.

In spite of these theoretical results, advancing the theory to less simple settings has been

problematic and started only nearly a decade and a half ago. Specifically, to move toward

the gains promised by information theory, Slepian-Wolf coders have been privileged by

the advancement of practically implementable, capacity-approaching channel codes (e.g.,

turbo [12] and LDPC [42] codes). In a similar fashion, practical lossy distributed source

coding is realized by converting the continuous-valued sources to the binary sources and

applying Slepian-Wolf coding afterwards. Although big strides have been made in devising

practical schemes for distributed source coding, this problem is still challenging, in various

applications, in terms of processing power and delay. This is because, strictly speaking,

capacity-achieving channel codes require unboundedly complex encoder/decoder with infi-

nite number of signaling degrees of freedom (blocklength). Therefore, in practice, especially

in real-time applications, where delay and complexity limitations are more stringent, the

performance of DSC based on turbo and LDPC codes is highly affected. In general, in

1Instead, one may use a parity-based approach, in which the parity resulting from the application of
the source to a systematic linear block code is used to label the cosets and thus is transmitted in lieu of
the source.
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practice, where delay and complexity are bounded, quantization and binning losses arise

since it is proved that infinite dimension source and channel codes are needed to reach the

boundary [132,128].

In addition to the above losses, there is also another loss due to inaccuracy of the

correlation model between the sources. This issue arises both in lossless and lossy DSC;2

however, it is more pronounced in the latter. The reason is that the correlation between

the sources is usually modeled after quantization, i.e., in the discrete domain; most often it

is assumed to be a binary symmetric channel with a known crossover probability. Clearly,

though, to capture the correlation between continuous-valued sources as accurately as pos-

sible, it is required to model correlation in the continuous domain. In other words, since

quantization is a nonlinear operation, the correlation between the quantized signals is not

known accurately even if it is known in the continuous domain, indicating that a model in

the binary domain may not be accurate for continuous-valued sources, so it incurs some

extra loss.

1.1 Contributions

In this dissertation, we develop a new framework for distributed lossy source coding, in

which we introduce the use of real-number codes for binning. Transmission is, however,

through a digital communication channel, i.e., binning is followed by quantization.3 That

is, contrary to the conventional scheme, we propose to first compress the continuous-valued

sources and then quantize them. In the new framework, the compression is in the real field,

aiming at representing the source with fewer samples. We still use channel codes for this

purpose; the codes are analog, however. The new scheme exploits the correlation between

continuous-valued sources, rather than quantized ones, to perform compression. It offers

the potential to avoid the problems of the conventional quantization and binning approach,

with relatively simple encoder/decoder and short codes. The following summarizes the

major contributions of this dissertation:

• We establish a new framework for lossy DSC in general, and the Wyner-Ziv coding

2Throughout this dissertation the terms “lossy distributed source coding” is used interchangeably with
“distributed lossy source coding.” A similar convention is valid for the lossless case.

3Such a scheme benefits from the advantages of digital communication systems, such as the advanced
error correction techniques and prevalence of digital processors; it can also be used in analog communication
systems by removing the quantization block.
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as a special case, where binning is performed in the real field by using real-number

codes; this helps model the correlation noise more accurately and before quantization.

Specifically, we use short Bose-Chaudhuri-Hocquenghem (BCH) codes in the discrete

Fourier transform (DFT) domain which can reduce the complexity and delay to a

large extent. We introduce both syndrome- and parity-based schemes and emphasize

their advantages and disadvantages in different contexts.

• To adapt to uncertainty in the degree of statistical dependence between the sources,

we construct rate-adaptive BCH-DFT codes. This allows the encoder to switch flex-

ibly between encoding sample rates, without switching the code. In a rate-adaptive

DSC, the encoder need not know the degree of statistical dependence in advance, if

there is feedback from decoder to encoder.

• We extend the parity-based DSC to the case where the transmission channel is noisy;

i.e., we use a single DFT code both to compress the signal and protect it against

channel variations. This gives rise to distributed joint source-channel coding (DJSCC)

based on DFT codes, and is a key for low-delay coding since it maps source blocks

to short channel blocks.

• In order to develop the parity-based DSC and DJSCC, we introduce the notion of

systematic DFT frames (or codes). For an (n, k) DFT code, there are
(
n
k

)
systematic

codes each of which may result in a different reconstruction error. We first demon-

strate that the performance of these frames differs depending on the relative position

of the systematic and parity samples in the codewords. We then prove that evenly

spaced systematic (or parity) samples result in the minimum mean-squared recon-

struction error, whereas the worst performance is obtained when the parity samples

are consecutive. We also prove that a tight, systematic DFT frame can be realized if

and only if the frame is performing integer oversampling.

• An extension of subspace-based error localization of BCH-DFT codes is developed in

order to characterize rate-adaptation for this class of codes. This extended subspace-

based approach, simply extends and improves the existing subspace-based algorithms

by enlarging the dimension of the quantization noise subspace, or equivalently, in-

creasing the number of polynomials obtainable for error localization. To this purpose,

extra syndrome samples are required. The same idea can be applied to other real
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codes which are based on orthogonal transform matrices, such as the discrete cosine

transform (DCT) and discrete sine transform (DST) codes.

• We prove that for an (n, k) DFT code there are φ(n) syndrome matrices for decoding,

where φ(n) is the number of positive integers less than n that are relatively prime

to n. This diversity is exploited to improve the error localization by combining the

error localizing polynomials corresponding to the matrices. Apart from the diversity

in decoding, the generalized subspace method brings another novelty at the encoder

side; that is, the parity frequencies of a BCH-DFT code (equivalently, the zeros of

codewords in the frequency domain) are not required to be adjacent. This provides

substantial flexibility in constructing BCH-DFT codes.

The above contributions have been reported in the following publications.

Articles published in refereed journals and conferences

1. M. Vaezi and F. Labeau, “Distributed Source-Channel Coding Based on Real-Field

BCH Codes” IEEE Trans. Signal Process., vol. 62, pp. 1171-1184, Mar. 2014.

2. M. Vaezi and F. Labeau, “Generalized and Extended Subspace Algorithms for Er-

ror Correction with Quantized DFT Codes” IEEE Trans. Commun., accepted for

publication, Dec. 2013.

3. M. Vaezi and F. Labeau, “Systematic DFT Frames: Principle, Eigenvalues Structure,

and Applications” IEEE Trans. Signal Process. vol. 61, pp. 3774-3885, August 2013.

4. M. Vaezi, A. Combernoux, and F. Labeau, “Low-Delay Joint Source-Channel Coding

with Side Information at the Decoder,” in Proc. DSP/SPE 2013, Napa, California,

11-14 Aug. 2013.

5. M. Vaezi and F. Labeau, “Extended Subspace Error Localization for Rate-Adaptive

Distributed Source Coding,” in Proc. ISIT2013, Istanbul, Turkey, pp. 2174-2178,

5-13 Jul. 2013.

6. M. Vaezi and F. Labeau, “Improved Modeling of the Correlation Between Continuous-

Valued Sources in LDPC-Based DSC,” in Proc. Asilomar2012, Pacific Grove, Cali-

fornia, 4-7 Nov., 2012.
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7. M. Vaezi and F. Labeau, “Distributed Lossy Source Coding Using Real-Number

Codes,” in Proc. VTC2012-Fall, Québec City, Canada, 3-6 Sep. 2012.

8. M. Vaezi and F. Labeau, “Least Squares Solution for Error Correction on the Real

Field Using Quantized DFT Codes,” in Proc. EUSIPCO-2012, Bucharest, Romania,

27-31 Aug., 2012.

9. M. Vaezi and F. Labeau, “Systematic DFT Frames: Principle and Eigenvalues Struc-

ture,” in Proc. ISIT2012, Boston, MA, USA, pp. 2436-2440, 1-6 Jul. 2012.

1.2 Organization

This dissertation is organized as follows. Chapter 2 provides an introduction to the prob-

lem of distributed source coding both in lossless and lossy cases. We start with theory and

state some well-known, relevant theorems in distributed source coding. We then review

practical code construction techniques and some applications. This is followed by a set of

open issues and challenges in practical distributed source coding. In Chapter 3, we briefly

explain the process of encoding and decoding information in BCH-DFT codes. We then

establish a new framework for lossy DSC, in which BCH-DFT codes are used for binning.

In this chapter, our main focus is on the syndrome-based Wyner-Ziv coding and its exten-

sion to rate-adaptive case. We showcase different aspect of performance for several codes.

Numerical results show that, even with short codes, the end-to-end distortion in the new

scheme is better than quantization error level. In Chapter 4, we introduce parity-based

DSC and extend it to the case where the transmission channel is noisy. Such a setting gives

rise to distributed joint source-channel coding based on DFT codes, in which one DFT code

is employed both to compress the signal and protect it against channel variations, which is

appealing for low-delay communication. Also, in this chapter we introduce and study the

properties of systematic DFT codes. We find the best and worst systematic codes from

the minimum mean-squared reconstruction error sense. Chapter 5 is devoted to improv-

ing the decoding of BCH-DFT codes, where we extend and generalize the subspace-based

decoding of BCH-DFT codes based on extra syndrome samples. Flexibility in encoding

and code rate as well as diversity in decoding are offered by virtue of the developed algo-

rithms in this chapter. Simulation results, for several codes, demonstrate the capability of

the extended and generalized subspace-based algorithms to perform much better than the
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existing subspace-based error localization in the presence of quantization noise. Chapter 6

concludes the dissertation and proposes avenues for future research.
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Chapter 2

Distributed Source Coding

Background

This chapter presents an overview of distributed source coding and sets the stage for subse-

quent chapters. Section 2.1 and Section 2.2 introduce the problem and outline theoretical

foundations, respectively. Section 2.3 outlines practical techniques which asymptotically

achieve the theoretical limits. Section 2.4 briefly outlines the state-of-the-art selected ap-

plications of distributed source coding. In Section 2.6, we address recent research and

open issues in distributed source coding techniques which motivate the contributions of

this dissertation.

2.1 Introduction

Consider a communication system with two separate, correlated signals X and Y , as shown

in Figure 2.1. X and Y come from two sources that cannot communicate with each other.

This setting is also known as distributed source coding (DSC) because the signals are not

encoded jointly; encoding is done independently or in a distributed manner. The receiver,

however, can perform joint decoding since it can see both encoded signals. An example of

such a system is a sensor network composed of spatially separated sensor nodes, sending

correlated observations to a common fusion center. The question is to find the minimum

required encoding rate such that both signals can still be recovered perfectly, i.e., without

any loss.

In their fundamental study [99], Slepian and Wolf laid the foundation of this prob-
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Encoder 2-Y -MY

Decoder -X̂, Ŷ
Encoder 1-X -MX

Figure 2.1 Distributed lossless source coding (Slepian-Wolf coding) with
separate encoding and joint decoding.

lem, namely separate lossless compression of two correlated sources. They proved the

counter-intuitive result that separate encoding (with joint decoding) achieves the same

rate compression as joint encoding does. Lossless source coding with side information at

the decoder is a special case of Slepian-Wolf coding where one signal, known as side in-

formation, is available at the decoder. Wyner and Ziv [126] extended this special case

to a more general one, namely lossy source coding with side information at the decoder.

Intriguingly, when the source and side information are jointly Gaussian and the distortion

measure is the MSE, Wyner-Ziv coding does not suffer a rate loss compared to the case

where side information is also available at the encoder. That is, for this case of lossy source

coding, separate encoding is as efficient as joint encoding. However, in general, Wyner-Ziv

coding incurs some loss in rate when compared to lossy source coding with side information

available at both the encoder and decoder.

2.2 Background Theory

Perfect representation of a continuous-valued random variable requires an infinite number of

bits, thus any description of such a variable with finite number of bits is imperfect and incurs

some distortion. A basic problem in rate-distortion theory is to find the minimum expected

distortion for a particular rate, given a source distribution and a distortion measure [28].

The rate-distortion function R(D), which can also be applied to discrete random variables,

is defined by the infimum of rates R such that (R,D) is achievable [37], for a given distortion

value D. In other words, the rate-distortion function is the achievable lower bound on bit-

rate for a distortion D. Here we take a look at rate-distortion functions of some well-known

source coding problems.
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2.2.1 Point-to-Point Source Coding

Theorem 2.1. Shannon’s Lossy Source Coding Theorem [28]

The rate-distortion function for a discrete memoryless source (DMS) X with a distribution

p(x) and a distortion measure d(x, x̂) is equal to the associated information rate-distortion

function

R(D) = min
p(x̂|x):E(d(X,X̂))≤D

I(X; X̂), (2.1)

for D ≥ Dmin , minx̂ E(d(X, x̂)), where I(X; X̂) is the mutual information of X and X̂.

It means that a rate R is achievable with distortion D for R > R(D), but it is not achievable

for R < R(D). It is easy to check that lossless source coding theorem is a special case of

the lossy source coding theorem. To do so, in (2.1), let D = 0 which implies x̂ = x; and

thus R(0) = I(X,X) = H(X), which is the optimal rate for lossless source coding.

2.2.2 Source Coding with Side Information

Several interesting extensions of Theorem 4.1 have been studied in the literature when

causal or non-causal side information (SI) is available at the encoder or decoder [37]. Here

we only consider “non-causal” side information, that is when the entire side information

sequence is available. When side information Y is available both at the encoder and decoder,

it can be easily shown that the rate-distortion function becomes

RSI−ED(D) = min
p(x̂|x,y):E(d(X,X̂))≤D

I(X; X̂|Y ). (2.2)

This is known as conditional source coding problem, usually represented by the conditional

rate-distortion function RX|Y (D). It potentially decreases the required encoding rate to

achieve the same distortion [32], when compared with the case where side information is

not available at the encoder or decoder.

A more fascinating variation however, is the problem of lossy source coding with side

information available only at the decoder. Wyner and Ziv [126] studied this problem, and

obtained its rate-distortion function.

Theorem 2.2. Wyner-Ziv’s Theorem [126]

If (X, Y ) are two DMS, the rate-distortion function of X with distortion measure d(x, x̂)
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when side information Y is available only at the decoder is equal to

RSI−D(D) = min
p(u|x), x̂(u,y):E(d(X,X̂))≤D

I(X;U |Y ) (2.3)

where U is an auxiliary random variable and U → X → Y forms a Markov chain.

This rate-distortion function is mostly represented by RWZ(D) or RWZ
X|Y (D) in the litera-

ture. It can be verified [37] that the difference between RSI−D(D) and RSI−ED(D) is in the

sense that the minimum is taken over p(u|x) and p(u|x, y), respectively. Thus, RSI−D(D) ≥
RSI−ED(D) is immediate. This indicates that a rate loss RSI−D(D) − RSI−ED(D) ≥ 0 is

incurred when the encoder does not know side information, which seems natural. However,

Wyner and Ziv proved the intriguing result that RSI−D(D) = RSI−ED(D) for Gaussian

memoryless sources and mean-squared error distortion. 1 In particular, without loss of

generality, for X ∼ N (0, σ2
X) and side information Y = X + U with U ∼ N (0, σ2

U) inde-

pendent of X, we have

RWZ(D) = RX|Y (D) =





1
2

log2 (
σ2
X|Y
D

) if 0 ≤ D ≤ σ2
X|Y

0 if D > σ2
X|Y

(2.4)

where σ2
X|Y =

σ2
Xσ

2
U

σ2
X+σ2

U
. It should be emphasized that, although in the quadratic case there is

no loss if the encoder does not have side information, the underlying coding scheme is very

different from the case that side information is available to both parties. In fact, the same

performance is achieved at the cost of coding complexity. We should also point out that

when side information is not perfect (e.g., suffers from rate loss) this result does not hold,

and the exact solution is unknown to date. In general, for continuous memoryless sources

under the MSE distortion constraint, Zamir [131] proves that RWZ(D)−RX|Y (D) ≤ 1
2

bits.

Yet, such a bound is not known for sources with memory.

2.2.3 Distributed Lossless Source Coding

Slepian and Wolf, in a seminal work [99], laid the foundation of distributed source coding

(DSC), where statistically dependent signals are encoded in a distributed manner but de-

1The dual of this result in channel coding, the well-known “dirty paper coding,” was later proved by
Costa [26].
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coded jointly. They proved, unexpectedly, that separate encoding can be as effective as

joint encoding for this system. Let us first take a look at theoretical limits of the case

where joint encoding can be performed; that is, the two sources are able to communicate.

From Shannon’s source coding theorem [28], for probability of decoding error to approach

zero, the minimum sum rate is simply the joint entropy H(X, Y ). Surprisingly, though,

the same combined rate is sufficient even if the signals are encoded separately, as described

in the following theorem.

Theorem 2.3. Slepian-Wolf ’s Theorem [99]

The optimal rate region for distributed coding of two DMS sources (X, Y ) ∼ p(x, y) is the

set of rate pairs (RX , RY ) that

RX ≥ H(X|Y )

RY ≥ H(Y |X)

RX +RY ≥ H(X, Y ) (2.5)

Figure 2.2 illustrates the Slepian-Wolf rate region compared to the conventional entropy

coding. As it can be seen, Slepian-Wolf coding reduces the rate required for lossless trans-

mission of correlated source; in other words, it expands the achievable rate region. Examples

of significant reduction in total transmission rate are presented in [28], [37]. With conven-

tional separate entropy encoding and separate decoding, one can only achieve RX ≥ H(X)

and RY ≥ H(Y ); thus, RX +RY = H(X) +H(Y ) which is greater than H(X, Y ) for corre-

lated X and Y . Slepian and Wolf showed that the corner point A (represented by the first

and last inequalities in (2.5)) is achievable even when sender 1 does not know Y . Thus,

the sum rate RX + RY = H(X, Y ) is achievable even though the sources are separately

encoded. Therefore, the limit for lossless DSC can be smaller than that of separate coding.

The compression, however, is no more error free. Nevertheless, the probability of error can

be vanishingly small for long sequences.

Similar to Shannon’s channel coding theorem, the proof of Slepian-Wolf coding is based

on random binning. Random binning is a key, fundamental concept in information theory.

In the context of Slepian-Wolf coding, the essential idea of random bins is to choose a

large random index for each source sequence. Then with high probability, different source
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B

Figure 2.2 Achievable rate regions for the Slepian-Wolf coding (solid lines)
and separate encoding with separate decoding (dashed lines).

sequences will have different indices, providing that the set of typical source sequences is

small enough. Hence, we can recover the source sequence from the index [28].

2.2.4 Distributed Lossy Source Coding

As an extension of Slepian and Wolf problem, it is natural to study distributed lossy source

coding in which reconstruction is no longer perfect. Similar to lossless DSC, two sources X

and Y are separately encoded and the descriptions are sent over noiseless communication

links to a common decoder. But unlike that, the compression is lossy and the decoder

wishes to reconstruct the two sources with distortions DX and DY , respectively. This is

the most general setup for two sources; it was first studied by Berger and Tung under the

name of “multiterminal source coding” [108]. Again, the question is to find the minimum

required description pairs (RX , RY ) that achieve distortion pair (DX , DY ), i.e., the rate-

distortion regionR(DX , DY ). This problem is more involved and the solution is not known,

except for the quadratic Gaussian case.

The rate-distortion region of this problem is not known in general. However, Berger

and Tung [108] introduced an inner bound which is tight for several special cases. It

includes both Wyner-Ziv and Slepian-Wolf regions as special cases. Particularly, this region

reduces to Slepian-Wolf region when DX and DY are Hamming distortion measure. For

RY ≥ H(Y ), i.e., when there is no rate limit for Y , this region gives the Wyner-Ziv rate-
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-(Ŷ , DY )

Encoder 1-X -MX -(X̂,DX)

Figure 2.3 Distributed lossy source coding (multiterminal lossy source cod-
ing).

distortion function. Moreover, the Berger-Tung inner bound is optimal for the quadratic

Gaussian case. However, a recently-found counterexample shows that the Berger-Tung

inner bound is not tight in general [37].

Berger and Tung also introduced an outer bound which is tight for some special cases,

including the Slepian-Wolf and Wyner-Ziv problems. There are also other cases for which

this outer bound is proven to be tight [37], however it is not tight in general. For instance,

it is not tight for the quadratic Gaussian case.

Having established a strictly better outer bound, Wagner et al. [120] recently proved

the optimality of Berger-Tung’s inner bound for the quadratic Gaussian case and gave the

rate-distortion region. They also showed that the optimal architecture for this problem

comprises separate quantization followed by Slepian-Wolf coding for each source. In addi-

tion, they proved that for a given covariance, Gaussian source has the smallest rate region.

In other words, with this optimal architecture and a given covariance, higher rates are re-

quired to send Gaussian sources than any other source [120]. This indicates that Gaussian

source is the “worst” source in this sense.

2.3 Practical Code Construction

The Slepian-Wolf theorem, which dates back to the early 1970’s, provides a seminal, con-

ceptual basis for distributed source coding. However, it is nonconstructive since it uses

random binning in the proof. Serious practical code constructions for this theorem was

motivated, only during the past decade and half, by emerging applications in distributed

sensor networks and distributed video coding. According to the Slepian-Wolf coding the-
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orem, the achievable rate region for distributed sources X and Y is given by (2.5). This

region is illustrated in Figure 2.2. Most practical Slepian-Wolf codings first try to approach

a corner point (e.g., A) with RX +RY = H(X, Y ) = H(X|Y )+H(Y ). This is called asym-

metric Slepian-Wolf coding. Although, to prove the achievability of this point, Slepian and

Wolf uses binning technique, the proof contains the main intuition for practical construc-

tion as well. To highlight this, from the fact that pX,Y (x, y) = pX(x)pY |X(y|x), one can

think of the Y -sequences that are generated by applying the X-sequences as inputs to a

discrete memoryless channel with probability of pY |X(y|x). In other words, one can view X

and Y as input and output of a noisy communication channel with probability transition

matrix of pY |X(y|x). Thus, designing a capacity-achieving channel code for this channel

ensures reliable transmission of a subset of X, effectively the index of that subset. More

precisely, a capacity-achieving channel code for this channel with C = I(X;Y ), can distin-

guish 2I(X;Y ) = 2H(X)−H(X|Y ) different codes. Since there are on the average 2H(X) input

symbols, we can divide them into 2H(X|Y ) disjoint sets where each set on average contains

2H(X)/2H(X|Y ) = 2I(X;Y ) elements. Hence, by designing 2H(X|Y ) disjoint capacity-achieving

codes, any symbol produced by X can be associated to one capacity-achieving code.

In a similar fashion, the other corner point (B) can be achieved. Afterwards, any point

between A and B will be achievable by time sharing, i.e., using each code for a fraction of

time. For instance, to achieve the point in the middle of A,B each code must be used 50%

of time. One can also design codes that directly approach any point on the line segment

AB; this approach is referred as symmetric Slepian-Wolf coding [55]. In what follows, we

discuss the asymmetric Slepian-Wolf coding design techniques.

2.3.1 Slepian-Wolf Coding

Although it took more that 30 years to design practical codes to approach this theoretical

limit, a basic idea for practical Slepian-Wolf code construction was proposed in 1974 by

Wyner [125], a year after Slepian and Wolf’s work was published. The idea is to partition

all possible source outcomes into bins indexed by syndromes of some “good” linear channel

code for the specific correlation model [128]. In other words, the alphabets of X can

be divided into cosets, and the cosets’ indices are transmitted. Figure 2.4 illustrates the

idea of distributed lossless source coding, where cosets are indexed based on syndrome.

Alternatively, one may use a parity-based approach, in which a systematic linear block
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Figure 2.4 Practical lossless distributed source coding in asymmetric case,
where Y has the role of side information at the decoder. X and Y are binary
sequences; the virtual correlation channel is usually modeled as a binary sym-
metric channel. Alternatively, we may transmit parity instead of syndrome.

code is applied and the resulting parity is transmitted.

The Slepian-Wolf source coding problem is actually a channel coding problem and binary

channel codes have been the main driver of most DSC techniques. Using convolutional

codes for coset construction, both scalar and trellis, Pradhan and Ramchandran [80, 81]

first introduced a constructive coding technique for binary and Gaussian sources. Later,

more sophisticated channel codes, including turbo and low-density parity-check (LDPC)

codes [93, 42, 61], were adapted to this problem by several groups independently. Now, it

is known that capacity-approaching turbo [9, 2, 75, 45], and LDPC codes [69, 46, 95] result

in a compression rate that approaches toward the Slepian-Wolf bound [50,128].

In summary, as shown in Figure 2.4, in order to independently compress two correlated

sources, one source (Y ) is compressed to its entropy while the other one (X) is channel

encoded using a capacity-approaching code, in which only the redundant bits (i.e., parity

or syndrome bits) are transmitted, resulting in compression. At the decoder, the first code

is decoded independently as it was encoded simply by entropy coding. Decoding of the

second source, however, is more demanding. Due to the correlation between the sources,

the first source can be thought of as a “noisy” version of the second one. Then, the

syndrome bits, which are used to describe the second code, are concatenated to its noisy

interpretation. This is as if we have channel coded the second source and sent the code

and redundancies through the channel. Thus, we can run channel decoding and recover

this channel codeword.

A virtual channel with input X and output Y , as illustrated in Figure 2.4, represents

the correlation between the two sources. In fact, existing channel codes can be used in

DSC provided that the correlation can be modelled by a simple communication channel.
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Then, if a channel code is good for this correlation channel, Slepian-Wolf compression will

work to a perfect degree. This virtual channel can be modeled in different ways. Many

approaches model it as a binary symmetric channel (BSC) with a known crossover prob-

ability p. Others consider p as an unknown and estimate it during the iterative decoding

algorithm [45] or use a Markov model to measure the correlation between the sources. In

yet other approaches, the correlation parameter p changes over time. This gives rise to the

use of adaptive algorithms to predict and track the change of p, in order to enhance decod-

ing. The estimation of statistical correlation between the source and side information is

particularly important when dealing with non-stationary sources with unknown statistics,

like distributed video coding (DVC). The BSC has attracted more interest mainly because

in channel coding, a large body of research has been carried out on this channel, and a

number of capacity-approaching codes are available for that.

The linear channel code design and its rate depend on the correlation model. Essentially,

the objective of the correlation channel is to help find a good linear channel code to compress

X. To be specific, it indicates how many syndrome bits are required so that the decoder

can decode X with small amount of error. The more accurate the modeled correlation

channel between X and Y , the better (higher) the realizable compression for X, provided

that an appropriate channel code, i.e., a code that approaches the capacity of this virtual

channel, is used to compress X. Then, the rate required to describe X moves toward the

Slepian-Wolf bound, H(X|Y ).

In general, finding a good code for Slepian-Wolf coding problem is not very easy. Even

for apparently simple BSC correlation model, with Slepian-Wolf limit H(X|Y ) = H(p),

finding a solution for the Slepian-Wolf coding problem is not trivial. However, since a

number of capacity-approaching codes are available for this channel, this model is widely

considered in this context. With this model, lower H(p) corresponds to higher correlation

and vice versa. Simulation results show that the lower the correlation between the two

sources is, the more powerful the channel code needed to achieve the same probability

of error [128]. To estimate the virtual channel, one approach is to transmit as few as

possible syndrome bits initially. Upon receiving the syndrome bits, the decoder estimates

the correlation parameter and decides whether the received syndrome bits are enough for

a successful decoding. Otherwise, it informs the encoder to send more syndrome bits, until

the correlation parameter is estimated accurately enough; at this stage, the decoder begins

to decode [39]. This is in contrast to the rate-adaptive scheme with feedback [119] in which



2 Distributed Source Coding Background 18

the decoder attempts decoding with a short syndrome first and requests an augmented

syndrome only if decoding fails. The expectation-maximization (EM) algorithm (using the

log-likelihood ratio) is proposed in [39]. However, the estimation accuracy depends on the

initialization of the EM algorithm, particularly for sources with low correlation. In [104] an

algorithm based on maximum likelihood (ML) estimation is proposed which is performed

prior to decoding, so it can be used to initialize the expectation maximization algorithm. It

should be mentioned that despite giant strides in this field, universal Slepian-Wolf coding

is still an open problem.

Apart from being an important problem individually, when cascaded with a quantizer,

Slepian-Wolf coding provides a practical approach to lossy DSC problems, such as the

Wyner-Ziv problem. This is discussed in the following.

2.3.2 Wyner-Ziv Coding

In many emerging applications like sensor networks, we are dealing with continuous sources

rather than discrete sources. This gives rise to the problem of lossy distributed source

coding or rate-distortion for distributed correlated sources. Particularly, for the asymmetric

case, we may consider code construction for the corner point (RX , RY ) = (H(X|Y ), H(Y ))

only. Since RY = H(Y ), we can encode and decode Y independently; thus, we assume Y

is available at the decoder. It then becomes the well-known Wyner-Ziv problem, namely,

source coding with side information at the decoder. In general, Wyner-Ziv coding incurs

some rate loss compared to conditional source coding, in which the side information is

available to both encoder and decoder. However, as explained in Section 2.2, there is

no rate loss in the quadratic Gaussian case, where (X, Y ) are jointly Gaussian and the

distortion measure is the MSE. This “no rate loss” condition, which was introduced by

Wyner and Ziv, later extend by Pradhan et al. to the more general case of X = Y + Z,

where X and Y can have arbitrary distributions and Z is Gaussian and independent from

X, Y [128].

In general, a Wyner-Ziv encoder can be modeled by cascading a quantizer and a Slepian-

Wolf encoder, as depicted in Figure 2.5. Since the Slepian-Wolf coding is based on channel

coding, Wyner-Ziv becomes a source-channel coding and two different losses are introduced:

Source coding loss (or quantization loss) and channel coding loss (or binning loss). Thus,

to move toward the Wyner-Ziv bound, we need to concurrently minimize quantization
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Figure 2.5 Practical lossy source coding with side information (Y ) at the
decoder (the Wyner-Ziv coding).

loss and maximize rate compression in the Slepian-Wolf encoder. Zamir and Shamai [132]

proved that infinite dimension source and channel codes are required in general to reach

the Wyner-Ziv boundary. Hence, practically, the Wyner-Ziv limit can be reached only

asymptotically.

Inspired by the information-theoretic work by Zamir and Shamai, the design of quantiz-

ers for this problem first started by Pradhan and Ramchandran [80], in 1999. Later, they

completed this work in [81], where they constructed computationally efficient scalar and

trellis codes attempting to approach the Wyner-Ziv limit. They combined two source codes,

i.e., scalar quantization and trellis coded quantization (TCQ), with two channel codes,

scalar and trellis-based coset construction, and compared the performance of these schemes.

Another practical approach is to combine scalar quantization with powerful Slepian-Wolf

codes like LDPC and turbo codes. In this approach, there is no binning in quantization

and all binning is left to the Slepian-Wolf code. This allows to use a powerful channel code

and virtually limits the performance degradation only to the source coding (quantization)

part. Further improvement is achieved when the source code is TCQ and the channel code

is a turbo code. Similarly, the Wyner-Ziv coding based on TCQ and LDPC codes has

been studied. Assuming 256-state TCQ and “ideal” Slepian-Wolf coding (the one which

achieves H(Q(X)|Y )) results in only 0.2 dB away from the theoretical Wyner-Ziv limit at

high rates [128, 55]. With practical Slepian-Wolf coder this gap can be as small as 0.5 dB

at high rates. The performance of practical design can be even closer to theoretical limit.

For instance, 8192-state TCQ with irregular LDPC and optimum nonlinear estimation at

decoder has a gap of 0.2 dB away from the theoretical limit at a rate of 3.83 bps [129,55].

It should be however highlighted that the decoder complexity is very high; it uses an LDPC

code of length 106 with 300 iterations and nonlinear estimation for reconstruction.



2 Distributed Source Coding Background 20

2.3.3 Berger-Tung Coding

In a more general context, we may consider the problem of distributed lossy source coding

design in which, at the decoder, neither of the sources can be reconstructed without loss.

This means that side information is no longer perfect, at the decoder. This problem, that

arises in practical distributed applications, is also a source-channel coding problem. Wagner

et al., in their theoretical work [120] derived the rate-distortion region for such a problem

in the quadratic Gaussian setup. Moreover, they proved that vector quantization along

with Slepian-Wolf is optimal for this problem when there are only two terminals. Inspired

by this leading result, practical multi-terminal (MT) source coding was studied employing

Slepian-Wolf-coded quantization (SWCQ). SWCQ explicitly separates vector quantization

from Slepian-Wolf coding. This allows designing a good source code as well as a good

channel code “individually,” and make it possible to separately evaluate their contribution

to total loss. Assuming ideal source coding and ideal channel coding any point on the

sum rate bound is achievable for both direct and indirect MT source coding problems [55].

Similar to practical Winer-Zive coding, practical MT coding can be realized by TCQ and

turbo/LDPC codes, and achieves reasonably low gap.

2.4 Advanced Techniques

In practice, the statistical dependency between source and side information varies in time

in a fashion that might be unknown in advance. To overcome this problem, the encoder

can adapt its coding rate on-the-fly, to handle different levels of statistical dependency

between the source and side information; this is referred to as rate adaptation [103]. Rate-

adaptive schemes are popular in transmission of non-ergodic data (e.g., video), to adjust

to compression ratio variations [119].

In parity-based DSC using systematic convolutional and turbo codes, puncturing can

be used to generate variable rates. Rate adaptation in syndrome-based DSC using convolu-

tional and turbo codes are performed both for the asymmetric and symmetric cases in [91]

and [103], respectively. Removing syndrome bits of LDPC codes leads to performance

degradation; rate-adaptive LDPC codes are presented in [119]. Other advanced techniques

like side information adaptation and multilevel DSC are considered in the literature.
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2.5 Applications

In the previous sections we focused on the theory and techniques to implement DSC. The

driving force behind recent practical implementation of the theory which dates back to the

1970’s, has been a set of emerging applications of DSC in multi-terminal communication

networks e.g., wireless sensor networks, ad hoc wireless networks, multi-terminal video

coding, cooperative and relay communications.

With possible uses in environmental control, industrial automation, intelligent homes,

health, military, etc., wireless sensor networks are expected to play an important role in

sensor technology. The sensor nodes are required to be energy efficient, particularly because

the sensors usually run on batteries and are required remain functional for a long period of

time, if not for the entire lifetime of the sensor. The main sources of power consumption in

sensor networks are sensing, communication, and data processing [4]. Reducing the energy

spent on communication is possible through reducing the amount of information that needs

to be transmitted. DSC comes in handy in this context if two nodes have a high correlation

between their readings.

Another set of applications of DSC appears in distributed video coding [77]. DVC is

a new paradigm for video coding which has several advantages to the conventional video

coding. One important benefit of DVC is to shift the burden of motion estimation from

the encoder to the decoder, compared to the popular video compression standards such as

H.263 and MPEG [82]. Flexible allocation of the overall video codec complexity, improved

error resilience, and codec independent scalability are among other advantages of DVC [77].

There are many other application scenarios for which DVC may bring major advantages,

however it should be mentioned that the coding efficiency of current DVC systems is still

below that of the latest conventional video codecs, such as H.264/AVC.

2.6 Challenges and Open Issues

In block channel coding, there is a fundamental interplay between the rate, block length,

and probability of error. The analysis of the interplay between these three parameters has

been one of the main questions of coding and information theory for decades. Motivated by

practical applications in which limited delay is a key design constraint, there has recently

been a lot of interest in non-asymptotic (finite block length) data compression and data
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transmission, even in the information theory community. For example, [79,78] address the

fundamental limits of channel coding at finite block length. In fact, a viable path and an

active research area in physical layer is to find short, powerful codes with reasonably simple

decoding algorithms [30].

Despite tremendous advances in practical DSC techniques, this problem is still de-

manding in terms of processing power, bandwidth, and delay in various applications. Here,

we address some open issues such as coding efficiency, complexity, and delay, as well as

problems in modeling the correlation channel and finding the corresponding rate distortion

performance.

2.6.1 Correlation Channel Model

Accurate modeling of the correlation between the sources plays a crucial role in the per-

formance and efficiency of the DSC systems. Existing work on DSC model the correlation

between the continuous-valued sources after quantization. Some of them, mainly theoret-

ical ones, assume that this statistical dependency can be modeled by a binary symmetric

channel (BSC) [81, 50, 128, 2, 8]. Many practical works, such as [82, 25], however, consider

non-binary correlation models. Motivated by many applications, in which the exact corre-

lation information is not available, there has been a flurry of recent activity on improving

the correlation model and/or estimating it. Specifically, most DVC modeling approaches

e.g., [59, 19, 38, 10, 35] assume the correlation noise as independent Laplacian or Gaussian-

Bernoulli-Gaussian (GBG).

Some recent results even report that a better model for correlation noise is obtained

considering the dependency between noise and side information [29]. Not surprisingly,

simulation results indicate that finer a noise model improves the rate distortion performance

[59]. Thus, the performance of DSC strongly depends on accurate knowledge of correlation

between sources. We will address this issue in Chapter 3 of this dissertation.

2.6.2 Rate Distortion Performance

The rate distortion (RD) theory [28, Chapter 10] provides an analytical expression for the

amount of compression that can be achieved using lossy compression methods. The Wyner-

Ziv theorem provides the RD function for Gaussian sources; however, in many applications,

like video, data statistics is known to be non-Gaussian. The RD region is not known for
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non-Gaussian models including the Laplacian and the GBG. Further, the RD function

is different for the sources with and without memory. The latter, also called temporal

correlation, typically is naturally found in many sources.

Apart from this, motivated by practical systems especially by real-time applications,

there is a renewed interest in understanding the fundamental limitations of finite block

length codes [78, 30]. In this line of research, the RD performance of DSC systems with

limited delay (i.e., finite block length) is another interesting open issue.

2.6.3 Complexity

Evaluating the rate distortion (RD) performance addresses only one side of the problem;

the complexity to achieve such an RD performance is the other side of the problem. Low-

complexity encoding is one of the most widely cited advantages of DVC with respect to

conventional coding schemes because DVC provides a framework that eliminates high com-

putational burden motion estimation at the encoder as well as the corresponding memory

to store reference frames. Indeed, it is shown that DVC encoding complexity (see, e.g.,

DISCOVER codec [8, 1]) provides a substantial speed-up when compared to conventional

H.264/AVC in terms of software execution time [34]. Despite reducing the encoding com-

plexity compared to the conventional video coding approaches, the complexity is still high

since one has to utilize capacity achieving channel codes which require very large block

lengths. Although this approach may be acceptable for video applications, it is problem-

atic for sensor network applications, which tend to be delay sensitive and have lower overall

information rate.

Besides, most existing work on distributed source coding focused on memoryless sources.

To exploit the temporal correlation typically found in many sources, usually a discrete

cosine transform (DCT) or prediction filters is applied to both the source and the side

information in order to improve efficiency. This will add some extra complexity to the

system.

2.6.4 Delay

If the sensors are measuring delay-sensitive signals such as audio, in addition to low power

and bandwidth constraints, delay becomes another constraint. Current methods that ap-

proach theoretical rate distortion of DSC, require prohibitively large block lengths which,
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in turn, translate into a large system delay and an increased memory requirement at the

sensors nodes even for low-dimensional (or scalar) quantizers. Therefore, it may not be

plausible to implement these methods in real-time scenarios [77], e.g., surveillance for secu-

rity or military applications, where low delay is crucial. The other extreme case, i.e., zero

delay distributed source-channel coding, has been investigated in [6,5,7,23] through the use

of analog mapping. Although these schemes have lower complexity, they are far from the

theoretical limits and they do not benefit from the advantages of digital communications

as they use analog communications.

In this dissertation, we introduce the use of short analog codes to do binning in the

lossy DSC; transmission is still through a digital communication channel. This can address

the complexity and delay to a large extent; it also helps model the correlation noise more

accurately. However, due to very short block length, the rate distortion performance is

expected to be far from the asymptotic RD function.2

2.7 Summary

In this chapter, we reviewed different variants of the problem of separate compression of

two statistically dependent sources, both in theory and practice. Although the fundamental

results date back to the 1970’s, only in the past decade and half have emerging applica-

tions like sensor networks motivated techniques to design practical codes. It has been

shown that the source coding problem of Slepian-Wolf is in fact a channel coding problem

and state-of-the-art channel codes, like turbo and LDPC codes, have been exploited for

this purpose. The Wyner-Ziv coding is then implemented by cascading quantization and

Slepian-Wolf coding. We also highlighted a number of advanced techniques as well as ap-

plications of the DSC. Finally, motivated by the needs of the applications, we discussed

recent advances in research, in the areas of rate adaptation, correlation noise modeling,

rate distortion performance, and low-complexity and/or low-delay code design. Our contri-

butions in Chapters 3 - 5 of this dissertation build on and unify elements of this literature.

Throughout this dissertation, particularly in Chapters 3 and 5, we revisit the above issues

and apply our novel framework and techniques.

2 This highlights the need for the non-asymptotic RD function, but is out of the scope of this dissertation.
In practice, using finite block lengths results in a performance loss which can be sizeable [34].
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Chapter 3

Distributed Source Coding Using

BCH-DFT Codes

As described in Chapter 2, the current approach to the DSC of continuous-valued sources

is to first convert them to discrete-valued sources and then apply lossless (Slepian-Wolf)

coder [50, 128, 81]. Similarly, a practical Wyner-Ziv encoder consists of a quantizer and

Slepian-Wolf encoder. There are, hence, quantization and binning losses for the source

coder. Despite this, rate-distortion theory promises that block codes of sufficiently large

length are asymptotically optimal, and they can be seen as vector quantizers followed by

fixed-length coders [32]. Therefore, practical Slepian-Wolf coders have been realized using

different binary channel codes, e.g., LDPC and turbo codes [69,9,2]. These codes, however,

are out of the question if low delay is imposed on the system as they may introduce excessive

delay when the desired probability of error is very low. The other extreme case, i.e., zero

delay source-channel coding, can be achieved through the use of analog mapping [6,5,7,23].

These schemes have lower complexity but they do not benefit from the advantages of digital

communications as they use analog communications; they are also far from the theoretical

limits.

In this chapter, 1 we establish a new framework for distributed lossy source coding over

digital communication channels, in which we propose to first compress the continuous-

valued sources and then quantize them, as opposed to the conventional approach.2 The

1The material in this chapter is based on [111,113,117,115].
2The proposed framework can be exploited in analog communication systems simply by removing the

quantization block. In sensor networks, analog communication can be optimal in some specific cases [48,49].
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Wyner-Ziv Coding in the Real Field Based on
BCH-DFT Codes

Mojtaba Vaezi, Student Member, IEEE, and Fabrice Labeau, Senior Member, IEEE

Abstract—We show how real-number codes can be used to
compress correlated sources and establish a new framework for
distributed lossy source coding, in which we quantize compressed
sources instead of compressing quantized sources. This change
in the order of binning and quantization blocks makes it possible
to model correlation between continuous-valued sources more
realistically and compensate for the quantization error when the
sources are completely correlated. We focus on the asymmetric
case, i.e., lossy source coding with side information at the decoder,
also known as Wyner-Ziv coding. The encoding and decoding
procedures are described in detail for discrete Fourier transform
(DFT) codes, both for syndrome- and parity-based approaches.
We also extend the parity-based approach to the case where
the transmission channel is noisy and perform distributed joint
source-channel coding in this context. The proposed system is well
suited for low-delay communications. Furthermore, the mean-
squared reconstruction error (MSE) is shown to be less than or
close to the quantization error level, the ideal case in coding
based on binary codes.

Index Terms—Wyner-Ziv coding, distributed source coding,
joint source-channel coding, real-number codes, BCH-DFT codes,
syndrome, parity, low-delay.

I. INTRODUCTION

THE distributed source coding (DSC) studies compression
of statistically dependent sources which do not commu-

nicate with each other [2]. The Wyner-Ziv coding problem [3],
a special case of lossy DSC, considers lossy data compression
with side information at the decoder. The current approach to
the DSC of continuous-valued sources is to first convert them
to discrete-valued sources and then apply lossless (Slepian-
Wolf) coder [4]–[6]. Similarly, a practical Wyner-Ziv encoder
consists of a quantizer and Slepian-Wolf encoder. There are,
hence, quantization and binning losses for the source coder.
Despite this, rate-distortion theory promises that block codes
of sufficiently large length are asymptotically optimal, and
they can be seen as vector quantizers followed by fixed-length
coders [7]. Therefore, practical Slepian-Wolf coders have been
realized using different binary channel codes, e.g., LDPC and
turbo codes [8]–[10]. These codes, however, are out of the
question if low delay is imposed on the system as they may
introduce excessive delay when the desired probability of error
is very low.
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Fig. 1. The Wyner-Ziv coding in practice.

In this paper, we establish a new framework for the Wyner-
Ziv coding and distributed lossy source coding, in general. We
propose to first compress the continuous-valued sources and
then quantize them, as opposed to the conventional approach.
The new framework is compared against the existing one in
Fig. 1. It introduces the use of real-number codes [11]–[14]
to represent correlated sources with fewer samples, in the real
field.

To do compression, we generate syndrome or parity samples
of the input sequence using a real-number channel code [11],
similar to what is done to compress a binary sequence of data
using binary channel codes. Then, we quantize these syndrome
or parity samples and transmit them. There are still coding
(binning) and quantization losses; however, since coding is
performed before quantization, error correction is in the real
field, and the quantization error can be corrected when two
sources are completely correlated over a block of code. A
second and more important advantage of this approach is the
fact that the correlation channel model can be more realistic,
as it captures dependency between continuous-valued sources
rather than quantized sources. In the conventional approach, it
is implicitly assumed that quantization of correlated signals
results in correlated sequences in the binary domain; this
may not necessarily be precise due to the nonlinearity of the
quantization operation. To avoid any loss due to the inaccuracy
of correlation model, we exploit the correlation between the
continuous-valued sources before quantization.

The new approach is also capable of alleviating the quanti-
zation error. This is possible because coding precedes quanti-

Figure 3.1 The Wyner-Ziv coding based on binary and real-number codes.
Both schemes can be straightforwardly extended to distributed source coding.

new framework is compared against the existing one in Figure 3.1. It introduces the use of

real-number codes (see, e.g., [72, 124,76, 73, 24]), to represent correlated sources with fewer

samples, in the real field. That is, the compression is in the real field, aiming at representing

the source with fewer samples. To achieve compression, we send syndrome or parity samples

of the input sequence using a real-number channel code, similar to what is done to compress

a binary sequence of data using binary channel codes. Then, we quantize the syndrome or

parity samples and transmit them. There are still binning and quantization losses; however,

since coding is performed before quantization, error correction is accomplished in the real

field; and, in the extreme case where the two sources are the same over a block of code the

quantization error can also be mitigated. A second and more significant advantage of this

approach is the fact that the correlation channel model can be more realistic as it captures

the dependency between the continuous-valued sources rather than quantized sources. In

the conventional approach, it is implicitly assumed that quantization of correlated signals

results in correlated sequences in the binary domain; this may not necessarily be precise due

to the nonlinearity of the quantization operation. To avoid any loss due to the inaccuracy of

correlation model, we exploit the correlation between the continuous-valued sources before

quantization. The new approach is also capable of alleviating the quantization error. This
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is possible because coding precedes quantization. Specifically, we use the Bose-Chaudhuri-

Hocquenghem (BCH) DFT codes [72,14,86,41,100,113] for compression, and owing to them

the loss due to quantization can be decreased by a factor of k
n

for an (n, k) code [51,84,113].

Additionally, reconstruction loss becomes zero if the two sources are the same over one short

codeword of a DFT code. This is achieved in view of modeling the correlation between the

two sources in the continuous domain. Moreover, the new framework is suitable for low-

delay communications since, by using short DFT codes, a reasonably low reconstruction

error is attainable.

Section 3.1 motivates the new framework for lossy DSC. We also present the correlation

channel model that is used throughout this dissertation, as well as two simple information-

theoretic bounds for the correlation channel. In Section 3.2, we study the encoding and

decoding of BCH-DFT codes, and we leverage subspace-based decoding (e.g., MUSIC) to

improve the decoding. Then, in Section 3.3, we present the encoder and decoder for the

Wyner-Ziv coding based on the BCH-DFT codes. The proposed system is extended to rate-

adaptive coding in Section 3.4. Section 3.5 presents the simulation results and confirms

that the proposed system is well suited for low-delay communications, as the mean-squared

reconstruction error (MSE) is shown to be reasonably low for very short block length.

3.1 Real-Number Codes for DSC

The problem of error correction in the real field using real-number codes was first considered

by Marshall [72] and Wolf [124]; they proposed the discrete Fourier transform (DFT) for

this purpose. Marshall also introduced an important subclass of DFT codes, the BCH-DFT

codes. DFT codes find applications in a wide range of areas including wireless communi-

cations [121,57], image transforms [40], joint source-channel coding [41], distributed source

coding [111], and compressive sensing [33]. Looking from the frame theory perspective, these

codes are used to provide robustness against packet erasure in wireless networks [51,84,16].

Similar to error correction in finite fields, the basic idea of error correcting codes in the

real field is to insert redundancy to a message vector to convert it to a longer vector, called

the codeword. However, the insertion of redundancy is done in the real field, i.e., before

quantization and entropy coding [72, 124]. One main advantage of soft redundancy (real

field codes) over hard redundancy (binary field codes) is that by using soft redundancy one

can go beyond the quantization error level and thus reconstruct continuous-valued signals
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more accurately.

We introduce the use of real-number codes in lossy compression of correlated signals.

The proposed system for the Wyner-Ziv coding is depicted in Figure 3.1. Although it

consists of the same blocks as the existing Wyner-Ziv coding scheme [50,128], the order of

these blocks is changed. Hence, binning is performed before quantization and can benefit

from soft redundancy; we use DFT codes for this purpose.

3.1.1 Motivations

The following paragraphs summarize the motivation for the proposed change in the order

of binning and quantization blocks and the use of DFT codes for binning.

Realistic correlation model

In the existing framework for lossy DSC, correlation between two sources is modeled after

quantization, either using binary [81, 50, 128, 2, 8] or non-binary [82, 25] correlation mod-

els. Admittedly though, due to the nonlinearity of the quantization operation, correlation

model between the quantized signals cannot be as accurate as that of the continuous-valued

signals. In addition, with this new framework one can consider symbol-by-symbol correla-

tion while in the existing approach bit-by-bit correlation is investigated. In the latter case,

to have a decent compression, it is necessary to consider the dependency between different

bits of each sample [112], which can complicate the system. On the contrary, a symbol-

by-symbol correlation does not suffer from such an issue. These motivate us to perform

DSC by investigating a method that exploits correlation between continuous-valued sources

rather than binary sources.

Alleviating the quantization error

In lossy data compression with side information at the decoder, soft redundancy, added

by DFT codes, can be used to correct both quantization errors and (correlation) channel

errors. Thus, the loss due to quantization can be recovered, at least partly if not wholly. In

fact, if the two sources are exactly the same over a codeword,3 the quantization error can

3 Note that this can happen in practice especially if the code length is short; for example, it is possible
when the readings of two closely-located sensors are the same for a short period of time, i.e., over one block
of code.
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be compensated for. That is, perfect reconstruction is attainable over the corresponding

samples. The loss due to the quantization error is decreased by a factor of code rate ( k
n

for an (n, k) code) even if correlation is not perfect, i.e., when errors exist. This is because

DFT codes are tight frames; hence, they minimize the MSE [51,84,113].

Low-delay communications

Limited delay is a key constraint in many modern applications, and low-delay coding has

recently drawn a lot of attention. If communication is subject to low-delay constraints, the

performance of turbo or LDPC codes may not be satisfactory due to the imposed short code

length. Early works on DSC are mainly based on turbo and LDPC codes [9, 2, 75, 45, 69].

Low-delay systems can be realized by mapping short source blocks into channel blocks,

in a linear or non-linear fashion [6, 122, 22]. Whether the low-delay requirement exists or

not depends on the specific applications. However, even in applications in which low-delay

transmission is not imperative, it is sometimes useful to consider low-dimensional systems

for their lower computational complexity. We use DFT codes with short block length and

scalar quantization which is suitable if limited delay is required.

3.1.2 Correlation Channel Model

Accurate modeling of the correlation between the sources plays a crucial role in the per-

formance evaluation and efficiency of the DSC systems. Existing works on DSC model the

correlation between the continuous-valued sources after quantization. Some of them, mainly

theoretical ones, assume that this statistical dependency can be modeled by a binary sym-

metric channel (BSC) [81,50,128,2,8,112]. Some other works, such as [82,25,59,19,10,35],

consider non-binary correlation models, such as Laplacian or Gaussian, and transform them

to the binary domain. However, in any of those cases, the correlation is effectively modeled

after quantization and, due to the nonlinearity of quantization operation, such a correla-

tion model may not be as accurate as a model in the continuous domain. This issue can

be dealt with by exploiting the correlation between the continuous-valued sources before

quantization.4

4 To be precise, the term “correlation channel” is used to represent a statistical dependency rather than
a correlation. With this view, it is natural to consider the statistical dependency of analog sources in the
analog domain, e.g., as in (3.1).
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The correlation between the analog sources X and Y , in general, can be defined by

Y = X + E, (3.1)

where E is a real-valued random variable. This model, in which the correlation noise E is

independent from X, will be referred to as the forward correlation channel.5 Particularly,

the above model represents some well-known models motivated in video coding and sensor

networks. Let

E ∼





N (0, σ2
0) w.p. p0,

N (0, σ2
1) w.p. p1,

0 w.p. 1− p0 − p1,

(3.2)

in which σ2
1 = σ2

i + σ2
0, σ2

i � σ2
0, and p0 + p1 ≤ 1. This is a mixture of Gaussian impulses

with power σ2
i and a background noise with power σ2

0. Then, for p0 = 1 or p1 = 1 the

Gaussian correlation is obtained. Further, for p0 + p1 = 1 the Gaussian-Bernoulli-Gaussian

(GBG) and for p0 + p1 < 1, p0p1 = 0 the Gaussian-Erasure (GE) models are realized. The

Gaussian model is broadly used in the sensor networks literature whereas the latter two

models are more suitable for video applications.

The GBG model can be considered as an extension of the jointly Gaussian model. The

rate-distortion region of this model is not known; thus, its characterization can be ob-

tained through lower and upper bounds. To find such bounds, which will be later used in

this chapter, one can make use of the rate-distortion function of related, simpler coding

problems. We know that when side information Y is available both at the encoder and

decoder, the rate-distortion function for jointly Gaussian sources is given by (2.4) in which

σ2
X|Y =

σ2
Xσ

2
E

σ2
X+σ2

E
for forward correlation channel and σ2

X|Y = σ2
E for reverse correlation chan-

nel. This is known as conditional source coding problem, and its rate region is obviously a

lower bound for lossy source coding with side information available “only” at the decoder

(the Wyner-Ziv problem); i.e., RWZ
X|Y (D) − RX|Y (D) ≥ 0. Wyner and Ziv [126] proved

that for jointly Gaussian memoryless sources and mean-squared error (MSE) distortion

5Alternatively, one may use X = Y + E to show the dependency [132]. In such a case, the source
sample X can be interpreted as the sum of the side information (Y ) and of an innovation component (E).
This model which is preferred in the distributed video coding literature will be referred to as the reverse
correlation channel.
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RWZ
X|Y (D) = RX|Y (D).

In the following, RX|Y (D) is used to develop lower and upper bounds for RGBG
X|Y (D).

Assuming that the position of impulses are revealed both to the encoder and decoder, the

rate-distortion function can be obtained in a time division manner. Thus, for D ≤ σ2
0 we

have

RGBG
X|Y (D) ≥ RGBG

X|Y (D) =
∑

j

pjRX|Y,sj(D), (3.3)

where σX|Y,sj = σj, and j ∈ {0, 1}.6 It is also straightforward to see that

RGBG
X|Y (D) ≤ R̄GBG

X|Y (D) = RX|Y,s1(D). (3.4)

By limiting the knowledge of the position of impulses to the decoder only, one may come

up with tighter bounds. This is an interesting topic per se, but it is out of the scope of

this work. Yet, to provide another benchmark level, we will evaluate the performance of

the proposed systems when the position of impulses are known at the decoder.

We also study the Gauss-Markov sources as in many applications there is dependency

between source samples. The rate distortion function of a Gauss-Markov process with a

variance σ2 and a correlation coefficient 0 ≤ ρ < 1 is given by [11,123]

R(D) =
1

2
log2 (

(1− ρ2)σ2

D
) if D ≤ 1− ρ

1 + ρ
σ2, (3.5)

and, similar to (3.3) and (3.4), we can develop lower and upper bounds for the case where

X is a Gauss-Markov source [43]. Note that for D > 1−ρ
1+ρ

σ2 the rate distortion function

can be evaluated numerically [123]. For that range, which corresponds to R < log2(1 + ρ),

distortion is always less than what is evaluated by (3.5). Obviously, ρ = 0 gives a Gaussian

source and (3.5) becomes identical to its Gaussian counterpart.

6 For target distortion D > σ2
0 we do not need to transmit in the absence of impulse and RGBG

X|Y =

p1RX|Y,s1(Di) in which Di = p0σ
2
0 + p1D.
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3.2 BCH-DFT Codes: Construction and Decoding

In this section, we study a class of real-number codes that are employed for binning through-

out this dissertation, investigate some properties of their syndrome, and adapt their decod-

ing algorithm to the Slepian-Wolf coding setup. These codes are a family of BCH codes in

the real field whose parity-check matrix H and Generator matrix G are defined based on

the DFT matrix; they are known as BCH-DFT codes, or simply DFT codes.

BCH-DFT codes [72] are linear block codes over the real or complex fields. Similar to

other BCH codes, the spectrum of any codeword generated by an (n, k, t) code7 is zero in

a block of d , n− k cyclically adjacent components, where d + 1 is the designed distance

of the code [14]. The error correction capability of the code is, hence, given by t = bd
2
c.

We define DFT codes and introduce their basic properties in the following.

3.2.1 Encoding

Definition 3.1. An n× n DFT matrix is defined by

Wn ,
1√
n




1 1 1 · · · 1

ω0 ω1 ω2 · · · ωn−1

...
...

...
. . .

...

ω0 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)



, (3.6)

in which ω = e−j
2π
n [74]. Let WH

n denote conjugate transpose of the DFT matrix. Since Wn

is unitary, WH
n = W−1

n ; i.e., WH
n gives the inverse DFT (IDFT) matrix.

The generator matrix of an (n, k) DFT code [72], in general, consists of any k columns

of the IDFT matrix of order n; the remaining n−k columns of this matrix are used to build

the parity-check matrix, as we will see shortly in this section. These codes are a family of

cyclic codes over the complex field. Thus, their codewords satisfy certain spectral properties

in the frequency domain [13, Chapter 4]. Within the class of DFT codes, there are BCH

codes in the complex and real fields. The generator matrix of an (n, k) real BCH-DFT code

7For simplicity of notation, throughout this dissertation, we will use (n, k) instead of (n, k, t).
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is commonly defined by [114,41]

G =

√
n

k
WH
n ΣWk, (3.7)

where Wn and Wk are the DFT matrices of size n and k, and

Σ =




Iα 0

0 0

0 Iβ


 (3.8)

is an n × k matrix with α = dn
2
e − bn−k

2
c8 and α + β = k [116, 86, 100, 41]. Iα represents

the identity matrix of size α and alpha is the frequency offset required to obtain a real

matrix G. In other words, it identifies the indices in which zeros must be inserted in order

to get the conjugacy constraint required to have a real-valued G [13, Fig. 4.2], [113]. A

complex BCH-DFT code is obtained by removing Wk from (3.7). We can also remove the

first constraint on α; that is, for a complex code, α can be any integer between 1 and k.

Then, for any u, this enforces the spectrum of the codeword

c = Gu, (3.9)

to have n− k consecutive zeros, which is required for any BCH code [14].

The parity-check matrix H, both for real and complex BCH-DFT codes, is constructed

by using the n− k columns of WH
n corresponding to the n− k zero rows of Σ, and is then

defined as

H =




1 1 · · · 1

ωα ωα+1 · · · ωn−β−1

...
...

. . .
...

ωα(n−1) ω(α+1)(n−1) · · · ω(n−β−1)(n−1)




H

. (3.10)

Obviously, H is an (n− k)× n matrix and, by virtue of the unitary property of WH
n it is

8Knowing that n and k cannot be simultaneously even for a real DFT code [72], one can show that
α = dk+1

2 e.
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the null space of G, i.e.,

HG = 0n−k×k (3.11)

both for real and complex codes. Each codeword of an (n, k) BCH-DFT code has

d , n− k (3.12)

cyclically adjacent zeros in the frequency domain. These codes are maximum distance

separable (MDS) codes with minimum Hamming distance dmin = d + 1. They are, hence,

capable of correcting up to t = bd
2
c errors.

In the rest of this chapter, we use the term “DFT code” in lieu of “real BCH-DFT

code.”

3.2.2 Decoding

Before introducing the decoding algorithm, we define some notation and basic concepts.

Let r = c+e be the received vector (a noisy version of c), where c is a codeword generated

by (3.9). Suppose that e is an error vector with ν nonzero elements at positions i1, . . . , iν ;

the magnitude of error at position ip is eip . Then, we can compute

s = Hr = H(c+ e) = He, (3.13)

where s = [s1, s2, . . . , sd]
T is a complex vector with

s` =
1√
n

ν∑

p=1

eipX
α−1+`
p , ` = 1, . . . , d, (3.14)

in which α = dk+1
2
e as defined in (3.8), Xp = e

−j2πip
n , and p = 1, . . . , ν. Next, we define the

syndrome matrix

Sm =




s1 s2 . . . sd−m+1

s2 s3 . . . sd−m+2

...
...

. . .
...

sm sm+1 . . . sd



, (3.15)



3 Distributed Source Coding Using BCH-DFT Codes 35

for ν + 1 ≤ m ≤ d− ν + 1 [86]. Also, we define the covariance matrix as

R = SmS
H
m . (3.16)

For decoding, the extension of the well-known Peterson-Gorenstein-Zierler (PGZ) algo-

rithm to the real field [14] can be used. This coding-theoretic decoding, aimed at detecting,

localizing, and calculating the errors, works based on the syndrome of error. The algorithm

is elaborated in Appendix A. We summarize the main steps of this algorithm, adapted for

a DFT code of length n, in the following.

• Error detection: Determine the number of errors ν by constructing a syndrome

matrix and finding its rank.

• Error localization: Find the coefficients Λ1, . . . ,Λν of the error-locating polynomial

Λ(x) =
∏ν

i=1
(1−xX−1

i ) whose roots X1, . . . , Xν are used to determine error locations;

the errors are then in the locations i1, . . . , iν such that X1 = ωi1 , . . . , Xν = ωiν and

ω = e−j
2π
n .

• Error calculation: Finally, calculate the error magnitudes by solving a set of linear

equations whose constants coefficients are powers of Xi.

In practice however, the received vector is distorted because of quantization. Let ĉ and

q denote the quantized codeword and quantization noise so that ĉ = c + q. Therefore,

r = ĉ+ e and its syndrome is no longer equal to the syndrome of error because

Hr = H(c+ q + e) = sq + s = s̃, (3.17)

where sq ≡ Hq and q = [q1, q2, . . . , qn]T is the quantization error. The elements of the

distorted syndrome vector s̃ can be written as

s̃` =
1√
n

ν∑

p=1

eipX
α−1+`
p +

1√
n

n∑

p′=1

qip′X
p′−1
p′ . (3.18)

The distorted syndrome matrix S̃m and the corresponding covariance matrix R̃ = S̃mS̃
H
m

are defined similar to (5.6) and (5.7) but for the distorted syndrome samples.



3 Distributed Source Coding Using BCH-DFT Codes 36

While the exact value of the error is determined neglecting quantization, the decoding

becomes an estimation problem in the presence of quantization. Then, it is imperative to

modify the PGZ algorithm to decode the errors reliably [14,86,100,41,113]. An alternative

approach is to use the subspace-based decoding. In the remainder of this section, we discuss

this problem and also improve the error detection and localization, by introducing a slightly

different version of the existing methods.

3.2.3 Modified Subspace-Based Decoding

The subspace-based error localization outperforms the coding theoretic one [86, 115]; it

can be integrated into DSC in a straightforward fashion once the syndrome of error is

found [109]. In addition to doing that, in this section, we introduce a new method for error

detection.

Error detection

For a given DFT code, we first fix an empirical threshold θ based on eigendecomposition

of R̃ when the codewords are error-free, i.e. when only the quantization error exist. This

threshold is on the magnitude of eigenvalues, rather than the determinant of R̃. Let λmax

denote the largest eigenvalue of R̃ for m = t + 1. We find θ such that, for a desired

probability of correct detection pd,

Pr(λmax < θ) ≥ pd. (3.19)

Note that λmax is a random variable and we need to estimate its probability distributed

function (pdf) for this purpose. In practice, when errors can occur, we estimate the number

of errors by the number of eigenvalues of R̃ greater than θ, as illustrated in Section 3.5. This

one step estimation is better than the original estimation in the PGZ algorithm [14, 100],

where the last row and column of St are removed until we come up with a non-singular

matrix. The improvement comes from incorporating all syndrome samples, rather than

some of them, for the decision making.

Ideally, we should set different thresholds depending on channel error powers; however,

we choose one θ for all ranges to make the decoder simpler. Numerical results with different

codes show that one suitable θ can be used for a wide range of error powers at the expense
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of a slight MSE performance degradation. When we bring down the threshold θ, effectively

we let the decoder detect more errors. On the contrary, if we increase θ we allow less error

detection.

Error localization

The subspace or coding-theoretic error localizations can be used to find the coefficients

Λ1, . . . ,Λν of the error-locating polynomial [86]. The subspace approach is, however, more

general than the coding-theoretic approach in the sense that it can use up to t+1−ν degrees

of freedom to localize ν errors, compared to just one degree of freedom in the coding-

theoretic approach. This is because, the eigen-decomposition of the covariance matrix

R̃ = S̃mS̃
H
m results in two orthogonal subspaces, namely the error and noise subspaces.

There are m−ν vectors in the noise subspace; these are used to localize errors leveraging a

line spectral estimation method, e.g., the multiple signal classification (MUSIC) algorithm

[96]. Effectively, each vector corresponds to one error-locating polynomial [115], and by

using the MUSIC approach we are averaging these m− ν polynomials to reduce the effect

of quantization noise. Hence, in the subspace method, we get a better error localization

compared with the coding-theoretic approach which is solely based on one polynomial. The

best result is then obtained for m = t+1 [86] for which the size of S̃m is either (t+1)×(t+1)

or (t+ 1)× t.
We apply the subspace-based error localization to the DSC, similar to that in channel

coding. However, one should note that in the DSC the syndrome of error is computed in a

different manner from that in channel coding; this will be elaborated in Section 3.3.

Error calculation

This last step is rather simple. Let He be the matrix consisting of the columns of H corre-

sponding to error indices. The errors magnitude E = [ei1 , ei2 , . . . , eiν ]
T can be determined

by solving

HeE = s̃, (3.20)

in a least squares sense, for example. This completes the error correction algorithm by

calculating the error vector.
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3.2.4 Performance Compared to Binary Codes

DFT codes by construction are capable of decreasing the quantization error. When there is

no error, an (n, k) DFT code brings down the MSE below the quantization error level with

a factor of Rc = k/n [84,51]. This is also shown to be valid for channel errors [113], as long

as the channel can be modeled as an additive noise. To appreciate this, one can consider

the generator matrix of a DFT code as analysis frame operator of a tight frame [84]; it is

known that frames are resilient to any additive noise, and tight frames reduce the MSE k/n

times [65]. Hence, DFT codes can result in a MSE even less than the quantization error

level whereas the MSE in a binary code is obviously lower-bounded by the quantization

error level.

3.3 Wyner-Ziv Coding Using DFT Codes

In this section, we use DFT codes to do Wyner-Ziv coding in the real field. This is

accomplished by using DFT codes for binning and transmitting the compressed signal, in

the form of syndrome or parity samples, in a digital communication system. This methods

will be called as syndrome-based and parity-based approaches, respectively. We study

the syndrome-based method in this chapter; the parity-based method will be discussed in

Chapter 4.

Let x be a sequence of real random variables x1x2 . . . xn, and y be a noisy version of x

such that yi = xi + ei, where ei is continuous, i.i.d., and independent of xi, as described

in (3.2). The lower-case letters x, y, and e, respectively, are used to show the realization

of the random variables X, Y , and E. Since e is continuous, this model precisely captures

any variation of x, so it can be used to model the dependency between x and y accurately.

This correlation model is important, for example, in video coders that exploit Wyner-Ziv

concepts, e.g., when the decoder builds side information via extrapolation of previously

decoded frames or interpolation of key frames [10].

In this chapter, we study the GBG (and GE) correlation model and, for the sake of

analysis, we assume that e contains up to t spikes (big errors with variance σ2
i in (3.2)) in

each codeword.9 For simplicity of presentation, the non-spiked errors are assumed to be zero

in this section; this is as if we were using the GE model. However, when doing simulation

9 When doing simulation, to make the assumptions more realistic, we drop the constraint that a code-
word cannot have more that t spikes.
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Fig. 2. The Wyner-Ziv coding using DFT codes: Syndrome approach.

2) Decoding: The decoder estimates the input sequence
from the received syndrome and side information y. To this
end, it needs to evaluate the syndrome of (correlation) channel
errors. This can be simply done by subtracting the received
syndrome from the syndrome of the side information. Then,
neglecting the quantization error, we obtain,

se = sy − sx, (16)

and se can be used to precisely estimate the error vector, as
described in Section III-B. In practice, however, the decoder
knows ŝx = sx + q rather than sx. Therefore, only a distorted
syndrome of error is available, i.e.,

s̃e = sy − ŝx = se − q. (17)

Hence, using the PGZ algorithm, error correction is accom-
plished based on (17). Note that, having computed the syn-
drome of error, decoding algorithm in a DSC using DFT codes
is exactly the same as that in the channel coding problem. This
is different from DSC techniques in the binary field which
usually require a slight modification in the corresponding
channel coding algorithm to be customized for DSC.

B. Parity Approach

The syndrome-based Wyner-Ziv coding is straightforward,
but it is not clear how we can use it for noisy transmission.
In the sequel, we explore an alternative approached, namely
parity-based approach, to the Wyner-Ziv coding.

1) Encoding: To compress x, the encoder generates the
corresponding parity sequence p with n − k samples. The
parity is then quantized and transmitted, as shown in Fig. 3,
instead of transmitting the input data. To this end, we need to
find a systematic generator matrix Gsys, as G in (3) is not in
the systematic form.

A first approach is to find Hsys and build Gsys based on that
[1]. Another, simpler, way is to obtain a systematic generator
matrix directly from G. Let Gk be a square matrix of size k
composed of arbitrary rows of G. We see that Gk is invertible
because using (3) any k×k submatrix of G can be represented
as product of a Vandermonde matrix and the DFT matrix Wk.
This is also proven using a different approach in [20], where
it is shown that any subframe of G is a frame, and its rank is
equal to k. Hence, a systematic generator matrix is given by

Gsys = GG−1
k . (18)

Encoder

x

k

p

n−k
p̂

n−k
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k

y

k

Gsys Q Decoder

Correlation
Channel

Fig. 3. The Wyner-Ziv coding using DFT codes: Parity approach.

Besides, from HG = 0, it is clear that

HGsys = 0. (19)

Therefore, we do not need to calculate Hsys, and the same
parity-check matrix H can be used for decoding in the
parity approach. It is also obvious that Gsys is a real matrix.
The question that remains to be answered is whether Gsys

corresponds to a BCH code. To generate a BCH code, Gsys

must have n − k consecutive zeros in the transform domain.
The Fourier transform of this matrix WnGsys = (WnG)G−1

1

satisfies the required condition because WnG, the Fourier
transform of original matrix, satisfies that.

It should be emphasized that one can arbitrarily choose the
rows of Gk in (18); this results in

(
n
k

)
systematic generator

matrix for an (n, k) DFT code. Although any of those sys-
tematic codes can be used for encoding, the dynamic range of
the generated parity samples depends on their relative position
of the chosen rows [26]. In [29, Theorem 7], we have proved
that when using these systematic frames for error correction,
the mean-squared reconstruction error is minimized when the
systematic rows are chosen as evenly spaced as possible. In
the extreme scenario, where the systematic rows are equally
spaced, the systematic frame is also tight. This is realized only
when n is an integer multiple of k. Such a frame lends itself
well to minimize reconstruction error [19]–[21], [30].

Finally, seeing that parity samples are real numbers, using
an (n, k) DFT code, a compression ratio of k

n−k is achieved.
Obviously, a compression ratio of n

n−k is achievable if we use
a (2n− k, n) DFT code.

2) Decoding: A parity decoder estimates the input se-
quence from the received parity and side information y.
Similar to the syndrome approach, at the decoder, we need
to find the syndrome of (correlation) channel errors. To do so,
we append the parity to the side information and form a vector
of length n whose syndrome, neglecting quantization, is equal
to the syndrome of error. That is,

z =

[
y
p

]
=

[
x
p

]
+

[
e
0

]
= Gsysx + e′, (20)

and e′ = [e | 0]T . Hence,

sz = se′ . (21)

Similarly, when quantization is involved (p̂ = p + q), we get

z̃ =

[
y
p̂

]
= z +

[
0
q

]
= Gsysx + e′ + q′, (22)

Figure 3.2 The Wyner-Ziv coding using DFT codes: Syndrome approach.

for the GBG model, we use (3.2) with p0 + p1 = 1 and a reasonably small p1 so that, for

σ2
i � σ2

0, with high probability there are t or less spikes in each codeword. Obviously, the

remaining elements of e are non-zero for the GBG model, as they are samples of a Gaussian

distribution.

3.3.1 Syndrome Approach

Encoding

To compress an arbitrary sequence of data samples, we multiply it with the parity-check

matrix H, defined in (3.10), to find the corresponding syndrome samples sx = Hx. The

syndrome is then quantized (ŝx = sx + q) and transmitted over a noiseless digital commu-

nication system, as shown in Fig. 3.2. Note that sx, ŝx are both complex vectors of length

n − k. Thus, it seems that to transmit each sample we need to send two real numbers,

one for the real part and one for the imaginary part, which halves the compression ratio.

However, we observe that the syndrome of a DFT code is symmetric, as stated below.

Lemma 3.1. The syndrome of an (n, k) DFT code satisfies

sm =

{
s∗d−m+1, if k is odd,

s∗d−m, if k is even,
(3.21)

for m = 1, . . . , d and d , n− k.

Proof. The proof is straightforward; we show this for odd k and leave the other case to the
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reader. Since α = dk+1
2
e and d = n− k, using (5.2), for odd k we can write

sd−m+1 =
1√
n

ν∑

p=1

eipX
k−1

2
+n−k−m+1

p

=
1√
n

ν∑

p=1

eipX
−k+1

2
−m

p = s∗m. (3.22)

Note that Xn
p = 1, for any p.

The above lemma implies that, for any d, it suffices to know the first dd
2
e syndrome sam-

ples. We know that syndromes are complex numbers in general; however, from sd−m+1 = s∗m

it is clear that if d is an odd number, sm is real for m = dd
2
e. Therefore, for an (n, k) code

with odd k, transmitting n − k real numbers suffices. This results in a compression ratio

of ηs = n−k
n

for the binning step and thus for the encoder. Yet, one can check that for even

k, we have to transmit n− k+ 1 real samples, which incurs a slight loss in compression. It

is however negligible for large n.

Decoding

The decoder estimates the input sequence from the received syndrome and side information

y. To this end, it needs to evaluate the syndrome of (correlation) channel errors. This

can be simply done by subtracting the received syndrome from the syndrome of the side

information. Then, neglecting the quantization error, we obtain,

se = sy − sx, (3.23)

and se can be used to precisely estimate the error vector, as described in Section 3.2.2.

In practice, however, the decoder knows ŝx = sx + q rather than sx. Therefore, only a

distorted syndrome of error is available, i.e.,

s̃e = sy − ŝx = se − q. (3.24)

Hence, using the PGZ algorithm, error correction is accomplished based on (3.24). Note

that, having computed the syndrome of error, decoding algorithm in a DSC using DFT

codes is exactly the same as that in the channel coding problem. This is different from



3 Distributed Source Coding Using BCH-DFT Codes 41

DSC techniques in the binary field which usually require a slight modification in the cor-

responding channel coding algorithm to be customized for DSC.

3.4 Rate-Adaptive DSC

The proposed DSC schemes is suitable for low-delay coding as by using short DFT codes

the MSE between the transmitted and reconstructed signals can be reasonably small, even

less than quantization error [117]. On the other hand, a code with short block length

is vulnerable to the variations of channel. Expectedly, the performance of the proposed

systems degrades when the correlation between the sources changes. When the statistical

dependency between the sources varies or is not known at the encoder, a rate-adaptive

system with feedback is an appealing solution; these systems are popular in the transmission

of non-ergodic data, like video [119]. Rate-adaptive DSC based on binary codes, e.g.,

puncturing the parity or syndrome bits of turbo and LDPC codes, have been proposed

in [119,103]. Although puncturing the syndrome samples can be used for rate-adaption in

our system, it severely affects the decoding algorithm and substantially increases the MSE.

We propose an alternative, more efficient method to perform DSC in a rate-adaptive

fashion. This algorithm, which works based on transmitting additional syndrome samples

to decoder, is based on a straightforward extension of the subspace decoding, proposed

in [115] to enhance the error localization of quantized DFT codes. Having access to more

syndrome samples makes it possible to form a bigger syndrome matrix, which in turn

enlarges the dimension of the noise subspace and thus increases the number of error-locating

polynomials. Then, instead of using one polynomial for decoding, one can superimpose

many polynomials to diminish the effect of quantization error and improve error localization

to a large extent. We will discuss this algorithm in more details in Chapter 5. The extended

subspace algorithm is naturally suitable for rate adaption in the syndrome-based DSC.10

This is because the decoder is able to compute extra syndromes of error upon receiving

some new syndrome samples of the data vector. To this end, the encoder and decoder are

required to agree on another parity check matrix H̄, which we call extended parity check

matrix and form it based on those k columns of WH
n (the IDFT matrix of order n) that are

10 It can, however, be applied to the the parity-based DSC in the same way.
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not used to build H. More precisely, similar to (3.10), we have

H̄ ,




1 · · · 1

ωn−β · · · ωn+α−1

...
. . .

...

ω(n−β)(n−1) · · · ω(n+α−1)(n−1)




H

. (3.25)

Then, similar to the syndrome vector s, the extended syndrome vector s̄ is defined as

s̄ = H̄r = H̄c+ H̄e. (3.26)

But H̄c is not necessarily zero and should be compensated for. This can be done naturally,

based on the following rate adaptation algorithm:

1. The decoder requests some extra syndrome samples based on the estimated number

of errors, e.g. when ν̂ > t

2. The encoder computes s̄x = H̄x and transmits it to the decoder sample by sample

3. The decoder computes s̄y = H̄y = s̄x + s̄e to find s̄e = s̄y − s̄x and append it to se

in order to use the extended subspace decoding algorithm.

Therefore the encoder transmits a short syndrome based on an (n, k) code and augments

it with additional samples, if more samples are required. The algorithm is incremental so

that there is no need to re-encode the sources when extra syndrome samples are requested.

In the above algorithm, the decision to request more syndrome samples is based on

the estimated number of errors and the decoder does not need to decode the whole block.

On the contrary, the decision to request extra syndrome samples in a rate-adaptive DSC

systems based on LDPC codes, and any binary codes in general, is based on the decoding

of the whole long block which is computationally less efficient and requires more time.

Another importance of the rate adaptation is to find out whether or not the value of

the error detection threshold θ is appropriate, especially if we have no estimation of the

CEQNR. We know that by bringing the threshold down, we can increase the probability of

error detection. On the contrary, if we increase the threshold fewer errors will be detected

and thus rate adaptation is required to a lesser extent. With this in mind, if there are too

many requests for extra syndromes we may increase θ; conversely, if there are not many
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requests for rate adaptation we can bring the threshold down as long as it improves the

end-to-end distortion.

3.5 Simulation Results

We evaluate the performance of the proposed systems using a Gauss-Markov source x with

mean zero, variance one, and correlation coefficient 0 ≤ ρ < 1 generated by

xi =
√

1− ρ2zi + ρxi−1, (3.27)

in which z = {zi} is a zero-mean, unit-variance i.i.d. Gaussian process. The side-

information is generated using the forward correlation model as presented in Section 3.1.2.

That is, for the GBG model there are both background noise and impulsive errors while

for the GE model only the impulsive errors exist. The background noise, generated by

N (0, σ2
0), affects each and every sample of x while the impulsive error is added to a frac-

tion of samples of x. The amplitude of impulses is generated based on N (0, σ2
i ) and their

position is also selected randomly. To compress the data, x is binned using a (n, k) DFT

code. The compressed vector, i.e., the syndrome samples, is then quantized with a b-bit

uniform quantizer (4 ≤ b ≤ 6) and transmitted over a communication channel. The quan-

tizer step size ∆ depends on the effective range of the compressed data (i.e., the syndrome

or parity) and thus it can be different for the syndrome and parity approaches. It also

depends on the percent of the data we would like to be in the range of quantizer.11 For

an input range of [−mσ,mσ] we get ∆ = 2mσ
2b

. The decoder detects, localizes, and decodes

errors. We compute the MSE between the transmitted and reconstructed data, to measurer

end-to-end distortion. We define channel-error-to-quantization-noise ratio (CEQNR) as

CEQNR , σ2
e/σ

2
q , (3.28)

where σ2
q = ∆2

12
and σe = σi. Thus, a larger CEQNR corresponds to a larger variation of

the impulses amplitude than that of the quantization noise power. In all simulations, we

use 106 input samples for each CEQNR, which corresponds to 106

n
code blocks. We vary

the CEQNR from 10dB to 40dB and plot the resulting MSE.

11For one thing, [−4σx, 4σx] contains more than 99.99% of the input data, where σ2
x is the variance of x.
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Before showing the simulation results for the reconstruction distortion, we elaborate how

to choose the parameter θ and the way it affects the MSE. As we explained in Section 3.2.3,

θ is used to estimate the number of errors, and from (3.19) we need to have the pdf of λmax

to find θ for specific pd. So, the first step is to evaluate the pdf of λmax; this is done based on

the eigendecomposition of R̃ for the quantized code where there is only quantization error.

We then need to fix the value of pd to effectively estimate the number of errors. Numerical

results show that pd = 90 − 99% is a good initial value for θ. Increasing θ will decrease

ν̂, the estimated number of errors, whereas decreasing θ will increase that. Meanwhile, by

decreasing θ the probability of false detection increases. So there is a trade off between

correct detection and false alarm. By changing θ in reasonably small steps and evaluating

the end-to-end distortion, one can find its optimal value so as to minimize the MSE.12 The

optimal value of θ varies based on the CEQNR, even though this variation is small for a

small range of CEQNR. Despite that, in our simulations, for each code, we use one θ at all

CEQNRs so that the decoder does not need to know the value of CEQNR. If CEQNR is

know at the decoder, we can assign a more accurate θ to get a slightly better MSE.

At very low CEQNRs, although error localization is poor, the MSE is still very low

because compared to the quantization error, the errors can be so small that the algorithm

does not detect (and localize) them. Instead, it may occasionally localize and correct

quantization errors. Note that, even if no errors are localized and corrected, the MSE is

still very small as the errors are negligible at very low CEQNRs. Additionally, recall that

the MSE is always reduced with a factor of Rc = k
n
, in an (n, k) DFT code.

To familiarize the reader with the decoding steps, in Figure 3.3, we detail the decoding

steps for a (10, 5) DFT code for the GE correlation model. First, based on Figure 3.3(a),

the threshold θ0 = 0.0024 is found for pd = 99%. Next, this is used to estimate ν in

Figure 3.3(b). The estimated ν is subsequently used to find the location of errors, both

for the PGZ and subspace-based error localization, in Figure 3.3(c). Then, the output of

Figure 3.3(c), for the subspace method, is fed to the last step to find the magnitude of

errors and correct them. The resulting MSE is depicted in Figure 3.3(d). In the remainder

of this section, we will focus only on the MSE performance without plotting the results for

the intermediate steps (i.e., error detection and localization). We should point out that

θ0 = 0.0024 gives an initial value and needs to be optimized depending on the CEQNR.

12 Note that finding the optimal value of θ can be done off-line or using pilot data.



3 Distributed Source Coding Using BCH-DFT Codes 45

0 0.5 1 1.5 2 2.5 3

x 10
−3

0

1000

2000

3000

4000

5000

6000

7000

Magnitude of λmax

(a)

−10 0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Channel error to quantization noise (dB)
R

el
at

iv
e 

fr
eq

ue
nc

y 
of

 c
or

re
ct

 d
et

ec
tio

n 
of

 e
rr

or
s

 

 

0 error
1 error
2 errors

(b)

−10 0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Channel error to quantization noise  (dB)

R
el

at
iv

e 
fr

eq
ue

nc
y 

of
 c

or
re

ct
 lo

ca
liz

at
io

n 
of

 e
rr

or
s

 

 

Subspace
PGZ
1 error
2 errors

(c)

−10 0 10 20 30 40 50 60 70
10

−6

10
−5

10
−4

10
−3

10
−2

Channel error to quantization noise (dB)

M
S

E

 

 

Quantization error
0 error
1 error
2 errors

(d)

Figure 3.3 Performance evaluation of the syndrome-based DSC proposed in
Figure 3.2, for a (10, 5) DFT code and different number of errors in each block
of the code. The results are based on a Gauss-Markov source with ρ = 0.9 and
a quantizer with m = 4 and b = 6. (a) Histogram of λmax(R̃) for the quantized
code. This is used to set a threshold for detection. (b) Probability of correct
detection of errors for θ = 0.0024. (c) Probability of correct localization of
errors based on Figure 3.3(b). (d) The end-to-end distortion for subspace-
based error localization given in Figure 3.3(c).
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Figure 3.4 The performance of the PGZ and subspace (MUSIC) decoding
for a (10, 5) DFT code and the GE correlation model with p1 = 0.04. The
plots are based on a Gauss-Markov source with ρ = 0.9, a 6-bit quantizer, and
θ = 0.0064.

So we change θ0 by a step of 0.001 and check the resulting MSE. Numerical results show

that θ = 0.0064, which corresponds to pd = 0.9995, result in minimum average MSE at

CEQNR between 10dB to 40dB. Clearly, if we change the range of CEQNR the optimal

θ will differ. However, its impact on the average MSE is very small. We begin with the

syndrome approach and probe its performance by varying the CEQNR for different codes

with different compression ratios. In Figure 3.4, we compare the performance of decoding

based on the PGZ and subspace error localization. To put our results in perspective, we

also calculate the MSE for the genie-aided error localization in which the true location of

errors is given to the decoder. The genie-aided decoding reflects the ideal performance

of the proposed DSC system, when least square decoding is used in the last step of the

decoding (i.e., the error calculation). It can be seen that the performance of the subspace-

based decoding is better than that of coding-theoretic one. This is because subspace-based

error localization performs better than the coding-theoretic method. However, as CEQNR

increases this gain gradually decreases because the performance of the two methods becomes

very much the same, as it can be seen in Figure 3.3(c). A similar pattern is observed for

other codes and in general the subspace-based error localization outperforms the coding-

theoretic one [86,115]. Therefore in the remaining plots we only represent the MSE based
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Figure 3.5 The MSE performance of the syndrome-based DSC, with
subspace-based decoding, using three different DFT codes. The other pa-
rameters are the same as those in Figure 3.4.

on the subspace method.

Figure 3.5 presents the MSE performance for three different codes, namely (10, 5), (12, 5)

and (15, 5) codes. Expectedly, as the code rate increases, which implies a lower compression

ratio, the MSE goes down. Next we evaluate the performance of rate adaptation on the

MSE in Figure 3.6. For rate adaptation, the decoder requests extra syndrome samples

if ν̂ ≥ t. Upon receiving the new syndrome samples, the decoder applies the extended

subspace method for error localization and uses this new result for error correction. As

it can be seen from Figure 3.6, rate adaptation can noticeably improve the performance

at the expense of negligible increase in the effective code rate ηe, which is defined as the

ratio of total number of transmitted syndrome and extended samples to total number of

input samples (number of codewords multiplied by n). This is particularly important when

the codeword length n is short. With a small n, the probability of having more than t

errors in one block can be relatively high. By requesting more syndrome samples and using

the extended subspace decoding algorithm, a rate-adaptive system effectively increases

the error correction capability of the code, and thus improves the overall performance.

Another important use of rate adaptation is to compensate for the fixed threshold at

different CEQNR. As explained earlier, ideally, we should have different thresholds at each
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Figure 3.6 The performance of rate-adaptive DSC versus non-adaptive ap-
proach for three different DFT codes with the GE correlation model. The
effective rates (ηe) for the rate-adaptive approach are a little more than their
original code rates (η) while the gain in the MSE is noticeably high. For the
(15, 5) code ηe = 0.66669 and η = 0.66667, thus there is not much gain from
rate-adaption.

CEQNR even though, for simplicity of decoding, we use one θ for all ranges of CEQNR.

When a fixed threshold is used at different CEQNRs, effectively we let the decoder detect

more errors at higher CEQNRs rather than the lower ones. Then, rate adaptation comes

in handy when there are more than t errors in one block. Even if there are t errors in one

block, one might use a few more syndrome samples to enhance the decoding performance.

This improves the end-to-end distortion at the expense of increasing the rate. Finally, the

most important application of rate adaptation is for the case where the statistics of the

channel vary. In all above situations it sounds reasonable to use an aggressive code and

exploit rate adaptation when required.

We now evaluate the performance of the syndrome-based DSC for the GBG model and

(10, 5), (12, 5) codes. The results are shown in Figure 3.7 for σ0 = 0.01σi at different

CEQNRs. It can be seen that rate adaptation decreases the MSE in both cases and the

average rate increase due to that is still very small. Without further estimation block after

Slepian-Wolf coding, the MSE performance of DSC based on binary codes is limited to



3 Distributed Source Coding Using BCH-DFT Codes 49

10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

Channel error to quantization noise (dB)

M
S

E

 

 

Quantization error

(10,5) code, η=0.5000

(10,5) code, η
e
=0.5073

(12,5) code, η=0.5833

(12,5) code, η
e
=0.5843

Genie−aided

Figure 3.7 The MSE performance of the rate-adaptive DSC versus non-
adaptive approach for a Gauss-Markov source with ρ = 0.9 and the GBG
correlation model with σ0 = 0.01σe, p1 = 0.04. The average rate increases
due to the rate-adaption are still very small while reduction in the MSE is
considerable.

the quantization error level whereas the proposed DSC scheme break through this limit.

However, if the final MSE is based on a joint estimation error between the quantized source

and the decoder side information, it can be smaller than the quantization error in the former

cases. Thus, the quantization error may not be a fair benchmark in those cases. To evaluate

the effectiveness of the new framework, the MSE can be compared against the asymptotic

information-theoretic bounds available in the literature.

Finally, we plot the distortion rate region for the syndrome-based DSC and the GBG

model in Figure 3.8 and Figure 3.9, for b = 6 and b = 4 respectively. The goal is to compare

the rate distortion performance of the system with the asymptotic bounds. Since the rate

distortion function for the GBG model is not known we compare the results with the upper

and lower bounds introduced in Section 3.1.2 in (3.3) and (3.4). It should be emphasized

that the lower bound is based on the assumption that both encoder and decoder know the

true position of the errors (impulses); this can make the lower bound very loose. In other

words, when the encoder and/or decoder does not have this knowledge the lower bound

is expected to be tighter; i.e., it will shift upward and get closer to the achievable points.

In both figures we have applied rate-adaptation to find the achievable points. To visualize

the encouraging potential of the proposed framework, in Figure 3.9 we have also shown the
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Figure 3.8 Comparison of distortion-rate function with asymptotic bounds
for coding a Gauss-Markov source X with σX = 1, ρ = 0.9 quantized with a
6-bit quantizer where the GBG correlation model with p1 = 0.04, σ0 = 0.05σe
at CEQNR= 25dB (or σ0 = 0.0321 and σe = 0.6412 for b = 6) is used.
The asterisks show the achievable points based on (13, 11), (9, 7), (7, 5) codes,
respectively from left to right; we have also applied rate-adaptation so that
the corresponding rate for each code is ηeb bits/sample.

performance of our system for the genie-aided (perfect) error localization.

Seeing that we do not use the ideal Slepian-Wolf coding assumption (n→∞), the gap

between performance of our schemes and theoretical rate-distortion function is expected

to be more than that for capacity-approaching codes. However, it should be noted that

capacity-approaching channel codes introduce significant delay if one strives to approach

the capacity of the channel with a very low probability of transmission error. Hence, those

are out of the question for delay-sensitive systems. In that case, it would be best to use

channel codes of low rate and focus on achieving a very low probability of error. The

system we introduced is a low-delay system which works well with reasonably high-rate

codes. This is because the block length in our system is nb bits (n samples) and n is

usually much smaller than the code length in LDPC and turbo codes. For example, in

Figure 3.9 all points are for n ≤ 12 and b = 4 which results in block length L ≤ 48 at the

worst case, while it is common to have codes of length 105 in DSC based on LDPC codes.

In Figure 3.9 we also envisage the performance of our system for the genie-aided (perfect)
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Figure 3.9 The distortion-rate performance and bounds for coding a Gauss-
Markov source X with σX = 1, ρ = 0.9 quantized with a 4-bit quantizer. The
graph is based on the GBG correlation model with σ0 = 0.05σe at CEQNR=
25dB, or equivalently σ0 = 0.1282 and σe = 2.5647 for b = 4. The asterisks
show the achievable points based on (12, 9), (8, 5), (6, 3) codes, respectively
from left to right, while the stars show the achievable points for the same
codes assuming a perfect error localization. Rate-adaptation has been applied
in both cases.

error localization. It indicates the great potential of the proposed framework to become

much closer to the theoretical lower bound and encourages investigation on better error

localization algorithms. In addition, we know that for sources with memory there is depen-

dency between the samples and vector quantization (VQ) can exploit this dependency. The

gain resulting from the memory advantage can be considerable at high rates [123]; there-

fore, it is reasonable to expect that VQ would improve the rate distortion performance of

our system.

Remark 3.1. The simulation results, and in general the framework we developed in this

chapter, are based on the assumption that the measured signals (x and y) are continuous-

valued. One might argue that the measurements are anyhow discrete to a certain level, due

to the floating point precision, and question the performance of the system for discrete-

valued signals. From the decoding algorithm of BCH-DFT codes it is evident that these

codes work for discrete input data, as this is a special case of continuous (real-valued) data.
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Similarly, the framework we developed in this chapter considers real inputs so it should work

for discrete-valued signals, as the latter is a subset of the former. Simulations results, with

different levels of quantization of x and y, proves the efficacy of the proposed framework

for discrete-valued signals as well. It is worth mentioning that by decreasing b, the number

of quantization bits per sample, the mean-squared reconstruction error decreases slightly.

However, the difference is not noticeable for large values of b. Specifically, it is not significant

when we quantize the signals with b = 32, b = 16, and even b = 10.

3.6 Comparison with DSC Based on Binary Codes

There are several ways to compare the efficiency and performance of the proposed system

with that of DSC based on binary codes. This comparison can be carried out for equal

encoding/decoding computational complexity, equal encoding/decoding processor complex-

ity, equal decoding delay and memory requirement, and equal end-to-end reconstruction

performance. While the last criterion has been the main comparison method in this chap-

ter, and this dissertation in general, in the following we address some other metrics. We

will compare our results with DSC based on LDPC codes.

Let N be the length of one LDPC block encoded by an (N,K) code. Similarly, let n be

the length of one block generated by an (n, k) BCH-DFT code. We assume each sample

is quantized by a b-bit quantizer. By now, the reader should have notice that usually

N � n.13 For ease of comparison, we assume N = mbn, where m is an integer number.

3.6.1 Decoding Delay

Let Ts denote the time between the arrival of successive samples; that is, the sample rate

is 1
Ts

and the bit rate is b
Ts

. Depending on the data rate and processing speed, different

cases can arise in decoding of block codes. At the best case, each block is decoded by

the time of the next block arrival [27]. In such a scenario, observing that we use N − K
13 This is because the performance of LDPC codes is poor for small block lengths; it improves as N

increases. On the contrary, BCH-DFT codes work well with short block lengths, and their performance
deteriorates for very large n, as error localization is challenging for large n. To see this, recall that the error
locator polynomial has ν roots out of n possible roots (X1, . . . , Xn, where Xip = ωip , ip ∈ {1, . . . , n}, and

ω = e−j
2π
n ), and this n roots are uniformly placed over the unit circle. Obviously, as n goes up the distance

between two successive roots decreases; for quantized codes, this increases the probability of wrong decision
during error localization. To improve error localization, one should use a finer quantizer; i.e, to increase
the number of bits/sample which results in a higher CEQNR.
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syndrome bits to decode a block of LDPC code, the decoding delay for an LDPC-based

DSC is ∆LDPC
io = (N −K)Tb. Similarly, if we assume that each block of a BCH-DFT code

is decoded before the arrival of the next block, it can be seen that ∆BCH−DFT
io = (n− k)Ts;

observe that the BCH-DFT decoder works based on samples rather than bits. For R = 1
2

we get ∆LDPC
io = N

bn
∆BCH−DFT

io . That is, for N > bn a DSC system based on LDPC codes

impose more delay than the proposed scheme in this chapter. Note that the difference is

typically very high as N � n.

3.6.2 Computational Complexity

It is possible to measure the encoding complexity in different ways. In numerical linear

algebra, the cost of an algorithm is often expressed by total number of floating-point oper-

ations (flops14) required to carry it out. Multiplication of an m× n matrix with an n× p
matrix costs mp(2n− 1) ≈ 2mnp flops [18]. Here we compare the complexity based on the

operations cost. Alternatively, one can get a good feeling of relative complexities by means

of the encoding time for a sequence of data [8].

Encoder

The complexity of computing the syndrome of the input vector of length n is 2n(n − k)

flops. Therefore, for a block of N bits we need N
bn

2n(n−k) = 2N
b

(n−k) flops. This is equal

to Nn
b

flops for codes of R = 1
2
, which has O(N) complexity for small n. The encoding

complexity of LDPC codes is quadratic in the code length (O(N2)), if it is performed by

matrix multiplication, though this can be reduced to O(N) with other algorithms [62,71].

The complexity of quantization should be also considered in the complexity analysis of the

encoder. Given the same quantizer, this complexity is less for the proposed framework as we

quantize less amount of data (a compressed version of that) compared to the conventional

approach in which quantization is before compression.

Decoder

The complexity of decoding is based on the computing the syndrome of error, eigendecom-

position, and least square solution. To find the syndrome of error, we need to compute

14A flop is defined as one addition, subtraction, multiplication, or division of two floating-point numbers
[18].
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the syndrome of side information and subtract it from the syndrome of input data. The

first operation costs 2n(n− k) flops and the second one is n− k flops; thus the total com-

plexity is approximately 2n(n− k) flops. Then forming the covariance matrix R in (3.16)

(for m = dd
2
e = dn−k

2
e) and its eigendecomposition respectively require 2d3 and 1

3
d3 flops.

Finally, the flops required for pseudo-inters (least squares solution) of He in (A.13) is very

small compared to d3 because this size of the matrix is (n − k) × ν and ν is usually very

small. Hence,

CBCH−DFT
D ≈ 2n(n− k) +

7

3
(dn− k

2
e)3.

Then, for a block of N bits we need N
bn
CBCH−DFT

D flops.

On the other hand, the complexity of decoding for a block of LDPC code, CLDPC
D , is

equal to [27]

CLDPC
D = ((1−R)Jc + Jv)IN,

in which Jc and Jv, respectively, are the are the number of computations required for a

check node and variable node and I is the number of iterations. Next, one can compare the

decoding complexity of the above algorithms for N bits (one block of LDPC code). It can

be seen that for typical values of parameters (e.g., 104 ≤ N ≤ 106, 50 ≤ I ≤ 300 [69, 129])

and n < 30 it can be seen that the complexity of the system we have proposed in this

chapter is less than that of LDPC-based DSC.

3.7 Summary

In this Chapter, we have introduced a new framework for the distributed lossy source

coding, in general, and the Wyner-Ziv coding, in particular. The idea is to do binning

before quantizing the continuous-valued signal, as opposed to the conventional approach

where binning is done after quantization. By doing binning in the real field, the virtual

correlation channel can be modeled more accurately and the quantization error can be

compensated for when there is no error. In the new paradigm, Wyner-Ziv coding is realized

by cascading a Slepian-Wolf encoder with a quantizer. We employed BCH-DFT codes to do

binning in the real field and we introduced the syndrome-based approach in this chapter.

This scheme maps short source blocks into channel blocks, and thus it is appropriate

for low-delay coding. Finally, we introduced rate adaptation in the new framework to

compensate for the variation in the statistical dependency between the sources and increase
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the error correction capability of the code if required. Due to rate adaptation, the MSE can

decrease significantly for very small compression loss. A more accurate algorithm for error

localization is a key to further improve the reconstruction error. From simulation results,

we conclude that the proposed system can improve the reconstruction error even using short

codes, so it can become viable in real-world scenarios where low-delay communication is

required.

In the next chapter, we will study an alternative approach for distributed source coding

based on BCH-DFT codes in which the parity samples are used to represent the compressed

signal. A parity-based approach works even if the transmission medium is noisy, as we show

in Chapter 4.
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Chapter 4

Distributed Joint Source and

Channel Coding

We introduced the syndrome-based lossy distributed source coding and Wyner-Ziv coding

based on DFT codes in Chapter 3, in which syndrome samples are quantized and trans-

mitted over a noiseless channel. Alternatively, to achieve compression in a DSC setting,

one can encode a signal using a real DFT code and transmit only the parity samples. This

chapter 1 considers parity-based distributed source coding and its extension to distributed

joint source-channel coding (DJSCC). To do DJSCC, we use a single DFT code both to

compress the signal and protect it against channel variations. To do parity-based DSC and

DJSCC we introduce the notion of systematic DFT frames (or codes.)

In Section 4.1, we present parity-based distributed source coding. DSC, in general,

implies a separate source and channel coding. Motivated by transmission over non-ergodic

channels and/or real-time communication, for which the separation theorem breaks down,

in Section 4.2 we extend the parity-based DSC to carry out source and channel coding

jointly, and in a distributed manner. Developing parity-based DSC and DJSCC we intro-

duce the notion of systematic DFT codes (frames), in this chapter. Looking from a frame

theory perspective, an (n, k) systematic DFT code is a frame that includes the identity

matrix of size k as a subframe. We show that for an (n, k) DFT code there exist
(
n
k

)
sys-

tematic codes, each of which may result in a different reconstruction error. With this in

mind, in the remainder of this chapter, we will be looking for systematic DFT frames with

1The material in this chapter has been presented in [114,109,111] and published in [116].
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the “best” performance, from the minimum mean-squared reconstruction error sense. To

do so, in Section 4.3, we first present the basic definitions and a few fundamental lemmas

that will be used later in the chapter. We also introduce DFT frames and set the ground to

study the extreme eigenvalues of their subframes, in this section. Section 4.4 motivates the

work in this chapter by introducing systematic DFT frames and their application. Some

fundamental results on the the extreme eigenvalues of DFT frames and their subframes

are presented in Section 4.5. Sections 4.6 and 4.7 are devoted to the evaluation of re-

construction error and to the classification of systematic frames based on reconstruction

performance. Simulation results, both for DSC and DJSCC, are presented in Section 4.8.

We conclude in Section 4.9.

4.1 Parity-Based DSC Using DFT Codes

The syndrome-based Wyner-Ziv coding is straightforward, but it is not clear how we can

use it for noisy transmission. In the sequel, we explore an alternative approach for Wyner-

Ziv coding, namely parity-based approach, which as we will see in the following, is much

more suited to distributed source coding over noisy channels.

4.1.1 Encoding

To compress x, the encoder generates the corresponding parity sequence p with n − k

samples. The parity is then quantized and transmitted, as shown in Figure 4.1, instead of

transmitting the input data. To this end, we need to find a systematic generator matrix

Gsys, as G in (3.7) is not in the systematic form.

A first approach is to find Hsys and build Gsys based on that [111]. Let H be partitioned

as H = [Hn−k×k | Hn−k]. Since Hn−k is a submatrix of the Vandermonde matrix Wn, H−1
n−k

exists and we can write

Hsys = H−1
n−kH = [−P | In−k], (4.1)

in which P , −H−1
n−kHn−k×k is an (n − k) × k matrix, and In−k is an identity matrix of
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size n− k. The systematic generator matrix corresponding to Hsys is given by

Gsys =

[
Ik

P

]
. (4.2)

By inspection, HsysGsys = 0. It is also easy to check that

HGsys = 0. (4.3)

Therefore, we do not need to calculate Hsys and the same parity-check matrix H can be

used for decoding in the parity approach.

Another, simpler, way is to obtain a systematic generator matrix directly from G. Let

Gk be a square matrix of size k composed of k arbitrary rows of G. We see that Gk is

invertible because using (3.7) any k × k submatrix of G can be represented as product

of a Vandermonde matrix and the DFT matrix Wk. This is also proven using a different

approach in [84], where it is shown that any subframe of G is a frame, and its rank is equal

to k. Hence, a systematic generator matrix is given by

Gsys = GG−1
k . (4.4)

Besides, from HG = 0, it is clear that

HGsys = 0. (4.5)

Therefore, we do not need to calculate Hsys, and the same parity-check matrix H can be

used for decoding in the parity approach. It is also obvious that Gsys is a real matrix.

The question that remains to be answered is whether Gsys corresponds to a BCH code. To

generate a BCH code, Gsys must have n − k consecutive zeros in the transform domain.

The Fourier transform of this matrix WnGsys = (WnG)G−1
k satisfies the required condi-

tion because WnG, the Fourier transform of original matrix, satisfies that. That is, Gsys

corresponds to a BCH code in the real field.

It should be emphasized that one can arbitrarily choose the rows of Gk in (4.4); this

yields
(
n
k

)
systematic matrices for each (n, k) DFT code. Although any of the corresponding

systematic codes can be used for encoding, the dynamic range of parity samples depends on
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Fig. 2. The Wyner-Ziv coding using DFT codes: Syndrome approach.

2) Decoding: The decoder estimates the input sequence
from the received syndrome and side information y. To this
end, it needs to evaluate the syndrome of (correlation) channel
errors. This can be simply done by subtracting the received
syndrome from the syndrome of the side information. Then,
neglecting the quantization error, we obtain,

se = sy − sx, (16)

and se can be used to precisely estimate the error vector, as
described in Section III-B. In practice, however, the decoder
knows ŝx = sx + q rather than sx. Therefore, only a distorted
syndrome of error is available, i.e.,

s̃e = sy − ŝx = se − q. (17)

Hence, using the PGZ algorithm, error correction is accom-
plished based on (17). Note that, having computed the syn-
drome of error, decoding algorithm in a DSC using DFT codes
is exactly the same as that in the channel coding problem. This
is different from DSC techniques in the binary field which
usually require a slight modification in the corresponding
channel coding algorithm to be customized for DSC.

B. Parity Approach

The syndrome-based Wyner-Ziv coding is straightforward,
but it is not clear how we can use it for noisy transmission.
In the sequel, we explore an alternative approached, namely
parity-based approach, to the Wyner-Ziv coding.

1) Encoding: To compress x, the encoder generates the
corresponding parity sequence p with n − k samples. The
parity is then quantized and transmitted, as shown in Fig. 3,
instead of transmitting the input data. To this end, we need to
find a systematic generator matrix Gsys, as G in (3) is not in
the systematic form.

A first approach is to find Hsys and build Gsys based on that
[1]. Another, simpler, way is to obtain a systematic generator
matrix directly from G. Let Gk be a square matrix of size k
composed of arbitrary rows of G. We see that Gk is invertible
because using (3) any k×k submatrix of G can be represented
as product of a Vandermonde matrix and the DFT matrix Wk.
This is also proven using a different approach in [20], where
it is shown that any subframe of G is a frame, and its rank is
equal to k. Hence, a systematic generator matrix is given by

Gsys = GG−1
k . (18)
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p

n−k
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Fig. 3. The Wyner-Ziv coding using DFT codes: Parity approach.

Besides, from HG = 0, it is clear that

HGsys = 0. (19)

Therefore, we do not need to calculate Hsys, and the same
parity-check matrix H can be used for decoding in the
parity approach. It is also obvious that Gsys is a real matrix.
The question that remains to be answered is whether Gsys

corresponds to a BCH code. To generate a BCH code, Gsys

must have n − k consecutive zeros in the transform domain.
The Fourier transform of this matrix WnGsys = (WnG)G−1

1

satisfies the required condition because WnG, the Fourier
transform of original matrix, satisfies that.

It should be emphasized that one can arbitrarily choose the
rows of Gk in (18); this results in

(
n
k

)
systematic generator

matrix for an (n, k) DFT code. Although any of those sys-
tematic codes can be used for encoding, the dynamic range of
the generated parity samples depends on their relative position
of the chosen rows [26]. In [29, Theorem 7], we have proved
that when using these systematic frames for error correction,
the mean-squared reconstruction error is minimized when the
systematic rows are chosen as evenly spaced as possible. In
the extreme scenario, where the systematic rows are equally
spaced, the systematic frame is also tight. This is realized only
when n is an integer multiple of k. Such a frame lends itself
well to minimize reconstruction error [19]–[21], [30].

Finally, seeing that parity samples are real numbers, using
an (n, k) DFT code, a compression ratio of k

n−k is achieved.
Obviously, a compression ratio of n

n−k is achievable if we use
a (2n− k, n) DFT code.

2) Decoding: A parity decoder estimates the input se-
quence from the received parity and side information y.
Similar to the syndrome approach, at the decoder, we need
to find the syndrome of (correlation) channel errors. To do so,
we append the parity to the side information and form a vector
of length n whose syndrome, neglecting quantization, is equal
to the syndrome of error. That is,

z =

[
y
p

]
=

[
x
p

]
+

[
e
0

]
= Gsysx + e′, (20)

and e′ = [e | 0]T . Hence,

sz = se′ . (21)

Similarly, when quantization is involved (p̂ = p + q), we get

z̃ =

[
y
p̂

]
= z +

[
0
q

]
= Gsysx + e′ + q′, (22)

Figure 4.1 The Wyner-Ziv coding using DFT codes: Parity approach.

the relative position of the rows chosen to constitute Gk [116]. In Section 4.7, we prove that

when using these systematic frames for error correction, the mean-squared reconstruction

error is minimized when the systematic rows are chosen as evenly spaced as possible. In

the extreme scenario, where the systematic rows are equally spaced, the systematic frame

is also tight. This is realized only when n is an integer multiple of k. Such a frame lends

itself well to minimizing the reconstruction error [51,64,84,20]. Since the parity samples are

error-free, the optimal Gsys reduces the occurrence of successive errors in one codeword. A

similar idea is used in [33] to inhibits closely spaced sinusoids in oversampled DFT frames

to increase spectral compression.

Finally, seeing that parity samples are real numbers, using an (n, k) DFT code, a com-

pression ratio of ηp = n−k
k

is achieved. Obviously, a compression ratio of n−k
n

is achievable

if we use a (2n− k, n) DFT code.

4.1.2 Decoding

A parity decoder estimates the input sequence from the received parity and side information

y. Similar to the syndrome approach presented in Section 3.3.1, at the decoder, we need

to find the syndrome of (correlation) channel errors. To do so, we append the parity to the

side information and form a vector of length n whose syndrome, neglecting quantization,

is equal to the syndrome of errors. That is,

z =

[
y

p

]
=

[
x

p

]
+

[
e

0

]
= Gsysx+ e′, (4.6)
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and e′ = [e | 0]T . Hence,

sz = se′ . (4.7)

Similarly, when quantization is involved (p̂ = p+ q), we get

z̃ =

[
y

p̂

]
= z +

[
0

q

]
= Gsysx+ e′ + q′, (4.8)

and

sz̃ = se′ + sq′ , (4.9)

where, q′ = [q | 0]T , and sq′ ≡ Hq′. Therefore, we obtain a distorted version of error

syndrome. In both cases, the rest of the algorithm, which is based on the syndrome of

error, is similar to that in the channel coding problem using DFT codes, as explained in

Section 3.2.3.

Error localization algorithms for the parity-based DSC [111] can be further improved

using the fact that parity samples are error-free. As parity samples are transmitted over

a noiseless channel, the error locations, in the codewords, are restricted to the systematic

samples. Therefore, we can exclude the set of roots corresponding to the location of the

parity samples. We call this method adapted error localization. Furthermore, it makes sense

to use a code with evenly-spaced parity samples so as to maximize the location of error-free

and error-prone samples in the codewords. Such a code maximizes the distance between the

error-prone roots of the code; hence, it helps decrease the probability of incorrect decision.

4.1.3 Comparison Between the Parity- and Syndrome-Based DSC

Rate

As it was shown earlier, using an (n, k) code the compression ratio in the syndrome and

parity approaches is ηs = n−k
n

and ηp = n−k
k

, respectively. Hence, for a given code, the

parity approach is k
n
< 1 times less efficient than the syndrome approach. Conversely,

we can find two different codes that result in the same compression ratio η, say n−k
n

. We

mentioned that in the parity approach, a (2n − k, n) code can be used for this matter,



4 Distributed Joint Source and Channel Coding 61

whereas an (n, k) DFT code gives the desired compression ratio in the syndrome approach.

Thus, for a given compression ratio the syndrome approach implies a code with smaller

rate compared to the code required in the parity approach.

Delay

Assuming the delay imposed by a system to decode each block of code depends on the

number of samples to be transmitted, the delay in the parity approach is larger than in

the syndrome approach. More precisely, for the compression ratio of η = n−k
n

, the delay in

the former approach is proportional to n− k while the it is proportional to n in the latter

approach. These are the length of syndrome and parity vectors, respectively.

Performance

From frame theory, we know that DFT frames are tight, and an (n, k) tight frame reduces

the quantization error with a factor of Rc = k
n

[65,84,51]. This result is extended to errors,

given that channel can be modeled by an additive noise [113]. The MSE performance

of systematic DFT frames also linearly depends on the code rate, though they are not

necessarily tight [116]. Therefore, for codes with the same error correction capability, the

lower the code rate the better the error correction performance. This implies a better

performance for syndrome-based DSC. Further, a (2n − k, n) code has n − k roots more

than an (n, k) code on the unit circle; hence, the roots are closer to each other and the

probability of incorrect localization of errors increases.

Additionally, from rate-distortion theory we know that the rate required to transmit a

Gaussian source logarithmically increases with the source variance [28]. Thus, in a system

that uses a real-number code for encoding, since coding is performed before quantization,

the variance of transmitted sequence depends on the behavior of the encoding matrix. In

the syndrome-based DSC we transmit s = Hx. One can check that the standard deviations

of elements of s and x are equal, i.e., σs = σx. Unlike that, in the parity-based DSC, the

variance of the parity samples is larger than that of the inputs. More precisely, in an (n, k)

systematic DFT code, if c = Gsysx, then σ2
c = γσ2

x where γ = 1
n

tr
(
GH

sysGsys

)
≥ 1 [116].

Since we can write c = [x | p]T , we have

σ2
p =

γn− k
n− k σ

2
x ≥ σ2

x. (4.10)



4 Distributed Joint Source and Channel Coding 62

From [116, Theorem 7], we know that the smallest σp for a given DFT code is achieved when

the parity samples, in the corresponding codewords, are located as “evenly” as possible.

Furthermore, the equality in (4.10) can be achieved only when n = Mk where M is an

integer greater than or equal to 2. Thus, such a code cannot be used in the parity-based

DSC as M ≥ 2 (n ≥ 2k) result in signal “expansion” rather than compression. Obviously

though, we can use such a code when expansion is allowed, for example in joint source-

channel coding, as we will see the next section.

Considering the above arguments, it is reasonable to expect the syndrome-based DSC

perform better than the parity-based one, for a given code or a fixed compression ratio.

This is verified numerically in Section 4.8. The parity-based DSC, however, has other

advantages. For example, it can be easily extended to distributed joint source-channel

coding, as explained in the following section.

4.2 Distributed Joint Source and Channel Coding

The concept of lossy DSC and Wyner-Ziv coding using DFT codes was explained both for

the syndrome and parity approaches in Sections 3.3 and 4.1, respectively, where syndrome

and parity samples are quantized and transmitted over a noiseless channel. This implies

separate source and channel coding. Although simple, the separation theorem is based

on several assumptions, such as the source and channel coders not being constrained in

terms of complexity and delay, which do not hold in many situations. It breaks down,

for example, for non-ergodic channels and real-time communication. In such cases, it

makes sense to integrate the design of the source and channel coder systems, because

joint source-channel coding (JSCC) can perform better given a fixed complexity and/or

delay constraints. Likewise, distributed JSCC (DJSCC) has been shown to outperform

separate distributed source and channel coding in some practical cases [83]. DJSCC has

been addressed in [2, 83, 70,47,133,44], using different binary codes.

In this section, we extend the parity-based Wyner-Ziv coding of analog sources to the

case where errors in the transmission can happen. Thus, we introduce distributed JSSC

of analog correlated sources in the analog domain. Specifically, we consider transmission

corrupted by impulsive noise. The usage of this model in our work is mainly motivated

by implementation of wireless sensor networks in power substations [54,94]. The impulsive

noise is prevalent in power substations since it is created by partial discharges, corona noise
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6

and

sz̃ = se′ + sq′ , (23)

where, q′ = [q | 0]T , and sq′ ≡ Hq′. Therefore, we obtain
a distorted version of error syndrome. In both cases, the rest
of the algorithm, which is based on the syndrome of error,
is similar to that in the channel coding problem using DFT
codes, as explained in Section III-B2.

Error localization algorithm for the parity-based DSC [1]
can be further improved using the fact that parity samples are
error-free. As parity samples are transmitted over a noiseless
channel, the error locations, in the codewords, are restricted
to the systematic samples. Therefore, we can exclude the set
of roots corresponding to the location of the parity samples.
We call this adaptive error localization. Furthermore, it makes
sense to use a code with evenly-spaced parity samples so as to
optimize the location of error-free and error-prone samples in
the codewords. Such a code maximizes the distance between
the error-prone roots of the code; hence, it helps decrease the
probability of incorrect decision.

C. Comparison Between the Two Approaches

1) Rate: As it was shown earlier, using an (n, k) code
the compression ratio in the syndrome and parity approaches,
respectively, is n

n−k and k
n−k . Hence, for a given code, the

parity approach is k
n = Rc < 1 times less efficient than the

syndrome approach. Conversely, we can find two different
codes that result in same compression ratio, say n

n−k . We
mentioned that in the parity approach, a (2n − k, n) code
can be used for this matter, whereas an (n, k) DFT code gives
the desired compression ratio in the syndrome approach. Thus,
for a given compression ratio the syndrome approach implies
a code with smaller rate compared to the code required in the
parity approach.

2) Performance: From frame theory, we know that DFT
frames are tight, and an (n, k) tight frame reduces the quan-
tization error with a factor of Rc = k

n [19], [20], [28]. This
result is extended to errors, given that channel can be modeled
by an additive noise [18]. The MSE performance of systematic
DFT frames also linearly depends on the code rate, though they
are not necessarily tight [26], [29]. Therefore, for codes with
the same error correction capability, the lower the code rate the
better the error correction performance. This implies a better
performance for syndrome-based DSC. Further, a (2n− k, n)
code has n−k roots more than an (n, k) code on the unit circle;
hence, the roots are closer to each other and the probability
of incorrect localization of errors increases.

Additionally, from rate-distortion theory we know that the
rate required to transmit a Gaussian source logarithmically
increases with the source variance [31]. Thus, in a system
that uses a real-number code for encoding, since coding is
performed before quantization, the variance of transmitted
sequence depends on the behavior of the encoding matrix.
In the syndrome-based DSC we transmit s = Hx. One can
check that σs = σx [29]. Unlike that, in the parity-based DSC,
the variance of the parity samples is larger than that of the
inputs. More precisely, in an (n, k) systematic DFT code, if
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p p̂

y

x̂

ec

x

k n− k n− k k

k

Fig. 4. The distributed JSCC using DFT codes.

c = Gsysx, then σ2
c = γσ2

x where γ = 1
n tr

(
GH

sysGsys

)
≥ 1

[26]. Since we can write c = [x | p]T , we have

σ2
p =

γn− k
n− k σ

2
x ≥ σ2

x. (24)

From [29, Theorem 7], we know that the smallest σp for a
given DFT code is achieved when the parity samples, in the
corresponding codewords, are located as “evenly” as possible.

Considering the above arguments, one may expect the
syndrome-based approach to perform better than the parity-
based one, for a given code or fixed compression ratio. This
is verified numerically in Section VI. The parity-based DSC,
however, has other advantages. For example, by puncturing
some parity samples rate-adaptive DSC, in the real field, is
realized. Besides, it can be easily extended to distributed joint
source-channel coding, as explained in the following section.

V. DISTRIBUTED JOINT SOURCE AND CHANNEL CODING

The concept of lossy DSC and Wyner-Ziv coding using
DFT codes was explained both for the syndrome and parity
approaches in Section IV, where syndrome or parity samples
are quantized and transmitted over a noiseless channel. This
implies separate source and channel coding. Although simple,
the separation theorem is based on several assumptions, such
as the source and channel coders not being constrained in
terms of complexity and delay, which do not hold in many
situations. It breaks down, for example, for non-ergodic chan-
nels and real-time communication. In such cases, it makes
sense to integrate the design of the source and channel coder
systems, because joint source-channel coding (JSCC) can
perform better given a fixed complexity and/or delay con-
straints. Likewise, distributed JSCC (DJSCC) has been shown
to outperform separate distributed source and channel coding
in somw practical cases [32]. DJSCC has been addressed in
[10], [32]–[34], using different binary codes.

In this section, we extent the parity-based Wyner-Ziv coding
of analog sources to the case where errors in the transmission
are allowed. Thus, we introduce distributed JSSC of analog
correlated sources in the analog domain. To do this, we use a
single DFT code both to compress x and protect it against
channel variations; this gives rise to a new framework for
DJSCC, in which quantization is performed after doing JSCC
in the analog domain. This scheme directly maps short source
samples into channel blocks, and thus it is well suited to low-
delay coding.

Figure 4.2 Joint source-channel coding (JSCC) with side information at the
decoder based on DFT codes. This scheme can be straightforwardly extended
to distributed JSCC.

and electrical arcs, hosted by high-voltage equipment such as transformers, bushings, power

lines, circuit breakers and switch-gear [94]. Impulsive noise is also found in many other

urban areas, e.g. in hospitals, homes, and offices, as it is generated by microwave ovens,

fluorescent lights, photocopier machines, and automobile ignition [15,130]. Therefore, sen-

sor networks implemented in various applications, like in health and home, also experience

an impulsive transmission medium.

The magnitude of the impulses is assumed to have a Gaussian distribution; hence, the

Gaussian-Erasure channel is used to model the transmission channel, as well. To do this,

we use a single DFT code both to compress x and protect it against channel variations; this

gives rise to a new framework for DJSCC, in which quantization is performed after doing

JSCC in the analog domain. This scheme directly maps short source blocks into channel

blocks, and thus it is well suited to low-delay coding.

4.2.1 Coding and Compression

To compress and protect x, the encoder generates the parity sequence p of n− k samples,

with respect to a good systematic DFT code. The parity is then quantized and transmitted

over a noisy channel, as shown in Figure 4.2. To keep the dynamic range of parity samples

as small as possible, we make use of optimal systematic DFT codes, proposed in [116]. This

increases the efficiency of the system for a fixed number of quantization levels. Using an

(n, k) DFT code a total compression ratio of η = n−k
k

is achieved. Obviously, if n < 2k

compression is possible (η < 1). However, since there is little redundancy the end-to-end
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distortion could be high. Conversely, a code with n > 2k (η > 1) expands input sequence

by adding soft redundancy to protect it in a noisy channel.

4.2.2 Decoding

Let p̃ = p̂ + ec be the received parity vector which is distorted by quantization error q

(p̂ = p + q) and channel error ec. Also, let y = x + ev denote side information where ev

represents the error due to the “virtual” correlation channel. The objective of the decoder

is to estimate the input sequence from the received parity and side information. Although

we only need to determine ev, effectively it is required to find both ev and ec. From an

error correction point of view, this is equal to finding the error vector e = [ev ec]
T that

affects the codeword [x p]T . Hence, to find the syndrome of error at the decoder, we

append the parity p̃ to the side information y and form z̃, a valid codeword perturbed by

quantization and channel errors,

z̃ =

[
x

p

]
+

[
ev

ec

]
+

[
0

q

]
= Gsysx+ e+ q′. (4.11)

Multiplying both sides by H, we obtain

sz̃ = se + sq′ , (4.12)

where se ≡ He and sq′ ≡ Hq′. Again, we use the GE model with q2 = 0 in (3.2) to generate

e. It should be emphasized that for q = 0, error vector can be determined exactly, as long

as the number of errors is not greater than t. In practice, quantization is also involved, and

we obtain only a distorted version of error syndrome. Knowing the syndrome of error, we

use the error detection and localization algorithm, explained in Section 3.2.2, to find and

correct error.

Although the extension of parity-based DSC to DJSCC is straightforward, it is not

clear how to do this for syndrome-based DSC. This is because, in the syndrome-based DSC

with a noisy transmission, the decoder can only form a noisy version of syndrome. More

precisely, it can only obtain se + ec, where se is the difference between the transmitted

syndrome and syndrome of side information, i.e., se = sy − sx, and ec is the transmission

channel error. However, with se + ec, and ec 6= 0, the rank of the syndrome matrix St
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is not equal to ν, even if there is no quantization error. Therefore, both the PGZ and

subspace-based methods fail to correctly find the number and location of errors.

Before presenting numerical result for parity-based DSC and DJSCC in Section 4.8,

we study some properties of the systematic DFT frames using a frame theory notion.

By examining their extreme eigenvalues, we show that, unlike DFT frames, systematic

DFT frames are not necessarily tight. Then, we come up with conditions for which these

frames can be tight, and thus, minimize the mean squared reconstruction error. in either

case, the best and worst systematic frames are established in the minimum mean-squared

reconstruction error sense. Eigenvalues of DFT frames and their subframes play a pivotal

role in this work. Particularly, we derive some bounds on the extreme eigenvalues DFT

subframes which are used to prove most of the results.

4.3 Frame Theory and DFT Codes

Frames, “redundant” set of vectors used for signal representation, are increasingly found in

signal processing applications. Frames are more general than bases as frames are complete

but not necessarily linearly independent. A basis, on the contrary, is a set of vectors

used to “uniquely” represent a vector as a linear combination of basis elements. Frames

are generally motivated by applications requiring some level of redundancy, and they offer

flexibility in design, resilience to additive noise (including quantization error), robustness

to erasure (loss), and numerical stability of reconstruction.

From the frame theory perspective, DFT codes are harmonic tight frames. In the ab-

sence of erasure, tight frames minimize the mean-squared error (MSE) between the trans-

mitted and received signals [51, 84, 64]. The MSE is the ultimate measure of performance

in many digital communication systems where a quantized analog signal is transmitted.

Frames are naturally robust to transmission loss since they provide an overcomplete ex-

pansion of signals [51,20,64,84,65].

Although it is straightforward to construct systematic DFT frames, we prove that sys-

tematic “tight” DFT frames exist only for specific frame sizes. More precisely, we show

that a systematic frame is tight if and only if data (systematic) samples are circularly

equally spaced, in the codewords generated by that frame. When such a frame does not

exist, we will be looking for systematic DFT frames with the “best” performance, from the

minimum mean-squared reconstruction error sense. We also demonstrate which systematic
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frames are the “worst” in this sense. In addition, we show that circular shift and rever-

sal of the vectors in a DFT frame does not change the eigenvalues of the frame operator.

We use these properties to categorize different systematic frames, generated from an (n, k)

DFT frame, based on their performance. We first introduce the definitions and some basic

results which are frequently used in the remainder of this chapter.

4.3.1 Definitions and preliminaries

Definition 4.1. A spanning family of n vectors F = {fi}ni=1 in a k-dimensional complex

vector space Ck is called a frame if there exist 0 < a ≤ b such that for any x ∈ Ck

a‖x‖2 ≤
n∑

i=1

|〈x,fi〉|2 ≤ b‖x‖2, (4.13)

where 〈x,fi〉 denotes the inner product of x and fi and gives the ith coefficient for the

frame expansion of x [64,20,65]. a and b are called frame bounds; they, respectively, ensure

that the vectors span the space, and the basis expansion converges. A frame is tight if

a = b. Uniform or equal-norm frames are frames with same norm for all elements, i.e.,

‖fi‖ = ‖fj‖, for i, j = 1, . . . , n.

Definition 4.2. An n× n Vandermonde matrix with unit complex entries is defined by

W ,
1√
n




1 1 · · · 1

ejθ1 ejθ2 · · · ejθn

...
...

. . .
...

ej(n−1)θ1 ej(n−1)θ2 · · · ej(n−1)θn



, (4.14)

in which θp ∈ [0, 2π) and θp 6= θq for p 6= q, 1 ≤ p, q ≤ n. If θp = 2π
n

(p− 1), W becomes the

well-known IDFT matrix [74]. For this Vandermonde matrix we can write [106], [107]

det(WWH) = | det(W )|2 =
1

nn

∏

1≤p<q≤n

|eiθp − eiθq |2. (4.15)

Central to this work are the properties of the eigenvalues of V HV or V V H , in which

V is a submatrix of a DFT matrix.2 Hence, we recall some bounds on the eigenvalues of

2Note that eigenvalues of V HV and V V H are equal for a square V ; also, V HV and V V H have the same
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Hermitian matrices which are used in this chapter. Let A be a Hermitian k × k matrix

with real eigenvalues {λ1(A), . . . , λk(A)} which are collectively called the spectrum of A,

and assume λ1(A) ≥ λ2(A) ≥ · · · ≥ λk(A). Schur-Horn inequalities show to what extent

the eigenvalues of a Hermitian matrix constraint its diagonal entries.

Proposition 4.1. Schur-Horn inequalities [97]

Let A be a Hermitian k × k matrix with real eigenvalues λ1(A) ≥ λ2(A) ≥ · · · ≥ λk(A).

Then, for any 1 ≤ i1 < i2 < · · · < il ≤ k,

λk−l+1(A) + · · ·+ λk(A) ≤ ai1i1 + · · ·+ ailil ≤ λ1(A) + · · ·+ λl(A), (4.16)

where a11, . . . , akk are the diagonal entries of A. Particularly, for l = 1 and l = k we obtain

λk(A) ≤ a11 ≤ λ1(A), (4.17)

k∑

i=1

λi(A) =
k∑

i=1

aii. (4.18)

Another basic question in linear algebra asks the degree to which the eigenvalues of two

Hermitian matrices constrain the eigenvalues of their sum. Weyl’s theorem gives an answer

to this question in the following set of inequalities.

Proposition 4.2. Weyl inequalities [97]

Let A and B be two Hermitian k × k matrices with spectrums {λ1(A), . . . , λk(A)} and

{λ1(B), . . . , λk(B)}, respectively. Then, for i, j ≤ k, we have

λi(A+B) ≤ λj(A) + λi−j+1(B) for j ≤ i, (4.19)

λi(A+B) ≥ λj(A) + λk+i−j(B) for j ≥ i. (4.20)

Corollary 4.1. If A + B = γIk, γ > 0, where A and B are Hermitian matrices, then

λj(A) + λk−j+1(B) = γ.

Proof. It suffices to set i = k and i = 1 respectively in (4.19) and (4.20), and use λk(A +

B) = λ1(A+B) = γ which is obtained from A+B = γIk.

nonzero eigenvalues for a non-square V .



4 Distributed Joint Source and Channel Coding 68

Lemma 4.1. Let A and B be two Hermitian k × k matrices and suppose that, for every

1 ≤ i, j ≤ k, Ai,j = ejθiBi,j; then AHA and BHB have the same spectrum.

Proof. The proof is immediate using Lemma 3 in [107] since (AHA)i,j = ejθi

ejθi
(BHB)i,j; i.e.,

AHA = BHB.

4.3.2 Connection to Frame Theory

BCH-DFT codes are linear block codes over the complex field whose parity-check matrix

H is defined based on the DFT matrix. The generator matrix of an (n, k) real BCH-DFT

code3 is defined in (3.7) in which Wl represents the DFT matrix of size l, and Σ, as defined

in (3.8), inserts n − k consecutive zeros to each codeword in the frequency domain which

ensures having a BCH code [14, 72]. One can check that ΣHΣ = Ik, and ΣΣH is an n× n
matrix given by

ΣΣH =




Iα 0 0

0 0 0

0 0 Iβ


 . (4.21)

Remark 4.1. Removing Wk from (3.7) we end up with a complex G, representing a complex

BCH-DFT code. In such a code, α and β can be any nonnegative integers such that

α + β = k.

The generator matrix G in (3.7) can be viewed as an analysis frame operator. In this

view, a real BCH-DFT code is a rotation of the well-known harmonic frames [20, 65], and

a complex BCH-DFT code is basically a harmonic frame. The latter can be understood by

removing Wk from (3.7) which results in a complex BCH-DFT code, on the one hand, and

the analysis frame operator of a harmonic frame, on the other hand. The former is then

evident as Wk is a rotation matrix. Further, it is easy to see that the frame operator GHG

and Gramian GGH are equal to

GHG =
n

k
Ik, (4.22)

GGH =
n

k
WH
n ΣΣHWn. (4.23)

3Real BCH-DFT codes do not exist when n and k are both even [72].
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The following lemma presents some properties of the frame operator and relevant ma-

trices which are crucial for our results in this chapter.

Lemma 4.2. Let Gp×k be a matrix consisting of p arbitrary rows of G defined by (3.7).

Then, the following statements hold:

i. GGH is a Toeplitz and circulant matrix

ii. Gp×kG
H
p×k, 1 < p < n is a Toeplitz matrix

iii. All principal diagonal entries of Gp×kG
H
p×k, 1 ≤ p ≤ n are equal to 1.

Proof. Let ar,s be the (r, s) entry of the matrix GGH then it can readily be shown that

ar,s =
1

k

α−1∑

m=0

ejm(θr−θs) +
1

k

n−1∑

m=n−β

ejm(θr−θs), (4.24)

in which θx = 2π
n

(x − 1). From this equation, it is clear that ar,s = ar+i,s+i; that is,

the elements of each diagonal are equal, which means that GGH is a Toeplitz matrix. In

addition, we can check that ar,n = ar+1,1, i.e., the last entry in each row is equal to the first

entry of the next row. This proves that the Toeplitz matrix GGH is circulant as well [53].

Also, a quick look at (4.24) reveals that the elements of the principal diagonal (r = s) are

equal to 1. Similarly, one can see that for any 1 < p < n, the square matrix Gp×kG
H
p×k is

also a Toeplitz matrix; it is not necessarily circulant, however.

Considering Remark 4.1, one can check that (4.24) is also valid for complex BCH-DFT

codes. Note that, α and β are less constrained for these codes, as mentioned in Remark 4.1.

Remark 4.2. Lemma 4.2 also holds for complex BCH-DFT codes.

Further, in a DFT frame, in general, the n − k zero rows of Σ are not required to be

successive if they are not designed for error correction. That is any matrix that can be

rearranged as [Ik | 0k×n−k]
T may represent Σ. Then, ΣΣH is not necessarily in the form

given in (4.21); it can be any square matrix of size n with k nonzero elements equal

to 1, arbitrary located on the main diagonal. Then, again Lemma 4.2 holds because

ars = 1
k

∑k−1
i=0 e

jmi(θr−θs) and mi ∈ {1, . . . , n}.
Remark 4.3. Lemma 4.2 holds for all DFT frames.
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4.4 Systematic DFT Frames

In general, every sample in the codewords of a DFT frame is a linear combination of all

data samples of the input block, i.e., the data samples do not appear explicitly in the

codewords. A specific method of encoding, known as systematic encoding, leaves the data

samples unchanged. These unchanged samples can be exhibited in any component of the

codeword, therefore:

Definition 4.3. An (n, k) frame is said to be systematic if its analysis frame operator

includes Ik as a subframe.

4.4.1 Motivation and Applications

In the context of channel coding, there is a special interest in systematic codes [14] since the

input data is embedded in the encoded output which simplifies the encoding and decoding

algorithms. For example, in systematic convolutional codes data can be read directly if no

errors are made, or in case only parity bits are affect in an erasure channel. Systematic

codes are also used in parity-based distributed source coding (DSC) techniques, e.g., DSC

that uses turbo codes for compression [9, 45, 2].

The new framework that we have developed for DSC exploits BCH-DFT codes for

DSC [111]. There are syndrome- and parity-based approaches to implement DSC, as we

explained in Sections 3.3 and 4.1; the compression is achieved by representing the input

data with fewer samples, which are a linear combination of the input samples. To do so, in

the latter approach the encoder generates parity samples with respect to a systematic DFT

code. The parity is then quantized and transmitted over a noiseless channel. Assuming the

asymmetric DSC [126], where one source is available at the decoder as side information, the

decoder looks for the closest vector to the side information, among the vectors whose parity

is equal to the received one. The parity-based approach is worthwhile as the parity of a real

DFT code is a real vector contrary to its syndrome which is complex. More importantly, to

accomplish DJSCC only the parity-based approach is known to be applicable [117]. On the

other hand, the parity-based approach mandates systematic DFT codes and is the main

motivation for what we present in the following.
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4.4.2 Construction

In view of Definition 4.3, the systematic generator matrix for a real BCH-DFT code can

be obtained by (4.4) in which Gk is a submatrix (subframe [84]) of G including k arbitrary

rows of G. Note that Gk is invertible since it can be represented as

Gk =

√
n

k
WH
k×nΣWk = V H

k Wk, (4.25)

in which V H
k ,

√
n
k
WH
k×nΣ and Wk are invertible as they are Vandermonde and DFT

matrices, respectively. Obviously, this argument is valid if Wk is removed and/or when the

n − k zero rows of Σ are not successive. This indicates that any k rows of a DFT frame

make a basis of Ck and proves that G−1
k and thus systematic DFT frames exist for any

DFT frame.

Remark 4.4. From the above discussion and Remark 4.3 one can see that what we prove

in the remainder of this chapter is valid for “any” DFT frame, not just for real BCH-DFT

codes.

The construction in (4.4) suggests that for each DFT frame there are many (but, a

finite number of) systematic frames since the rows of Gk can be arbitrarily chosen from

those of G. This will be discussed in detail later in Section 4.7.3. The codewords generated

by these systematic frames differ in the “position” of systematic samples (i.e., input data).

This implies that parity (data) samples are not restricted to form a consecutive block in

the associated codewords. Such a degree of freedom is useful in the sense that one can find

the most suitable systematic frames for specific applications (e.g., the one with the smallest

reconstruction error.)

4.4.3 Optimality Condition

From rate-distortion theory [28, Chapter 10], it is well known that the rate required to

transmit a source, with a given distortion, increases as the variance of the source becomes

larger. Particularly, as we can see from (2.4) and (3.5), for Gaussian sources this relation

is logarithmic with variance, under the mean-squared error (MSE) distortion measure. In

DSC that uses real-number codes [111], since coding is performed before quantization,

the variance of transmitted sequence depends on the behavior of the encoding matrix. In

syndrome approach, s = Hx and it can be checked that σs = σx, that is, the variance
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is preserved.4 However, as we show shortly, this is not valid in parity approach and the

variance of parity samples depends on the behavior of encoding matrix Gsys. In view of

rate-distortion theory, it makes a lot of sense to keep this variance as small as possible. Not

surprisingly, we will show that using a tight frame (tight Gsys) for encoding is optimal.

Let x be the message vector, a column vector whose elements are i.i.d. random variables

with variance σ2
x, and let c = Gsysx represent the codeword generated using the systematic

frame. The variance of c is then given by

σ2
c =

1

n
E{cHc} =

1

n
E{xHGH

sysGsysx}

=
1

n
σ2
x tr (GH

sysGsys),
(4.26)

and
tr
(
GH

sysGsys

)
= tr

(
G−1H
k GHGG−1

k

)

=
n

k
tr
(
(GkG

H
k )−1

)

=
n

k
tr
(
(V H

k Vk)
−1
)

=
n

k

k∑

i=1

1

λi
,

(4.27)

in which λ1 ≥ λ2 ≥ · · · ≥ λk > 0 are the eigenvalues of GkG
H
k (or V H

k Vk equivalently).

This shows that the variance of codewords, generated by a systematic frame, depends

on the submatrix Gk which is used to create Gsys. Gk, in turn, is fully known once the

position of systematic samples is fixed in the codewords. In other words, the “position”

of systematic samples determines the variance of the codewords generated by a systematic

DFT frame. To minimize the effective range of transmitted signal, from (4.26) and (4.27),

we need to do the following optimization problem

minimize
λi

k∑

i=1

1

λi

s.t.
k∑

i=1

λi = k, λi > 0,

(4.28)

4In general, any unitary matrix U preserves norms, i.e., for any complex vector x, ‖Ux‖ = ‖x‖. Note
that H is not unitary because it is not a square matrix; however, its rows are selected from a unitary
matrix and are orthonormal. This lead to HHH = In−k, and tr(HHH) = n− k.
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where, the constraint
∑k

i=1 λi = k is achieved in consideration of Lemma 4.2 and (4.18).

By using the Lagrangian method [18], we can show that the optimal eigenvalues are

λi = 1 ∀i; this implies a tight frame [51]. In the sequel, we analyze the eigenvalues of

Gp×kG
H
p×k, p ≤ n, that helps us characterize tight systematic frames, so as to minimize the

variance of transmitted codewords.

4.5 Main Results on the Extreme Eigenvalues

In this section we investigate some bounds on the eigenvalues of Gp×kG
H
p×k where G is

defined in (3.7). These bounds play an important role in the performance evaluation of the

systematic DFT frames. We also determine the exact values of some eigenvalues in certain

cases.

Theorem 4.1. Let Gp×k, 1 ≤ p ≤ n be any p × k submatrix of G. Then, the smallest

eigenvalue of Gp×kG
H
p×k is no more than one, and the largest eigenvalue of Gp×kG

H
p×k is at

least one.

Proof. From Lemma 4.2, we know that all principal diagonal entries of Gp×kG
H
p×k are unity.

As a result, using the Schur-Horn inequality in (4.17), we obtain λmin(Gp×kG
H
p×k) ≤ 1 ≤

λmax(Gp×kG
H
p×k). This proves the claim.

Note that λ1(Gp×kG
H
p×k) = λ1(GH

p×kGp×k) for any Gp×k. Nevertheless, this is not correct

for λmin in general. A tighter bound on λ1 can be achieved when Gp×k is a tall5 matrix.

Theorem 4.2. Given a tall (short) Gp×k, the largest (smallest) eigenvalue of GH
p×kGp×k is

lower (upper) bounded by p/k.

Proof. Let p > k. Since all diagonal entries of Gp×kG
H
p×k are unity, from (4.18) we have∑p

i=1 λi(Gp×kG
H
p×k) = p. On the other hand, since the nonzero eigenvalues of Gp×kG

H
p×k

5An m× n matrix A is called to be tall if m > n. Similarly, if m < n, then A is a short matrix.
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and GH
p×kGp×k are equal, Gp×kG

H
p×k has k nonzero eigenvalues and we get

p =

p∑

i=1

λi(Gp×kG
H
p×k)

=
k∑

i=1

λi(G
H
p×kGp×k)

≤ kλ1(GH
p×kGp×k).

(4.29)

Thus, for any tall Gp×k, λ1(GH
p×kGp×k) = λ1(Gp×kG

H
p×k) ≥ p

k
> 1. Following a similar line

of proof, for a short submatrix (p < k) we obtain λmin(GH
p×kGp×k) ≤ p

k
< 1.

Obviously the same bounds are valid for the extreme eigenvalues of Gp×kG
H
p×k. What

is more, since p/k is the average value of eigenvalues, considering that λmin(Gp×kG
H
p×k) = 0

for p > k, and λmin(GH
p×kGp×k) = 0 for p < k, from (4.29) we conclude that corresponding

bounds on the largest eigenvalues are strict.

It is worth noting that in (4.29) the equality is achieved when p = n; it can also be

achieved for “specific” submatrices only in the case of integer oversampling, i.e., when

n = Mk, as we discuss later in this chapter.

We use the above results to find better bounds for the extreme eigenvalues of GkG
H
k in

the following theorem.

Theorem 4.3. For any Gk, a square submatrix of G in (3.7) in which n 6= Mk, the

smallest (largest) eigenvalue of GkG
H
k is strictly upper (lower) bounded by 1.

Proof. See Appendix B.1.

Theorem 4.3 implies that for n 6= Mk we cannot have “tight” systematic frames. Be-

cause, for a frame with frame operator FHF , the tightest possible frame bounds are,

respectively, a = λmin(FHF ) and b = λmax(FHF ) [21]. In other words, for a tight frame

λmin(FHF ) = λmax(FHF ); i.e., the eigenvalues of FHF are equal [51].

Corollary 4.2. Tight systematic DFT frames can exist only if n = Mk, where M is a

positive integer.

Note that systematic DFT frames are not necessarily tight for n = Mk. In Section 4.7, we

prove that tight systematic DFT frames exist for n = Mk and show how to construct such

frames.
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In the remainder of this section, we shall find exact values, rather than bounds, for some

of the eigenvalues of GH
k Gk when k < n ≤ 2k. This range of n is specifically important in

parity-based DSC [111], where n − k parity samples are used to represent k samples and

so for compression, n− k < k.

Theorem 4.4. For any Gk, a square submatrix of G in (3.7), where k < n < 2k, the

2k − n largest eigenvalues of GkG
H
k are equal to n/k.

Proof. From Corollary 4.1 we know that if two Hermitian matrices sum up to a scaled

identity matrix, their eigenvalues add up to be fixed. Thus, if A and B have the same

spectrum we obtain

λj(A) + λk−j+1(A) = γ. (4.30)

Now, let G be partitioned as G =

[
Gk

Ḡp×k

]
where p = n − k. Let A = GH

k Gk and

B = ḠH
p×kḠp×k, then A+B = GHG = n

k
Ik. Clearly, Corollary 4.1 holds with γ = n

k
. Also,

note that when p < k then ḠH
p×kḠp×k has only p nonzero eigenvalues. Therefore, in such a

case, k − p largest eigenvalues of GH
k Gk are equal to n/k.

Another interesting case arises when n = 2k. Numerical results shows that under this

condition, A and B have the same set of eigenvalues. We prove this when Gk either includes

successive or every other rows of G. In such cases, one can verify that (Ḡk)i,j = ejθ(Gk)i,j;

thus, Lemma 4.1 holds and A and B have the same eigenvalues. Hence, from (4.30) we get

λj(G
H
k Gk) + λk−j+1(GH

k Gk) =
n

k
= 2. (4.31)

This further implies that for odd values of k the middle eigenvalue of GH
k Gk is 1.

We close this section with an example illustrating some of the above properties. Consider

an (n, k) DFT frame and the the following two cases. First, the rows of Gk are evenly spaced

rows of G (i.e., either odd rows or even rows). This is the “best” submatrix in the sense

that it minimizes the MSE. For such a submatrix, all eigenvalues are known to be equal,

as it is a DFT matrix. For example, for n = 10, k = 5, the best square submatrix results

in λ = 1 with multiplicity of 5. The other extreme case, which maximizes the MSE,
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happens when the rows of Gk are circularly consecutive rows of G. Again, for the above

example, λ = {0.0011, 0.1056, 1, 1.8944, 1.9989}. With these examples in mind, we will

explore the best and worst frames in Section 4.7. We shall now discuss signal reconstruction

for systematic frames.

4.6 Performance Analysis

In this section, we analyze the performance of quantized systematic DFT codes using the

quantization model proposed in [51], which assumes that noise components are uncorrelated

and each noise component qi has mean 0 and variance σ2
q , i.e., for any i, j,

E{qi} = 0, E{qiqj} = σ2
qδij. (4.32)

For example, q can be uniformly distributed on [−∆/2, ∆/2], where σ2
q = ∆2/12. We

assume the quantizer range covers the dynamic range of all codewords encoded using the

systematic DFT code in (4.4).

Let x be the signal (message) to be transmitted. The corresponding codeword is gen-

erated by

c = Gsysx. (4.33)

This is then quantized to ĉ and transmitted. Assuming the quantization model in (4.32),

transmitted codeword can be modeled by

ĉ = Gsysx+ q, (4.34)

where q represents quantization error. This also models the received codvector provided

that there is no error or erasure in channel. Now, suppose we want to estimate x from

(4.34). This can be done through the use of linear or nonlinear operations.
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4.6.1 Linear Reconstruction

We first consider linear reconstruction of x form ĉ using the pseudoinverse [51] of Gsys,

which is defined by

G†sys = (GH
sysGsys)

−1GH
sys =

k

n
GkG

H . (4.35)

The linear reconstruction is hence given by

x̂ =
k

n
GkG

H ĉ = x+
k

n
GkG

Hq, (4.36)

where q represents quantization error.

Let us now evaluate the reconstruction error. The mean-squared reconstruction error,

due to the quantization noise, using a systematic frame can be written as

MSEq =
1

k
E{‖x̂− x‖2} =

1

k
E{‖G†sysq‖2}

=
1

k
E{qHG†HsysG

†
sysq} =

1

k
σ2
q tr
(
G†HsysG

†
sys

)

=
k

n2
σ2
q tr
(
GGH

k GkG
H
)

=
k

n2
σ2
q tr
(
GH
k GkG

HG
)

=
1

n
σ2
q tr
(
GH
k Gk

)
=
k

n
σ2
q ,

(4.37)

where the last step follows because of Lemma 4.2. This shows that DFT codes reduce

quantization error.

The fact that the MSE is inversely proportional to the redundancy of the frame is a

well-known result for tight frames [64, 113, 51, 84]. The above analysis, however, indicates

that the MSE is the same for all systematic DFT frames of the same size, no matter they

are tight or not. This is yet assuming that the effective range of the codewords generated

by different Gsys is equal, which implies the same σ2
q for a given number of quantization

levels. However, from (4.26) it is known that, for a fixed number of quantization levels,

σ2
q depends on the variance of transmitted codewords (σ2

c ) if the quantizer is designed to

cover the entire effective range of codewords. Obviously, though, σ2
c can vary from one

systematic frame to another, as shown in (4.27).
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Theorem 4.5. When encoding with a systematic DFT frame in (4.4) and decoding with

linear reconstruction, for the noise model (4.32) and given a same number of quantization

levels, the MSE is minimum if and only if the systematic frame is tight.

Proof. All systematic DFT frames amount to a same quantization error provided that the

effective range of codewords are fully covered, as shown in (4.37). Nevertheless, for a

fixed number of quantization levels more codewords are within the range of quantizer if

the systematic frame is tight. This is clear from (4.27) and (4.28), recalling that (4.28) is

minimized by the tight frames. Moreover, any frame that minimizes (4.28) is required to

be tight. This will be proved in Section 4.7.1.

The problem we are considering in Theorem 4.5 is somewhat the dual of Theorem 3.1

in [64]. Note that in [64, Theorem 3.1] “uniform” frames are used for encoding which

implies the same variance for all samples of codewords whereas the reconstruction error

is proportional to
∑k

i=1 λi. On the other hand, the frames used in Theorem 4.5 are not

uniform in general; this result in a codeword variance proportional to
∑k

i=1 λi while having

a fixed, minimum reconstruction error.

4.6.2 Consistent Reconstruction

Linear reconstruction is not always the best one can estimate x from ĉ. Although lin-

ear reconstruction is more tractable, consistent reconstruction is known to give significant

improvement over linear reconstruction in overcomplete expansions [101, 102, 52]. Asymp-

totically, the MSE is O(r−2) for consistent reconstruction, where r = n/k is the frame

redundancy [102]. As it can be seen from (4.37), for linear reconstruction this is O(r−1).

The improvement, in consistent reconstruction, is due to using deterministic properties of

quantization rather than considering quantization as an independent noise as in (4.32).

Although the MSE in consistent reconstruction is approximated by c0r
−2, where the

constant c0 depends on the source and quantization, this is verified only if the oversam-

pling ratio r is very high [52]. In some practical applications of frames, e.g., channel coding,

this ratio cannot be high, though. Particularly, in the context of interest, i.e., DSC, r is

limited to two [111]. Besides, consistent reconstruction methods do not provide a guidance

on how to design the frame, as they do not point out how to compute the constant c0.

More importantly, (4.37) proves to be predictive of the performance of consistent recon-
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struction [51]; therefore, it can be convincingly used as a design criterion regardless of the

reconstruction method.

4.6.3 Reconstruction with Error and Erasure

In the context of channel coding, DFT codes are primarily used to provide robustness

against channel impairments which can be errors or erasures. Likewise, in DSC these

codes play the role of channel codes to combat the errors due to the virtual correlation

channel [111]. Thus, it makes sense to evaluate the performance of these codes in the

presence of error. To this end, let ĉ = Gx + η where η = q + e. Assuming that the

quantization and channel errors are independent, we will have

E{ηTη} = E{qTq + qTe+ eTq + eTe}
= nσ2

q + νσ2
e ,

(4.38)

where ν is the average number of errors in each codeword and E{eTe} , νσ2
e . Note that

E{eTq} = E{qTe} = 0, because q and e are independent and q has mean equal to zero.

Finally, following a similar analysis as in (4.37), we obtain

MSEq+e =
k

n
σ2
η =

k

n

(
σ2
q +

ν

n
σ2
e

)
. (4.39)

From (4.39) it is clear that reconstruction error has two distinct parts caused by the quan-

tization and channel errors. It also proves that DFT codes decrease both channel and

quantization errors by a factor of frame redundancy r = n/k. The above results is for the

case when no error correction is done. It is worth noting that, even without correcting

errors, the MSE can be smaller than quantization error.

As another extreme case, let us consider the case when error localization is perfect,

i.e., errors are in the erasure form. Then, we remove the corrupted samples and do recon-

struction using the error-free samples. This approach does not require error correction in

order to reconstruct the message; however, it is shown to be equal to the coding theoretic

approach [84]. Let ĉR and ηR denote remaining rows of ĉ and η, respectively. Obviously,

ηR includes only quantization error, hence we represent ηR with qR. Also, let F denote
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the rows of Gsys corresponding to qR. Then, we can write

ĉR = Fx+ qR, (4.40)

x̂ = F †ĉR, (4.41)

where F † = (FHF )−1FH . Thus, similar to (4.37) we will have

MSEq+ρ =
1

k
E{‖x̂− x‖2} =

1

k
E{‖F †qR‖2}

=
1

k
σ2
q tr
(
F †HF †

)
=

1

k
σ2
q tr
(
FHF

)−1

=
1

k
σ2
q

k∑

i=1

1

µi
,

(4.42)

where subscript ρ denotes erasure and µ1 ≥ µ2 ≥ · · · ≥ µk > 0 represent the eigenvalues of

FHF . We assume at least k samples are intact which implies µk > 0.

One nice property of systematic frames is that reconstruction error cannot be more than

quantization error as long as systematic samples are intact. This holds even if consecutive

samples are erased. We know that consecutive erasures can increase the MSE very fast

(e.g., see [84, Table I]). This can be understood from (4.42) since F contains Ik as a

subframe and in the worst case we can use this subframe for reconstruction which leads to

MSEq+ρ = σ2
q . Adding any other row (sample) will decrease the MSE. To show this, let

FH = [Ik |EH ]. Then, FHF = Ik + EHE and, from (4.20), for i = j, we get µi ≥ 1 + ξk

for i = 1, . . . , k, where ξk is the smallest eigenvalue of EHE. Clearly, ξk ≥ 0 since EHE

is a positive semidefinite matrix. Further, at least µ1 > 0 since otherwise E must be zero.

Hence,
∑k

i=1
1
µi

decreases by adding new rows.

Finally, with consistent reconstruction, we can further decrease the MSE. To do so,

we check if reconstructed values x̂i for systematic samples in (4.41) are consistent with

their values before reconstruction or not, i.e., for any systematic sample, we must have

Q(x̂i) = Q(ĉRi). Otherwise, we replace x̂i with

ˆ̂xi = Q(ĉRi)− sign(Q(ĉRi)− x̂i)
∆

2
. (4.43)
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4.7 Characterization of Systematic Frames

4.7.1 The Best and Worst Systematic Frames

As we discussed in Section 4.5, the optimal Gsys is achieved from the optimization problem

(4.28). Similarly, to find the worst Gsys, we can maximize (4.28) instead of minimizing it.

The optimal eigenvalues are known to be λi = 1, 1 ≤ i ≤ k. But, how can we find the

corresponding Gsys, or Gk equivalently? More importantly, if a Gk with λi = 1 does not

exist, is there any suggestion for the best matrix?

We approach this problem by studying another optimization problem. To this end, we

first prove the following theorem for the eigenvalues of GkG
H
k .

Theorem 4.6. Let {λi}ki=1 be the eigenvalues of GkG
H
k , where Gk includes k arbitrary rows

of G, then we have

argmin
{λi}

k∑

i=1

1

λi
= argmax

{λi}

k∏

i=1

λi. (4.44)

Proof. Let {λi}ki=1 be the eigenvalues ofGkG
H
k . From Lemma 4.2, we know that

∑k
i=1 λi(G

H
k Gk)

= k. Then, subject to this constraint, by using the Lagrangian method [18], its is straight-

forward to see that the optimal values of the optimization problems in both sides of (4.44)

are λi = 1, i = 1, . . . , k.

Now, in view of Theorem (4.6), the optimal arguments of the optimization problem in

(4.28) are equal to those of

maximize
{λi}

k∏

i=1

λi

s.t.
k∑

i=1

λi = k, λi > 0,

(4.45)

in which {λi}ki=1 are the eigenvalues of GkG
H
k (or V H

k Vk). By using the Lagrangian method,

one can check that (4.45) has the maximum of 1 and infimum of 0. Then, considering that

k∏

i=1

λi = det(V H
k Vk) = det(GkG

H
k ), (4.46)
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we conclude that the “best” submatrix is the one with the largest determinant (possibly

1) and the “worst” submatrix is the one with smallest determinant.

Next, we evaluate the determinant of V H
k Vk so as to find the matrices corresponding to

the extreme cases. To this end, we first evaluate the determinate of WWH where W is the

Vandermonde matrix with unit complex entries as defined in (5.29). From (4.15) we can

write

det(WWH) =
1

nn

∏

1≤p<q≤n

|eiθp − eiθq |2

=
1

nn

∏

1≤p<q≤n

4 sin2 π

n
(q − p)

=
2n(n−1)

nn

n−1∏

r=1

(
sin2 π

n
r
)n−r

,

(4.47)

in which θx = 2π
n

(x− 1), r = q− p, and n(n− 1)/2 is the total number of terms that satisfy

1 ≤ p < q ≤ n. But, we see that W is a DFT matrix, and thus, its determinant must be

1. Therefore, we have

n−1∏

r=1

(
sin2 π

n
r
)n−r

=
nn

2n(n−1)
. (4.48)

The above analysis helps us evaluate the determinant of Vk or Gk, defined in (4.25). Let

Irk = {ir1 , ir2 , . . . , irk} be those rows of G used to build Gk. Also, without loss of generality,

assume ir1 < ir2 < · · · < irk . Clearly, ir1 ≥ 1, irk ≤ n, and we obtain

det(VkV
H
k ) =

1

kk

∏

1≤p<q≤n
p,q∈Irk

|eiθp − eiθq |2

=
1

kk

∏

1≤p<q≤n
p,q∈Irk

4 sin2 π

n
(q − p).

(4.49)

Then, since sin π
n
u = sin π

n
(n−u), one can see that this determinant depends on the circular

distance between rows in Irk . For a matrix with n rows, we define the circular distance

between rows p and q as min {|q − p|, n− |q − p|}. In this sense, for example, the distance

between rows 1 and n is one. Now, it is reasonable to believe that (4.49) is minimized
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when the selected rows are circularly successive.6 Note that sinu is strictly increasing for

u ∈ [0, π/2], and the circular distance cannot be greater than n/2 in this problem.

In such circumstances where all rows in Irk are (circularly) successive, (4.49) is minimal

and reduces to

det(VkV
H
k ) =

2k(k−1)

kk

k−1∏

r=1

(
sin2 π

n
r
)k−r

. (4.50)

The other extreme case comes up when n = Mk (M is a positive integer) provided that

Gk consists of every Mth row of G. In such a case, (4.49) simplifies to 1, because

det(VkV
H
k ) =

2k(k−1)

kk

k−1∏

r=1

(
sin2 π

n
Mr
)k−r

=
2k(k−1)

kk

k−1∏

r=1

(
sin2 π

k
r
)k−r

= 1,

(4.51)

where the last step is because of (4.48). Recall that this gives the best Vk (and equivalently

Gk), in light of (4.45). For such a Gk, it is easy to see that Gsys stands for a “tight” system-

atic frame and minimizes the MSE for a given number of quantization levels. Effectively,

such a frame is performing integer oversampling. There are M such frames; they all have

the same spectrum, though.

Recall that, from (4.44)–(4.46) and Theorem 4.3, det(VkV
H
k ) < 1 for n 6= Mk. For

such an (n, k) frame, the systematic rows cannot be equally spaced in the corresponding

systematic frame; instead, we may explore a systematic frame in which the circular distance

between successive systematic samples is as evenly as possible. Then, the circular distance

between each successive systematic rows is either bn/kc or dn/ke. More precisely, if l and

m, respectively, represent the number of systematic rows with circular distance equal to

6 A set of J rows {ir1 < ir2 < . . . < irJ} of a matrix are successive if they are one after the other, i.e.,
irj = irj−1+1. A set of rows are circularly successive if they or their complement set of rows are successive,
where the complement of a set of rows includes all rows except that set of rows.
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dn/ke and bn/kc, they must satisfy




l +m = k,

ldn
k
e+mbn

k
c = n.

(4.52)

In the following theorem, we prove that the best performance is achieved when the system-

atic rows are as equally spaced as possible, i.e., when (4.52) is satisfied.

Theorem 4.7. When encoding with an (n, k) systematic DFT frame in (4.4) and decoding

with linear reconstruction, for the noise model (4.32) and given a same number of quan-

tization levels, the MSE is minimum when there are l = n − bn/kck systematic rows with

successive circular distance dn/ke and the remaining m = k − l systematic rows have a

successive circular distance equal to bn/kc.

Proof. See Appendix B.2.

Effectively, the above theorem is generalizing Theorem 4.5. Note that when n = Mk,

bn/kc = dn/ke = M and there exist k systematic rows with equal distance; in this case,

Theorem 4.7 reduces to Theorem 4.5 and the corresponding systematic frame is tight. The

optimality of this case was proved in (4.51). When n 6= Mk, we cannot have a systematic

frame with equally spaced systematic rows; however, the best performance is still achieved

when the circular distance between the systematic (parity) rows is as evenly as possible, as

detailed above. Note that in either case dmin, the minimum distance between the systematic

rows, is bn/kc. This is a necessary condition for an optimal systematic frame, as shown in

the proof of Theorem 4.7. Further, to satisfy Theorem 4.7, the minimum distance between

the parity rows must be d̄min = bn/(n− k)c.

4.7.2 Numerical Examples

Numerical calculations confirm that “evenly” spaced data samples gives rise to systematic

frames with the best performance. When a systematic frame is doing integer oversampling,

we end up with tight systematic frames. The first and last codes in Table 4.1 are examples

of this case. When n 6= Mk, data samples cannot be equally spaced; however, as it can

be seen from the second code in Table 4.1, still the best performance is achieved when

they are as equally spaced as possible. In this table, “×’s” and “−’s” represent data
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Table 4.1 Eigenvalues structure for two systematic DFT frames with differ-
ent codeword patterns. A “×” and “−” respectively represent data (system-
atic) and parity samples.

Code Codeword λmin λmax

∑k
i=1 1/λi

∏k
i=1 λi

patern

×××−−− 0.0572 1.9428 19 0.1111

(6, 3)
××−×−− 0.2546 1.7454 5.5 0.4444

××−−×− 0.2546 1.7454 5.5 0.4444

×−×−×− 1 1 3 1

×××××−− 0.0396 1.4 28.70 0.0827

(7, 5)
××××−×− 0.1506 1.4 10.32 0.2684

××−××−× 0.3110 1.4 7.40 0.4173

×−×××−× 0.3110 1.4 7.40 0.4173

×××××−−−−− 0.0011 1.9989 908.21 4.46× 10−4

××××−×−−−− 0.0041 1.9959 249.94 0.0047

××××−−×−−− 0.0110 1.9890 96.09 0.0122

×××−×−−−×− 0.0202 1.9798 53 0.0400

×××−−××−−− 0.0496 1.9504 25.64 0.0489

×××−×−×−−− 0.0310 1.9690 35.73 0.0611

(10, 5)
×××−−×−−×− 0.0512 1.9488 23.41 0.0838

×××−−×−×−− 0.0835 1.9165 16 0.1280

××−××−−×−− 0.1056 1.8944 13.79 0.1436

××−−××−−×− 0.2497 1.7503 9.56 0.2193

××−×−×−−×− 0.1902 1.8098 8.86 0.3351

×−×−×−×−−× 0.2377 1.7623 7.77 0.4189

×−×−×−×−×− 1 1 5 1
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and parity samples, respectively. Moreover, we observe that circularly shifted codeword

patterns behave the same (e.g., in the (7, 5) code, frames with pattern ×−×××−× and

× × − × × − × have the same performance). Also, reversal of a codeword pattern yields

a codeword with the same performance (e.g., × × − × −− is shifted version of reversed

××−−×− in the (6, 3) code). These properties hold in general, as stated below.

Property 4.1. Circular shift of Irk , the systematic rows of a systematic frame with analysis

frame Gsys, does not change the spectrum of GH
sysGsys.

Property 4.2. Reversal of Irk yields a systematic frame with the same spectral properties.

Proof. From (4.4) we obtain

λi(G
H
sysGsys) =

n/k

λi(GkGH
k )
, (4.53)

for i = 1, . . . , k. But GkG
H
k is invariant to the circular shift of rows of G that make Irk , as

long as all rows are shifted the same amount in the same direction. This can be seen from

the proof of Lemma 4.2 in (4.24) by defining r′ = r+ c where r′ represent the shifted rows

by a constant c and r ∈ Irk . This proves Property 4.1. Likewise, let r′′ = n+ 1− r be the

reversed row indices. Again, from (4.24), it is clear that Property 4.2 holds.

These properties together show that the frame operators of systematic frames (GH
sysGsys),

in which the “relative” circular distance among the systematic rows are the same, inherit

the same spectrum and thus show the same performance.

4.7.3 Number of Systematic Frames

From previous sections, its is obvious that there are many systematic frames for a given

(n, k) frame. The performance of these systematic frames depends on the position of the

systematic rows, or equivalently, the position of data (or parity) samples in the associated

codewords, and can be the same for different systematic frames. In what follows, we derive

an upper and lower bound on the number of systematic frames with different spectrum. In

other words, we categorize these frames based on their performance. To this end, we observe

that the problem of finding k× k submatrices of an n× k matrix can be viewed as finding
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different k-subsets of a set with n elements. This is given by the binomial coefficient
(
n
k

)

and is also equivalent to the number of systematic frames. As stated earlier in Property 4.1,

circular shift of a codeword pattern does not change its spectrum, and so its performance.

We define a coset as square submatrices that result in a same performance. Each coset has

at least n elements (k-subsets), as shown in Table 4.2. To find these elements, it suffices

to circularly shift a subset n times. Equivalently, for a given k-subset, we simply add up 1

to each element of a subset. Note that, the subsets elements are k row indices of Gn×k and

thus cannot be greater than n. Therefore, once a shifted index x becomes greater than n,

we replace it with 〈〈x〉〉n where 〈〈x〉〉n , x − dn if dn + 1 ≤ x ≤ dn + n, d ∈ Z. Obviously,

each coset has at least n subsets since n − 1 circular shifts of a given subset are distinct;

all these subsets have the same relative distance, though. This can be seen in Table 4.2.

Thus, it is clear that the number of cosets is the bounded by

nc ≤ u =
1

n

(
n

k

)
. (4.54)

Let Irrk denote the reversal of Irk = {ir1 , ir2 , . . . , irk} where

Irrk , 〈〈n+ 1− Irk〉〉n. (4.55)

This operation is performed on every element of Irk . One can see that reversal of a subset

does not change its distance and spectrum, owing to Property 4.2. This can reduce the

number of cosets. For example, in Table 4.2, the reversal of {1, 2, 4}, which is the coset

leader in C2, is {7, 6, 4} which belongs to C5. This indicates C2 and C5 are essentially one

coset. The bound in (4.54) is tight if and only if there are u self-reversal cosets. Trivial

examples of such a code are achieved when k = n − 1 or k = 1. A self-reversal coset is a

coset that the reversal of its elements belong to itself, e.g., C1, C3, and C4 in Table 4.2.

On the other hand, nc ≥ u/2 is a lower bound because there cannot be more than one

reversal for a given coset. It can be further seen that the coset with smallest weight (C1) is

always self-reverse, i.e., the reversal of each element of C1 is its own element for any (n, k)

frame. This implies that the lower bound is not achievable. Therefore,

1

2n

(
n

k

)
< nc ≤

1

n

(
n

k

)
. (4.56)



4 Distributed Joint Source and Channel Coding 88

Table 4.2 Different cosets of (7, 3) DFT frame and their corresponding rel-
ative distances and spectrums. The Coset leaders are in boldface.

C1 C2 C3 C4 C5

Leader 1 2 3 1 2 4 1 2 5 1 3 5 1 3 4
2 3 4 2 3 5 2 3 6 2 4 6 2 4 5
3 4 5 3 4 6 3 4 7 3 5 7 3 5 6
4 5 6 4 5 7 1 4 5 1 4 6 4 6 7
5 6 7 1 5 6 2 5 6 2 5 7 1 5 7
1 6 7 2 6 7 3 6 7 1 3 6 1 2 6
1 2 7 1 3 7 1 4 7 2 4 7 2 3 7

Distance 1 1 2 1 2 3 1 3 3 2 2 3 1 3 2

Weight 4 6 7 7 6

λ1 2.1558 1.7539 1.9066 1.2673 1.7539
λ2 0.8150 1.1133 0.8424 1.1601 1.1133
λ3 0.0292 0.1328 0.2510 0.5726 0.1328

One can check that the first two frames in Table 4.1 reach the upper bound b 1
n

(
n
k

)
c whereas

the third one satisfies the lower bound d 1
2n

(
n
k

)
e.

4.8 Simulation Results: Parity-Based DSC and DJSCC

In this section we focus on numerical results for the parity-based DSC and its extension to

the noisy channel setting, i.e., DJSCC. We do simulations both for a Gauss-Markov source

with ρ = 0.9 and Gaussian sources, i.e., a Gauss-Markov source with ρ = 0. We first

compare the performance of the parity- and syndrome- based approaches for two codes

with the same compression ratio using a Gauss-Markov source with ρ = 0.9. We use a

(5, 1) code for the syndrome approach and a (9, 5) code for the parity approach; thus, the

compression ratio for both codes is η = 0.8. The results are presented in Figure 4.3; it can

be seen that syndrome-based DSC performs a little better than the parity-based DSC. As

we explained in Section 4.1.3 the performance of the parity-based system is not as good as

that of the syndrome-based system, mainly because σp > σs. This implies a that the rate

required to transmit the parity samples is more than that of the syndrome samples, given
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Figure 4.3 The MSE performance of syndrome- parity-based DSC for a
Gauss-Markov source with ρ = 0.9 and the GBG correlation model with
σ0 = 0.01σe, p1 = 0.04. The compression ratio for both approaches is 0.8
as the corresponding codes are (5, 1) and (9, 5) for the syndrome and parity
approaches, respectively.

a same distortion.

We next plot the distortion-rate function for coding a Gauss-Markov source with ρ = 0

(Gaussian source) based on the parity-based DSC and compare its performance against

the theoretical limits in Figure 4.4. The points are based on (19, 17), (9, 7), (8, 5) codes,

respectively. As we mentioned earlier, the performance of the parity-based DSC depends

on the position of the parity samples. To find the rate distortion pairs in the above figure,

the position of parity samples were chosen as even as possible to minimize the MSE.

Seeing that we do not use the ideal Slepian-Wolf coding assumption (n→∞), the gap

between performance of the proposed schemes and the Wyner-Ziv rate-distortion function

is more than usual. However, It should be noted that capacity-approaching channel codes

may introduce significant delay if one strives to approach the capacity of the channel with

very a low probability of error. Therefore, those are out of the question for delay-sensitive

systems. In that case, it would be best to use channel codes of low rate and focus on

achieving a very low probability of error. The system we introduced is a low-delay system

which works well with reasonably high-rate codes. Finally, by puncturing some parity

samples, rate-adaptive schemes are realized for the proposed DJSCC and parity-based DSC.
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Figure 4.4 The distortion-rate function and bounds for coding a Gaussian
source X with σX = 1 and the GBG correlation model with σ0 = 0.05σe at
CEQNR= 25dB and b = 6. The achievable points are based on (19, 17), (9, 7),
(8, 5) codes, respectively.

Rate-adaptive systems are popular in the transmission of non-ergodic data, like video [119].

Next, we evaluate the performance of the JSCC with side information at the decoder,

illustrated in Figure 4.2. By using a systematic (10, 5) DFT code, we generate, quantize,

and transmit parity samples over a noisy channel. Note that, for this code the best system-

atic code [116] achieves the lower bound in (4.10); i.e., it results in σp = σx. The correlation

channel and transmission channel altogether insert up to t errors generated by N (0, σ2
e).

Simulation results are plotted in Figure 4.5. First, based on Figure 4.5(a), the threshold

θ = 0.0064 is fixed for pd = 90%. Next, this is used to estimate ν in Figure 4.5(b). The

estimated number is subsequently used to find the location of errors, both for the PGZ and

subspace methods, in Figure 4.5(c).7 Then, the output of Figure 4.5(c), for the subspace

method, is fed to the last step to find the magnitude of errors and correct them. Finally, in

Figure 4.5(d), the MSE is compared against the quantization error level To put our results

in perspective, we also calculate the MSE assuming perfect error localization; it gives 0,

6.5×10−5, and 1.8×10−4 respectively for 0, 1, and 2 errors, in every CEQNR. This implies

7It is worth mentioning that if the amplitude of errors is fixed, as assumed in [86], the results improve
considerably for both methods. For one thing, at the CEQNR of 20dB the probability of correct localization
becomes 1.
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Figure 4.5 Performance evaluation of joint source-channel coding with side
information at the decoder, proposed in Figure 4.2, for (10, 5) DFT code. (a)
Histogram of λmax(R̃) for the quantized code. This is used to set a threshold
for detection. (b) Probability of correct detection of errors for θ = 0.0064.
(c) Probability of correct localization of errors based on Figure 4.5(b). (d)
The end-to-end distortion for subspace-based error localization given in Fig-
ure 4.5(c).

that there is still room to improve the MSE performance of the proposed system, given a

better solution for the error localization. Expectedly, for the same number of errors, high

rate codes have better performance. As an example, in [109, Figure 6] we show the MSE

performance of a systematic (12, 5) code, which is better than that in Figure 4.5(d).
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Figure 4.6 The MSE performance of the DJSCC for the GBG correlation
model with σ0 = 0.05σe, p1 = 0.03 and ρ = 0. The compression ratio for the
codes are equal to 2

3 , 1, and 2, implying compression for the first code and
expansion for the third code. For the (10, 5) code there is neither compression
nor expansion since η = 1.

Finally, we compare the performance of the proposed system for DJSCC using three

codes (5, 3), (10, 5), and (15, 5), with compression ratios equal to 2
3
, 1, and 2, respectively.

Again, for each code we use a Gsys with the best MSE performance, in light of Theorem 4.7.

Specifically, rows {1, 3, 5} are chosen as the systematic rows of Gsys for the (5, 3). For the

(10, 5) and (15, 5) codes the optimal solution is to choose, respectively, every second and

third rows as the systematic rows. The remaining rows correspond to the parity samples.

As expected, in Figure 4.6 it can be seen that when code rate decreases the MSE decreases.

Note that, in this simulation 3% of parity samples are affected by an impulsive noise whose

power is the same as the power of impulses in the correlation channel. The (10, 5) code

neither compresses nor expands the input source as it transmit 5 parity samples in lieu of

every 5 source samples; nevertheless, it can combat the transmission noise without adding

any redundancy.

4.9 Summary

In this chapter, we introduced a parity-based approach to perform DSC based on DFT

codes, which provides an alternative to the syndrome-based DSC, presented in Chapter 3.
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The proposed scheme is then extended to the case where transmission channel is noisy,

which gives rise to DJSCC. Then, motivated by its use in the parity-based DSC and

DJSCC, we proposed the construction of systematic DFT frames in this chapter. Nu-

merous systematic DFT frames can be made out of one DFT frame; the performance of

these frames differs depending on the relative position of the systematic and parity samples

in the codeword. We proved that evenly spaced systematic (or parity) samples result in the

minimum mean-squared reconstruction error, whereas the worst performance is expected

when the parity samples are circularly consecutive. We also proved that a tight, systematic

DFT frame can be realized only if the frame is performing integer oversampling. Finally,

for each DFT frame, we classified systematic DFT frame based on their performance. In

light of this classification, we are able to use the best systematic BCH-DFT code in the

context of DSC and DJSCC. Simulation results are used to compare the efficiency of the

proposed systems with syndrome-based DSC and asymptotic bounds, respectively.
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Chapter 5

Rate-Adaptive Systems

In this chapter,1 we take a fresh look at the error localization of BCH-DFT codes. We first

analyze how the subspace-based error localization outperforms the coding-theoretic one.

We then propose an extension of the subspace-based error localization, based on additional

syndrome, that improves the existing one and is naturally suitable for rate-adaptive DSC.

We also propose a new generic subspace-based algorithm to decode BCH-DFT codes that

generalizes the encoding and decoding of this important class of DFT codes. It introduces

many different decoding matrices for a DFT code; this diversity is then used to diminish

the effect of the quantization noise and improve the decoding. Finally, the extended and

generalized approaches are combined to maximize the decoding gain.

5.1 Introduction

In all applications of DFT codes where error correction is required, see for example [121,

41,111,33], error localization is a crucial step of the decoding algorithm. Error localization

in BCH-DFT codes can be done by extending the coding-theoretic method of binary BCH

codes to the real field [14]. By adopting the MUSIC [96] and ESPRIT [92] based methods

of multiple frequency component estimation, Rath and Guillemot [86] proposed subspace-

based error localization algorithms which perform better than the coding-theoretic one [110];

they extended these methods to error and erasure decoding in [87]. The subspace-based

approaches have been successfully applied to other real codes such as the discrete cosine

1The material in this chapter has been partly presented in [115] and published in [110].
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transform (DCT) and discrete sine transform (DST) codes [88, 66], which are based on

orthogonal transform matrices. Between the above subspace-based algorithms, the MUSIC-

like approach performs slightly better than the ESPRIT-like approach and it is the most

accurate error localization method to date.

Our main contribution, in this chapter, is to further improve the error localization of

quantized DFT codes. To put our results in perspective, in Section 5.2, we analyze why the

subspace-based error localization outperforms the coding-theoretic one. The key is that a

subspace-based method is capable of providing more than one error locating polynomial.

These polynomials have the same set of roots, if the code is not quantized; however, they

can result in different roots for quantized codes. Even so, by averaging the coefficients

of polynomials, one can diminish the effect of the quantization error. With this insight,

and based on additional syndrome samples, in Section 5.3 we extend the subspace error

localization to further increase the number of polynomials and improve error localization.

The proposed algorithm is naturally suitable for rate-adaptive distributed source coding;

it is also applicable to channel coding in specific cases. It can be used with DCT and DST

codes, too.

A second major advance towards improving the subspace error localization is achieved

by generalizing this algorithm based on various decoding matrices, in Section 5.4. We

prove that for an (n, k) DFT code there are φ(n) syndrome matrices for decoding, where

φ(n) is the number of positive integers less than n that are relatively prime to n. We then

exploit this diversity to improve the error localization, when quantization comes into play,

by combining the error localization polynomials corresponding to different matrices. This

algorithm is referred to as the generalized subspace method; it is then combined with the

extended subspace method to further improve the decoding, in Section 5.5.

Apart from the diversity in decoding, the generalized subspace method brings another

novelty at the encoder side; that is, the parity frequencies of BCH-DFT codes (equivalently,

the zeros of codewords in the frequency domain) are not required to be cyclically adjacent.2

This provides substantial flexibility in constructing BCH-DFT codes. Finally, in addition

to improving the error localization, both extended and generalized subspace algorithms can

be applied to increase the accuracy of the error detection step.

2Strictly speaking, these codes are not BCH codes as the spectra of a BCH code has consecutive zeros.
However, in Section 5.4, we prove the existence of codes with non-consecutive zeros in the frequency domain
which have the same properties as of BCH-DFT.
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As elaborated in Section 5.6 by means of a few examples, the main application of the

algorithms we develop in this chapter is in rate-adaptive DSC; they can be also applied

to channel coding in special cases. The proposed algorithms are based on syndrome aug-

mentation and can be applied both to the syndrome- and parity-based DSC. Simulation

results in Section 5.7 demonstrate the capability of the proposed algorithms to perform

significantly better than the existing subspace-based error localization, in the presence of

quantization noise.

5.2 Error Localization in DFT Codes: A Review

Let the n×1 vector c represent a codeword generated by an (n, k) DFT code. Also, let r =

c+e be a noisy version of c and suppose that the error vector e has ν ≤ t nonzero elements.

Let 1 ≤ i1, . . . , iν ≤ n and ei1 , . . . , eiν denote, respectively, the locations and magnitudes

of the nonzero elements of e. The decoding algorithm in DFT codes is composed of three

main steps [14]: error detection (to determine ν), error localization (to find i1, . . . , iν), and

error calculation (to calculate ei1 , . . . , eiν ). This chapter is mainly focused on improving

the error localization step. Thus, for the moment during the development, we assume that

the number of errors (i.e., ν) is known at the decoder. Later, it will be apparent how to

determine the true value of ν at the decoder. This is part of the spectral decomposition

and will be briefly discussed in Section 5.2.2.

The syndrome of e, which is the key input of the decoding algorithm, is computed as

s = Hr = H(c+ e) = He, (5.1)

where s = [s1, s2, . . . , sd]
T is a complex vector with

s` =
1√
n

ν∑

p=1

eipX
α−1+`
p , ` = 1, . . . , d, (5.2)

in which α is defined in (3.8) and

Xp = ω−ip , p = 1, . . . , n, (5.3)

where ω = e−j
2π
n . It is worth noting that X1, . . . , Xn are the nth roots of unity and
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X1, . . . , Xν indicate those roots which correspond to the error indices, as we have assumed

i1, . . . , iν to be the error indices. There are two main approaches to find the error indices;

we describe them in the following.

5.2.1 Coding-Theoretic Approach

The classical approach to the error localization is to identify an error-locator polynomial

whose roots correspond to error locations. The error-locator polynomial can be defined as

Λ(x) =
ν∏

i=1

(1− xX−1
i ) = 1 + Λ1x+ · · ·+ Λνx

ν , (5.4)

and its roots X1, . . . , Xν correspond to the error locations ip, p ∈ [1, . . . , ν], as from (5.3)

we have ip = logXp
logω−1 = argXp

argω−1 . Note that for a complex z we have log z = ln |z|+ j arg z and

we take arg z ∈ (0, 2π]. The coefficients Λ1, . . . ,Λν can be found by solving the following

set of consistent equations [14]

sjΛν + sj+1Λν−1 + · · ·+ sj+ν−1Λ1 = −sj+ν , (5.5)

for j = 1, . . . , d− ν. To put it differently, as the IDFT of Λn = [1,Λ1, . . . ,Λν ,01×(n−ν−1)]
T

becomes zero at the error locations, the circular convolution of Λn with the DFT of the

error vector is a zero vector [14, 86].

5.2.2 Subspace-Based Approach: A Fresh Look

Alternatively, one can use a subspace-based method for error localization [86]. We elaborate

the subspace-based method which is along the lines of the MUSIC [96], since it is shown

to perform slightly better than the ESPRIT-like [92] method, in [86]. To this end, let

ν + 1 ≤ m ≤ d− ν + 1 and define the following syndrome matrix

Sm =




s1 s2 . . . sd−m+1

s2 s3 . . . sd−m+2

...
...

. . .
...

sm sm+1 . . . sd



, (5.6)
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whose elements are given by (5.1). Also, define the covariance matrix as

Rm = SmS
H
m . (5.7)

Subspace-based error localization is based on eigendecomposition of Rm. Before proceeding

to the details of the algorithm, it is important to point out that Sm can be decomposed as

Sm = VmDV
T
d−m+1, (5.8)

in which Vm is a Vandermonde matrix defined as

Vm =




1 1 . . . 1

X1 X2 . . . Xν

...
...

. . .
...

Xm−1
1 Xm−1

2 . . . Xm−1
ν



, (5.9)

and D is a diagonal matrix of size ν

D =




d1

d2

. . .

dν



, (5.10)

with nonzero diagonal elements dp = 1√
n
eipX

α
p , p = 1, . . . , ν. Vm is called the error-locator

matrix of order m [86], and its columns are the error-locator vectors of order m. Since m >

ν, the columns of Vm define a ν-dimensional subspace of the m-dimensional vector space,

which is referred to as the channel-error subspace. Its orthogonal complement subspace is

called the noise subspace and has dimension m− ν.

One can verify that the rank of Sm is ν. To check this, from linear algebra, we know that

rank(AB) = rank(A) if B has a full column rank [97]. Then, by twice applying this to (5.8)

and recalling that ν + 1 ≤ m ≤ d− ν + 1 its is easy to see that rank(Sm) = rank(Vm) = ν.
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From this, it is obvious that the rank of Rm is ν;3 thus, it can be eigendecomposed as

Rm = [Ue Uq]

[
∆e 0

0 ∆q

]
[Ue Uq]H , (5.11)

where the square matrices ∆e and ∆q contain the ν largest and m−ν smallest eigenvalues,

and Ue and Uq contain the eigenvectors corresponding to ∆e and ∆q, respectively.4 The

sizes of Ue and Uq are m× ν and m× (m− ν). The columns in Ue span the channel-error

subspace [86, Proposition 1] spanned by Vm. Thus, from the fact that UH
e Uq = 0, we

conclude that

V H
m Uq = 0. (5.12)

Now, let v = [1, x, x2, . . . , xm−1]T where x is a variable that can take on any of X1, . . . , Xn.

We define the function

F (x) ,
m−ν∑

j=1

vHuq,j =
m−ν∑

j=1

m−1∑

k=0

fjkx
k, (5.13)

where uq,j represents the jth column of Uq. F (x) can be considered as sum of m − ν

polynomials {fj}m−νj=1 of order m − 1; each polynomial is derived from a column of Uq.

Let F denote this set of polynomials restricted to coefficients from Uq. In light of (5.12),

each one of these polynomials vanishes for x = X1, . . . , Xν , i.e., F (x) = 0 for X1, . . . , Xν .

These are the only common roots of {fj} over the nth roots of unity [86]5; thus, the errors

location can be determined by finding the zeros of F (x) over the set of nth roots of unity.

It should be mentioned that the above algorithm is based on the noise subspace. One

may, equivalently, use the signal subspace to find the error locations [63]. Also, the above

approach is along the lines of the MUSIC [96]; it is shown to perform slightly better than

3From the above argument one can see that the number of errors can be found by evaluating the rank
of Sm or Rm for any ν + 1 ≤ m ≤ d− ν + 1. Thus, since we do not know ν, it is better to choose m = bd2c
or m = dd2e, to detect as many errors as possible.

4Clearly, since no noise (or quantization error) is considered at this stage, ∆q = 0 and ∆e contains the
ν nonzero eigenvalues of Rm.

5 Assume, for the sake of contradiction, that there are ν + 1 common roots of unity. This implies that
Vm has another column (corresponding to Xν+1) for which (5.12) holds; i.e., there are more than ν errors
which is contradicting.
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the ESPRIT-like [92] method, in [86].

The subspace method outperforms the coding-theoretic error localization. To see this,

we can see that Λ(x) is the smallest degree polynomial that has roots in X1, . . . , Xν and

lies in the noise subspace; it is achieved for m = ν+ 1 in (5.13). As m increases, the degree

of polynomials {fj} goes up which gives more degrees of freedom (DoF) and helps improve

the estimation of the roots, and the error locations consequently. An even more important

factor that affects location estimation is the number of polynomials {fj} whose coefficients

come from linearly independent columns of Uq. The more there are such polynomials, the

better the estimation can be as the variation due to noise (quantization) is reduced by

adding such independent polynomials in F (x).

Although the number of polynomials increases with m, their coefficients may not be

independent. The latter depends on the number of nonzero eigenvalues in the noise subspace

which is, in turn, related to the rank of Sm and is limited by

rank(Sm) ≤ max
m

min(m, d−m+ 1) =

⌈
d

2

⌉
. (5.14)

This suggests that the optimum value for m is dd
2
e. Then, based on (5.13), one can expect

that, in the presence of noise, the subspace approach will result in an error localization bet-

ter than the coding-theoretic approach, except when ν = t and d is even; this is confirmed

by simulation results in [86]. In the last case where ν = t we have m = ν + 1 and there is

just one polynomial and its degree is ν, the same as (5.4) in the coding-theoretic approach.

In general, F (x) is composed of

N (m) = min(m, d−m+ 1)− ν ≤
⌈
d

2

⌉
− ν (5.15)

independent polynomials where the upper bound is obtained for m = dd
2
e. We will use

N (m) as a measure of the gain introduced by the subspace-based error localization com-

pared with the coding-theoretic approach.

5.2.3 Quantization Effect

In practice, where quantization comes into play, the received vector is distorted both by

the error vector e and quantization noise q. Therefore r = c+ e+ q, and its syndrome is
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only a perturbed version of s because

Hr = H(c+ q + e) = sq + s = s̃, (5.16)

where sq ≡ Hq and q = [q1, q2, . . . , qn]T is the quantization error. The distorted syndrome

samples can be written as

s̃` =
1√
n

ν∑

p=1

eipX
α−1+`
p +

1√
n

n∑

p′=1

qip′X
α−1+`
p′

= s` +
1√
n

n∑

r=1

qrω
(α−1+`)r, 1 ≤ ` ≤ d, (5.17)

where ip′ shows the index for quantization error. The distorted syndrome matrix S̃m and

its corresponding covariance matrix R̃ = S̃mS̃
H
m are defined similar to (5.6) and (5.7) but

for the distorted syndrome samples and we can write

R̃m = [Ũe Ũq]

[
∆̃e 0

0 ∆̃q

]
[Ũe Ũq]H , (5.18)

where Ũe and Ũq span the “estimated” channel error and quantization noise subspaces,

respectively. Due to the quantization error, these estimated subspaces are perturbations of

the channel and noise subspaces, that is Ũe = Ue + Uqe and Ũq = Uq + Uqq. Consequently,

unlike (5.12), V H
m Ũq = V H

m Uqq , ∆F̃ 6= 0, or equivalently, the resulting polynomial

F̃ (x) ,
m−ν∑

j=1

vHũq,j =
m−ν∑

j=1

m−1∑

k=0

f̃jkx
k, (5.19)

does not necessarily have roots at the nth roots of unity. Hence, among those n roots, ν

roots that result in the smallest |F̃ (x)| are used to estimate error locations.

5.3 Extended Subspace Approach

Error localization is a crucial step in the decoding algorithm of DFT codes. Numeri-

cal results show [113, Fig. 2 and 3] that if the location of errors are known at the de-
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coder, reconstruction error can be less than quantization error. It is known that an (n, k)

DFT code decreases the mean-squared reconstruction error (MSE) by a factor of code rate

r = k
n

[51, 84, 113]. This motivates the search for methods that can further improve the

error localization in DFT codes. In particular, we are interested to know whether error

localization can be improved without or with extra syndrome samples. Since our objective

is to improve the error localization performance, we assume that the number of errors ν is

known at the decoder.

The main idea behind the extended subspace approach is to try increase the number of

vectors in noise subspace such that the number of polynomials with linearly independent

coefficients and/or their degree grow, in (5.13). We observe that if we are able to construct

a syndrome matrix S ′m such that it can be decomposed as

S ′m = VmDV
T
d′−m+1, (5.20)

for d′ > d and ν + 1 ≤ m ≤ d′ − ν + 1, where Vm and D are defined in (5.9), then

we can expect a better estimation for the location of errors. This is because following

the same argument that led to (5.13) and (5.14) it is easy to see that, if S ′m is used for

error localization, the optimal m in this case is dd′
2
e which results in dd′

2
e − ν ≥ dd

2
e − ν

error-locator polynomials. Then, as explained in Section 5.2.2, this can improve the error

localization.

The challenge is to find the entries of the extended syndrome matrix S ′m. That is, we

need to find s′` for all 1 ≤ ` ≤ d′ so as to build

S ′m =




s′1 s′2 . . . s′d′−m+1

s′2 s′3 . . . s′d′−m+2
...

...
. . .

...

s′m s′m+1 . . . s′d′



. (5.21)

From (5.20), it can be verified that

s′` =
1√
n

ν∑

p=1

eipX
α−1+`
p , ` = 1, . . . , d′. (5.22)

Comparing with (5.2), it is clear that s′` = s` for 1 ≤ ` ≤ d. Thus, we only need to
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determine the entries for d < ` ≤ d′.

With this in mind, similar to the syndrome vector s, we can define the extended syn-

drome vector s̄ as

s̄ = H̄e, (5.23)

where H̄ consists of those k columns of the IDFT matrix of order n used to build G. In

other words, H̄ is the complement of H. More precisely, similar to (3.10),

H̄ ,
1√
n




1 · · · 1

ωn−β · · · ωn+α−1

...
. . .

...

ω(n−β)(n−1) · · · ω(n+α−1)(n−1)




H

. (5.24)

Note that H̄ is a k × n matrix and, from (5.23), for ` = 1, . . . , k, we have

s̄` =
1√
n

ν∑

p=1

eipX
d+α−1+`
p . (5.25)

Now, we can see that

s′` =

{
s`, 1 ≤ ` ≤ d,

s̄`−d, d < ` ≤ d′,
(5.26)

where d′ − d, d′ − d ≤ k, is the number of extra syndromes.

So far we have shown that if we are able to compute (5.23) then we can form the

extended syndrome matrix in (5.21), and benefit from the larger number of polynomials it

gives as compared to (5.6). But how can we compute s̄ at the receiver? Obviously, we do

not know e at the decoder; instead, we have r = c+ e. Seeing that

H̄r = H̄e+ H̄c = s̄+ H̄c (5.27)

we will get s̄ provided that H̄c, the second term on the right-hand side of (5.27), is either

removed or becomes zero. Observe that despite the fact that Hc = 0, H̄c is not necessarily

zero. In Section 5.6, we accomplish this for source coding with side-information available at
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the decoder, or more generally for DSC. To this end, for the source x, the encoder computes

and transmits s̄x = H̄x to the decoder. At the decoder, we have access to side information

y = x + e and we can compute s̄y = H̄y = s̄x + s̄e. From this s̄ = s̄e = s̄y − s̄x. Note

that here x plays the role of c.

Finally, considering quantization, c will be replaced by c + q; i.e., the new syndrome

˜̄s` will contain a term related to quantization error, similar to s̃` in (5.17). Likewise, s̃′` is

built upon s̃` and ˜̄s`, that is

s̃′` =

{
s̃`, 1 ≤ ` ≤ d,

˜̄s`−d, d < ` ≤ d′,
(5.28)

where s̃ = se + sq, ˜̄s = s̄e + s̄q, and s̄q = H̄q. The new R̃′m = S̃ ′mS̃
′H
m is then used for error

localization as detailed in Section 5.2. Then, similar to (5.14) it can be seen that the new

optimal m is dd′
2
e; i.e., we can improve error localization as there are dd′

2
e − ν ≥ dd

2
e − ν

error-locator polynomials. Hence, the presence of quantization does not really affect the

method.

Remark 5.1. Similar to the subspace approach [88], the extended subspace approach can

be applied to the DCT and DST codes; further, it can be used even for the non-BCH DCT

and DST codes [66].6

Remark 5.2. Knowing that R̃m can also be used to determine the number of errors ν [117],

where the extended error localization is applicable, R̃′m can be used for this purpose and it

improves the results reasonably.

Remark 5.3. Once the location of errors are determined, it is rather simple to find their

amplitude. Let He denote the matrix consisting of the columns of H corresponding to error

indices, then the errors magnitudes E = [ei1 , . . . , eiν ]
T can be computed from HeE = s,

using a least squares method, for example. More details are available in [88, Section

5.3], [113], so we will not discuss it more in depth in this chapter.

Before moving on to the next section, we look at extended subspace error localization

for a special, yet important class of DFT codes in channel coding where n = 2k. For

such a code, d = k and Xd
p is +1 (−1) for errors in the even (odd) positions in the

codeword. Then, if all errors are in the even (odd) positions, we can simply replace s̄ with

6The idea of syndrome extension has been recently applied for error correction of DCT codes, with a
different algorithm in [90].
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s (−s). Thus, using (5.26) and (5.21) we can form S ′m(S̃ ′m) and the corresponding R′m(R̃′m)

for d′ = 2d. Subsequently, the eigendecomposition of R̃′m for m = dd′/2e increases the

number of polynomials in F and their degree. This can lead to substantial improvement

in error localization; for one thing, Figure 1 in [115] represents the merit of the extended

error localization to the existing one in a (10, 5) code. Such a significant improvement in

error localization is achieved by using the same d syndrome samples but forming a larger

syndrome matrix which allows a larger noise subspace.

5.4 Generalized Subspace Decoding

This section is primarily focused on the generalization of the subspace-based decoding of

BCH-DFT codes. Meanwhile, the proposed algorithm gives rise to a more general encoding

for this class of codes. Let V
[i]
m be the matrix whose columns are the ith powers of the error-

locator vectors of order m, i.e.,

V [i]
m =




1 1 . . . 1

X i
1 X i

2 . . . X i
ν

...
...

. . .
...

X
i(m−1)
1 X

i(m−1)
2 . . . X

i(m−1)
ν



. (5.29)

Also, let Pn be the set of positive integers less than or equal to n that are relatively prime

to n. The cardinality of Pn, also called the Euler phi function φ(n), is obviously upper

bounded by |Pn| = φ(n) ≤ n − 1 where the upper bound is achieved when n is a prime

number. 7

Proposition 5.1. For any i ∈ Pn and m ≥ ν, the rank of V
[i]
m is equal to the number of

errors ν.

Proof. Since V
[i]
m has the form of the Vandermonde matrix with elements X i

1, X
i
2, . . . , X

i
ν ,

to prove the claim it suffices to show that the above elements are distinct for any i ∈ Pn.

Suppose for contradiction that X i
p = X i

p′ for some p 6= p′, p, p′ ∈ [1, . . . , ν], and i ∈ Pn;

thus e
j2πi
n

(ip−ip′ ) = 1 which implies n = i
l
(ip − ip′) for some integer l. This means that n

and i are not relatively prime, which is contradicting.

7Interested readers may refer to [118, Section 6.6] for Euler’s function and nth roots of unity.



5 Rate-Adaptive Systems 106

Next, for any i ∈ Pn and m > ν, the columns of V
[i]
m define a ν-dimensional subspace of

the m-dimensional vector space which we will refer to as the channel error subspace. We

will shortly prove that, for an (n, k) code, this generalizes the notion of [86] by introducing

φ(n) different sets of spanning basis for channel error subspace rather than just one. Recall

from linear algebra that there are infinitely many different sets of basis which can span the

same subspace. Clearly, the channel error subspace of (5.9) is attained for i = 1. Initially,

similar to (5.6), for ν + 1 ≤ m ≤ d− ν + 1, we define the ith syndrome matrix by

S[i]
m = V [i]

m DV
[i]T
d−m+1. (5.30)

It can be seen that S
[i]
m , for each i, is composed of d syndrome samples8 at most; these

samples can be identified in the first row and last column. Before proceeding, we should

determine the entries of S
[i]
m . Through simple algebra, one can show that the right-hand

side of (5.30) simplifies to

S[i]
m =




sV0Wn sViWn . . . sVi(d−m)Wn

sViWn sV2iWn . . . sVi(d−m+1)Wn
...

...
. . .

...

sVi(m−1)Wn sVimWn . . . sVi(d−1)Wn



, (5.31)

in which i ∈ Pn and the subscripts are interpreted modulo n such that VaWn , b+ 1 where

a ≡ b (mod n) and 0 ≤ b < n. To see the rationale behind the modulo operation recall

that Xn
p = 1 for any p. Again, it is easy to see that S

[1]
m = Sm. However, note that for

i > 1 we will have a different syndrome matrix than (5.8), where the syndrome samples

and their order varies based on i. Note that, the elements of S
[i]
m , in general, are given by

s` =
1√
n

ν∑

p=1

eipX
α−1+`
p , ` = 1, . . . , n. (5.32)

Thus, they are available from (5.2) for ` = 1, . . . , d, and for ` = d + 1, . . . , n they become

equal to s̄`−d, where s̄` is the extended syndrome sample defined in (5.25). Once the

8With a little abuse of notation, we use the term syndrome samples both for syndrome and extended
syndrome samples. Thus, we assume we have s` in which ` can take any values from 1 to n, whereas
originally this range was [1, . . . , d]. Such a case is plausible, for instance, in rate-adaptive systems based
on DFT codes, as discussed in Section 5.6.
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elements of S
[i]
m are properly set, we can define the ith covariance matrix

R[i]
m = S[i]

mS
[i]H
m , (5.33)

and eigendecompose it as

R[i]
m = [U [i]

e U [i]
q ]

[
∆

[i]
e 0

0 ∆
[i]
q

]
[U [i]

e U [i]
q ]H . (5.34)

The matrices U
[i]
e , U

[i]
q ,∆

[i]
e , and ∆

[i]
q , respectively, have the same sizes as Ue, Uq,∆e, and ∆q

and hold similar properties. Specifically, we have

Proposition 5.2. The columns of U
[i]
e span the channel error subspace.

Proof. On the one hand, we observe that the rank of R
[i]
m is ν since the rank of S

[i]
m is so by

construction. Therefore, ∆
[i]
q = 0 and R

[i]
m can be expressed as R

[i]
m = U

[i]
e ∆

[i]
e U

[i]H
e . On the

other hand, from (5.33) and (5.30), it can be seen that R
[i]
m = V

[i]
m DV

[i]T
d−m+1V

[i] ∗
d−m+1D

HV
[i]H
m .

Hence, U
[i]
e = V

[i]
mM [i] where M [i] = DV

[i]T
d−m+1(∆

[i]
e )
−1
2 ; i.e., the columns of U

[i]
e can be

expressed as linear combinations of the columns of V
[i]
m , and vice versa; this completes the

proof.

An immediate implication of the above proposition is that the columns in U
[i]
q span the

noise subspace. More importantly, we have the following theorem.

Theorem 5.1. For an (n, k) BCH-DFT code defined by (3.7), there exist φ(n) syndrome

matrices for decoding, where φ(n) is the Euler phi function.

Proof. On the one hand, from eigendecomposition in (5.44) we have U
[i]H
e U

[i]
q = 0. On the

other hand, from Proposition 5.2 we know that the columns in U
[i]
e and V

[i]
m span the same

subspace. Therefore,

V [i]H
m U [i]

q = 0 ∀ i ∈ Pn. (5.35)

Hence, since i can take φ(n) different values, one can make φ(n) different syndrome matrices

S
[i]
m , as defined in (5.31), and utilize them for error localization and detection.

The diversity introduced in Theorem 5.1 brings in two main novelties which are discussed

in the remainder of this section.
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5.4.1 Improved Decoding

Since (5.35) holds for any i ∈ Pn, for a complex variable x we define vi = [1, xi, x2i, . . . , xi(m−1)]T

and form

F [i](x) ,
m−ν∑

j=1

viHu
[i]
q,j =

m−ν∑

j=1

m−1∑

k=0

f
[i]
jkx

ki. (5.36)

For each i, the function F [i](x) can be considered as sum of m− ν polynomials {f [i]
j }m−νj=1 of

order m− 1; each polynomial corresponds to one column of U
[i]
q . Let F [i] denote this set of

polynomials. In view of (5.35), F [i](x) = 0 for X1, . . . , Xν , and these are the only common

roots of {f [i]
j } over the nth roots of unity; thus, the error locations can be determined

by finding the zeros of F [i](x) over the set of nth roots of unity. That is, each F [i](x)

individually can be employed for error localization. Therefore, we can equivalently define

Γ(x) ,
∑

i∈Pn

F [i](x) =
∑

i∈Pn

m−ν∑

j=1

m−1∑

k=0

f
[i]
jkx

ki, (5.37)

and use it for error localization. That is, the zeros of Γ(x) over the set of nth roots of unity

give X1, . . . , Xν .

Comparing with (5.13), it can be seen that (5.37) combines φ(n) subspace-based de-

coding functions; this is referred to as diversity in this chapter. Hence, the decoding

polynomial Γ(x) introduces both diversity and degrees of freedom9 in comparison with the

error-locator polynomial Λ(x), whereas F (x) provides degrees of freedom only. Obviously,

1 ≤ φ(n) ≤ n−1 and diversity gain φ(n) is maximized when n is a prime number. It should

be mentioned that the diversity is achieved at the expense of an increase in the number of

transmitted syndromes, for a given code, which implies a lower transmission rate.

It should be emphasized that when there is no quantization error, utilizing (5.37)

presents no gain over using (5.13) for the same reason that there is no difference in using

(5.13) over (5.4). In other words, the coding-theoretic, subspace, and generalized subspace

approaches all have the same performance, and result in the exact location of errors, as

long as the number of channel errors are within the capacity of the code. Nevertheless,

9Diversity and degrees of freedom are well-established terms in wireless communication [105]; we use
them in this context for the similarity of concepts.
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when quantization error comes into play, the generalized subspace approach outperforms

the subspace approach and the subspace approach does better than the coding-theoretic

one.

Now let us analyze the effect of quantization error. The distorted syndrome matrix can

be represented as S̃
[i]
m = S

[i]
m + Q

[i]
m. Then, the eigendecomposition of the corresponding

covariance matrix R̃[i] = S̃
[i]
m S̃

[i]H
m results in

R̃[i]
m = [Ũ [i]

e Ũ [i]
q ]

[
∆̃

[i]
e 0

0 ∆̃
[i]
q

]
[Ũ [i]

e Ũ [i]
q ]H . (5.38)

Let Ũ
[i]
e = U

[i]
e + U

[i]
qe and Ũ

[i]
q = U

[i]
q + U

[i]
qq. Following the same line of arguments as for

(5.35) we obtain

V [i]H
m Ũ [i]

q = V [i]H
m (U [i]

q + U [i]
qq) = V [i]H

m U [i]
qq , ∆

[i]

F̃
, (5.39)

and similar to (5.37) we get

Γ̃(x) =
∑

i∈Pn

F̃ [i](x) =
∑

i∈Pn

m−ν∑

j=1

m−1∑

k=0

f̃
[i]
jkx

ki. (5.40)

Our goal is to reduce the effect of ∆
[i]

F̃
and this is done through adding polynomials for

different i since the entries of

∆Γ̃ =
1

φ(n)

∑

i∈Pn

∆
[i]

F̃
(5.41)

diminish as the cardinality of Pn increases. Intuitively, this is because the perturbation

caused by the quantization error is reduced by averaging.

5.4.2 Generalized Encoding

Another characteristic of the generalized syndrome matrix is that, except for i = 1, the

syndrome samples used to build (5.31) are not successive samples. This suggests that

n − k zeros in the frequency domain, padded by Σ in (3.7) to make a BCH code, are

not constrained to be consecutive. In others words, we can have BCH-DFT codes with
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non-consecutive zeros in the frequency domain, or equivalently, the rows of H are the

not consecutive powers of the first n powers of ω. This is because for ξ = ωi where i is

relatively prime to n, {ω0, ω1, ω2, . . . , ωn−1} and {ξ0, ξ1, ξ2, . . . , ξn−1} both are the set of

roots of unity. This was originally observed by Marshall [72], however in (5.31) we present

the decoding algorithm as well. Hence, unlike BCH codes which are constructed by selecting

a sequence of n− k cyclically adjacent frequencies as the parity frequencies, as a corollary

of Theorem 5.1, we have

Corollary 5.1. An (n, k) BCH-DFT code in the complex field can be constructed by select-

ing any n−k frequencies, spaced by i < n, as the parity frequencies, as long as gcd(n, i) = 1.

To decode such a code, one can use S
[i]
m in (5.31).

The fact that the parity frequencies (equivalently, the zeros of Σ) are not required to be

cyclically adjacent provides substantial flexibility in constructing real/complex DFT codes.

The position of these zeros are determined by the indices of syndrome samples used to

build up S
[i]
m . Specifically, for an (n, k) BCH-DFT code, Σ[i] has k nonzero elements given

by Σ
[i]
`1,`2

= 1, `1 = Vi(n− `2) + αWn and `2 = 1, . . . , k. The parity-check matrix H [i] is

comprised of the columns of the IDFT matrix WH
n corresponding to these d zeros.

5.5 Generalized-Extended Subspace Error Localization

To maximize the diversity gain, we can combine the extended algorithm of Section 5.3 with

the generalized algorithm of Section 5.4. Suppose the total number of syndrome samples at

the decoder is d̄ ∈ [d, n]. Then, for each d′, d′ = d, . . . , d̄, i ∈ Pn, and ν+1 ≤ m ≤ d′−ν+1

we define S
′[i]
m similar to S

[i]
m in (5.31) as

S
′[i]
m =




sV0Wn sViWn . . . sVi(d′−m)Wn

sViWn sV2iWn . . . sVi(d′−m+1)Wn
...

...
. . .

...

sVi(m−1)Wn sVimWn . . . sVi(d′−1)Wn



, (5.42)

with the optimal value of m = dd′/2e. Next, we can compute

R
′[i]
m = S

′[i]
m S

′[i]H
m , (5.43)
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and eigendecompose it as

R
′[i]
m = [U

′[i]
e U

′[i]
q ]

[
∆
′[i]
e 0

0 ∆
′[i]
q

]
[U
′[i]
e U

′[i]
q ]H . (5.44)

Again U
′[i]
e and ∆

′[i]
e have the same sizes as Ue and ∆e, and like Proposition 5.2 we have

Proposition 5.3. The columns of U
′[i]
e span the channel error subspace.

Proof. The proof is very similar to that of Proposition 5.2, so we omit it for brevity. Just

note that similar to (5.30), S
′[i]
m = V

[i]
m DV

[i]T
d′−m+1 and thus the rank of S

′[i]
m and R

′[i]
m is ν.

Note that for i = 1 we can always form S
′[i]
m whereas for other i > 1 we may not be able

to form S
′[i]
m , depending on the availability of the corresponding syndrome samples. One

can see that we need sVi(d′−j)Wn for any j = 1, . . . , d′ in order to form S
′[i]
m . Then, since we

have assumed that there are d̄ syndrome samples at the decoder, we can form S
′[i]
m if and

only if Vi(d′ − j)Wn ≤ d̄ for any j = 1, . . . , d′. Let Im be the set of those i ∈ Pn for which

all elements of S
′[i]
m are available, for a given d̄. It can be seen that 1 ≤ |Im| ≤ φ(n), where

the upper bound is attainable if and only if d̄ = n. Note that Im is non-empty as it always

contains i = 1. Since for each i ∈ Im and each d′ = d, . . . , d̄ we have one S
′[i]
m , we can form

the corresponding F
′[i](x), define

ψ(x) ,

d d̄
2
e∑

m=d d
2
e

∑

i∈Im

F
′[i](x) =

d d̄
2
e∑

m=d d
2
e

∑

i∈Im

m−ν∑

j=1

m−1∑

k=0

f
′[i]
jkmx

ki, (5.45)

and use it to find the location of errors. For each d′ we use the corresponding optimal

m = dd′/2e. Then, comparing (5.45) with (5.13), we define the total decoding diversity as

D(d, d̄) =

dd̄/2e∑

m=dd/2e

|Im|, (5.46)

considering the two extreme cases, i.e., d̄ = d and d̄ = n, it can be checked that, 1 ≤
D(d, d̄) ≤ (dn

2
e − dn−k

2
e + 1)φ(n). The upper bound can be achieved only if n syndrome

samples are available at the decoder. In such an extreme case, Im = Pn thus |Im| = φ(n)

and Theorem 5.1 can be generalized as
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Theorem 5.2. In addition to φ(n) syndrome matrices, one can define (dn
2
e − dn−k

2
e)φ(n)

extended syndrome matrices of different sizes for decoding an (n, k) BCH-DFT code.

Finally, it is worth mentioning that, by combining the extended and generalized approaches,

when there are d̄ syndrome samples to decode ν errors, the total number of error-locator

polynomials is given by

G =

dd̄/2e∑

m=dd/2e

|Im|(m− ν). (5.47)

What we discussed in this section was for unquantized DFT codes. For quantized codes

we will have S̃
′[i]
m , R̃

′[i]
m , F̃

′[i](x) and ψ̃(x). For such codes, by adding many (G) polyno-

mials each of which may have different roots due to quantization error, ψ̃(x) can result

in more accurate roots and improve error localization.10 Then G can be an indicator of

the generalized-extended subspace-based error localization gain with respect to the coding-

theoretic approach. In the extreme case where d̄ = n and n is a prime number G is huge.

5.6 Application and Examples

In this section we develop a algorithm for rate adaptation for both syndrome- and parity-

based DSC based on DFT codes, which were developed in Sections 3.3 and 4.1, respectively.

Rate adaptation is a well-known idea, both in channel coding and DSC context, in which the

encoder switches flexibly among different coding rates. Such a capability, combined with a

feedback channel from the decoder, means that the encoder can adapt itself to the degree

of statistical dependence between sources. Rate adaptation becomes more important when

codeword lengths are short, as such codes are more vulnerable to variations of the (virtual)

channel. Hence, it is a useful technique to improve the rate-distortion performance when

short source blocks are encoded [117,119].

5.6.1 Rate-Adaptive Distributed Lossy Source Coding

When the statistical dependency between the sources varies or is not known at the encoder,

a rate-adaptive system with feedback is an appealing solution [119,127]. Rate-adaptive DSC

10Thus far, it should be clear that any of the error locator polynomials in (5.4), (5.13), (5.37), and (5.45),
give the exact location of errors; i.e., they have the same performance.
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based on binary codes, e.g., puncturing the parity or syndrome bits of turbo and LDPC

codes, have been proposed in [119,103,60,36]. In the sequel, we extend DSC based on DFT

codes [111] to perform DSC in a rate-adaptive fashion. We consider two continuous-valued

correlated sources x and y where xi and yi are statistically dependent by yi = xi + ei, and

ei is continuous, i.i.d., and independent of xi. The goal is to compress x given that y is

known at the decoder, only.

Rate-adaption using puncturing is not natural for syndrome-based DSC systems [103].

Instead, the encoder can transmit a short syndrome based on an aggressive code and

augment it with additional syndrome samples, if decoding fails. This process loops until

the decoder gets sufficient samples for successful decoding. This approach is viable only

for feedback channels with reasonably short round-trip time [119].

Syndrome-based approach

In the syndrome-based DSC based on DFT codes, as one can find in Figure 3.2, the encoder

transmits sx = Hx to the decoder. At the decoder, we have access to the side information

y = x + e and we can compute its syndrome so as to find se = sy − sx. Then based on

this syndrome samples, one can form the syndrome matrix and correct the errors, as we

explained in Section 5.2.

For rate adaptation, if required, the encoder transmits s̄x = H̄x sample by sample, in

which H̄ is defined in (5.24); the receiver also can compute s̄y = H̄y = s̄x+ s̄e and evaluate

s̄e = s̄y− s̄x. After that, we can form the extended or generalized syndrome matrices where

s = se, s̄ = s̄e, and

s` =

{
s`, 1 ≤ ` ≤ d,

s̄`−d, d < ` ≤ n.
(5.48)

and use it for decoding. In short, the rate adaptation algorithm can be summarized as:

• The decoder requests some extra syndrome samples based on the estimated number

of errors, for example when ν̂ > t where ν̂ is the estimated number of errors.

• The encoder computes s̄x = H̄x and transmits it to the decoder sample by sample.

• The decoder computes s̄y = H̄y and finds s̄e = s̄y − s̄x. It then can form R′m and

use the extended subspace decoding algorithms to find the location of errors.
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As usual, when quantization is considered this equation needs to be updated as

s̃′` =

{
s̃`, 1 ≤ ` ≤ d,

˜̄s`−d, d < ` ≤ n,
(5.49)

in which s̃ = se + sq, ˜̄s = s̄e + s̄q, and s̄q = H̄q. The new R̃′m = S̃ ′mS̃
′H
m then is used

for error localization as detailed in Sections 5.2–5.4. Note that the code is incremental, so

the encoder does not need to re-encode the sources when more samples are requested. It

buffers and transmits the extra syndrome samples to the decoder sample by sample.

Parity-based approach

In the parity-based DSC based on DFT codes, as shown in Figure 4.1, for an input sequence

x, the encoder computes the codeword c = [x | p]T with respect to a systematic DFT code

and transmits only p, for the sake of compression. At the decoder, we have access to

y = x+ e (the noisy version of x) in addition to p; we form z = [y | p]T and compute its

syndrome. Since z = c + e′ where e′ = [e | 0]T and sc = 0, we have sz = se′ . Thus we

have the syndrome of error and we can perform decoding.

Although parity- and syndrome-based DSC systems present somewhat different methods

for binning, the technique we use for rate-adaptation is the same. For rate adaptation in

a parity-based system, once requested by decoder, the encoder computes and transmits

s̄c = H̄c; the decoder also computes s̄z = H̄z = s̄c + s̄e′ and evaluate s̄e′ = s̄z − s̄c. The

remainder of the algorithm is similar to the syndrome-based rate-adaptive DSC. Observe

that even if the parity samples are not error-free, the above algorithm works [117], which

gives rate-adaptive distributed joint source-channel coding.

5.6.2 Rate-Adaptive Channel Coding

An approach similar to the one used for parity-based rate-adaptive DSC can be used to

make rate-adaptive DFT channel codes. There are however a few differences: First, there

is no need to use a systematic code for encoding, any DFT code generated by (3.7) or,

in general, as stated in Section 5.4.2 can be used for encoding. Second, since the whole

codeword is transmitted over a noisy channel, parity samples are no longer error-free.

On the other hand, similar to DSC the extended syndrome samples s̄c are to be sent
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over a noiseless channel, if an improvement is expected by virtue of the extended and/or

generalized subspace decodings.

5.6.3 Examples

In order to fully utilize the extended and generalized subspace decoding algorithms, in

this subsection, we assume that the decoder knows n syndrome samples of error, for every

codeword of an (n, k) code. If there are fewer samples, we cannot build up S
[i]
m and S ′[i]m

for some i because we may not have all samples corresponding to those matrices. It is

worth noting that, once the syndrome samples of error are known, there is now difference in

decoding algorithm used for DSC (syndrome- or parity-based) and channel coding problems.

Example 1

Consider the (10, 5) code, for which Pn = {1, 3, 7, 9}. From (5.31) we have

S
[1]
3 =



s1 s2 s3

s2 s3 s4

s3 s4 s5


 , S[3]

3 =



s1 s4 s7

s4 s7 s10

s7 s10 s3


 ,

S
[7]
3 =



s1 s8 s5

s8 s5 s2

s5 s2 s9


 , S[9]

3 =



s1 s10 s9

s10 s9 s8

s9 s8 s7


 .

It is seen that different matrices have several samples in common but they differ in some

others. The latter implies an increase in the code rate if we wish to exploit more than one

matrix for decoding at the same time.

Interestingly, the same syndrome samples are used to form S
[i]
m for i ∈ {2, 4, 6, 8}. The
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only difference is that the position of those samples differ for each i, as is seen below

S
[2]
3 =



s1 s3 s5

s3 s5 s7

s5 s7 s9


 , S[4]

3 =



s1 s5 s9

s5 s9 s3

s9 s3 s7


 , (5.50)

S
[6]
3 =



s1 s7 s3

s7 s3 s9

s3 s9 s5


 , S[8]

3 =



s1 s9 s7

s9 s7 s5

s7 s5 s3


 . (5.51)

This means that without any increase in code rate, i.e., merely by changing the arrangement

of the syndrome samples and summing up the resulting polynomials (averaging the results),

the accuracy of the decoding can be improved. Nevertheless, it should be noted that for

i ∈ {2, 4, 6, 8} Proposition 5.1 does not hold because X i
1, . . . , X

i
ν are not distinct anymore.

In fact, for such an i, by using S
[i]
3 the algorithm cannot differentiate the errors in locations

ip and ip′ when ip ≡ ip′ (mod 5), because X i
p = X i

p′ . That is, the above matrices can be

used only if we have some specific side information about errors. For instance, when we

know that the first (last) half of the samples in each codeword are error-free.

Finally, let us examine

S
[5]
3 =



s1 s6 s1

s6 s1 s6

s1 s6 s1


 , (5.52)

which is built upon only two syndrome samples. Clearly, the last row and columns can be

removed as they are redundant. With S
[5]
3 one can only tell if the errors are in odd or even

locations, since ip ≡ ip′ (mod 2)⇒ X5
p = X5

p′ .

Remark 5.4. The last two cases were not included in our generic algorithm in Section 5.4

since they cannot be used to determine the location of errors uniquely. However, we can

use them to remove the ambiguity partly, as we explained above.

Example 2

Here, using the (11, 3) code, we explain how we can make use of extending and generalizing

the syndrome matrices at the same time. Since n = 11 is a prime number, Pn = {1, . . . , 10}



5 Rate-Adaptive Systems 117

and we can have 10 syndrome matrices for each d′ ∈ [8, . . . , 11]. For the extreme case of

d′ = 11, these matrices share the same elements with different arrangements. For instance,

S
′[2]
6 =




s1 s3 s5 s7 s9 s11

s3 s5 s7 s9 s11 s2

s5 s7 s9 s11 s2 s4

s7 s9 s11 s2 s4 s6

s9 s11 s2 s4 s6 s8

s11 s2 s4 s6 s8 s10




,

and

S
′[9]
6 =




s1 s10 s8 s6 s4 s2

s10 s8 s6 s4 s2 s11

s8 s6 s4 s2 s11 s9

s6 s4 s2 s11 s9 s7

s4 s2 s11 s9 s7 s5

s2 s11 s9 s7 s5 s3




.

As we proved in Section 5.5, both of these matrices, and any of those 10 matrices on the

whole, result in the exact location of errors based on (5.45). In practice, due to quantization,

we have S̃
′[i]
m = S

′[i]
m +Q

′[i]
m . Hence,

R̃
′[i]
m = S̃

′[i]
m S̃

′[i]H
m

= R
′[i]
m + S

′[i]
m Q

′[i]H
m +Q

′[i]
m S

′[i]H
m +Q

′[i]
m Q

′[i]H
m︸ ︷︷ ︸

T
′[i]
m (Q

′[i]
m )

(5.53)

From Proposition (5.3) we know that R
′[i]
m , for any i = 1, . . . , 10, results in the exact

location of errors. However, for quantized DFT codes, R̃
′[i]
m is used for decoding and it

yields slightly different results for each i, due to different combinations of the quantization

error at the decoding process which is represented by T
′[i]
m . This brings in some sort of

decoding diversity, and we exploit this diversity to improve the decoding accuracy, as

explained in Sections 5.5 and 5.4.
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5.7 Simulation Results

To evaluate the performance of the proposed algorithms we perform simulations using a

Gauss-Markov source X, with a mean zero, a variance one, and a correlation coefficient

ρ = 0.9. The Gauss-Markov process {Xi} is generated based on the following recursion

Xi =
√

1− ρ2Zi + ρXi−1, (5.54)

in which {Zi} is a zero-mean i.i.d. Gaussian process with variance 1, and 0 ≤ ρ < 1 is

the correlation coefficient [123]. Given an (n, k, t) code, the encoder divides X into blocks

x of length n and generates the syndrome sx and extended syndrome s̄x; these are then

quantized by a 3-bit uniform quantizer with step size ∆ = 0.25. At the decoder, we have

the quantized syndromes and the side information y = x+ e, where e is the error vector.

The number of errors in each block is ν, ν ≤ t, where t is the error correction capacity

of the code. Similar to [86], we assume that the error components are fixed. We plot the

relative frequency of correct localization of errors11 versus CEQNR, which is the ratio of

channel error power to the quantization noise power, as defined in (3.28). The simulation

results are for 104 input blocks for each CEQNR.

In Figure 5.1, we compare the frequency of correct localization of errors for the subspace

and extended subspace approaches given a (10, 5) code for different errors. The gain due

to the extended subspace method is remarkable both for one and two errors; it is more

significant for two errors. In fact, as discussed in Section 5.2.2, for ν = t the subspace

approach loses its degrees of freedom (DoF) and its performance drops to that of the

coding-theoretic approach. Providing some extra DoF, at the expense of a higher code

rate, the extended subspace approach significantly improves the error localization. The

gain caused by the extended subspace method increases for codes with higher capacity.

For instance, simulation results for a (17, 9) DFT code, presented in Figure 5.2, show a

significant gain in any CEQNR between 10 to 40 dB; this is achieved by sending 5 additional

11 The probability of error localization is defined as relative frequency of correct localization of all ν
errors in each block (codeword) to the number of blocks. With this definition, correct error localization will
guarantee a decent error correction also. In [86], this parameter is defined as the total number of correctly
identified locations to the total number of errors. If such a criterion is used, all curves corresponding to
ν > 1 will shift up and we will get better probability of error localization. Fore one thing, simulation
results for this latter case can be found in Figure 5.9.



5 Rate-Adaptive Systems 119

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CEQNR (dB)

R
el

at
iv

e 
fr

eq
ue

nc
y 

of
 c

or
re

ct
 lo

ca
liz

at
io

n 
of

 e
rr

or
s

 

 

S
ES
1 error
2 errors

Figure 5.1 Probability of error localization in the subspace (S) and extended
subspace (ES) approaches at different CEQNRs for a (10, 5) DFT code. The
curves for the extended case are based on 2 additional syndrome samples,
implying that the code rate is increased from 0.5 to 0.7.

syndrome samples.

Next, we evaluate the performance of the generalized subspace method. To begin with,

in Figure 5.3 we show the merit of the generalized subspace error localization with respect to

the subspace method. An important question is whether the generalized subspace decoding

performs better than the extended subspace method. To answer this question, we compare

the two algorithms for different codes and various numbers of extended syndrome. In

Figure 5.4, we compare the frequency of correct localization of errors for the extended and

generalized subspace approaches for a (11, 5) code with different number of errors; both

methods use 3 syndrome samples more than the subspace method. The same simulation

is done for 4 extra samples and the results are presented in Figure 5.5. It is seen that,

for 3 errors, the extended subspace approach produces better results than the generalized

subspace method in the first case while the performance gain swaps in the second case.

In general, extensive simulations show that the performance of the extended subspace
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Figure 5.2 Probability of error localization in the subspace and extended
subspace methods at different CEQNRs for a (17, 9) DFT code. The curves
for the extended case are based on 5 additional syndrome samples.
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Figure 5.3 Probability of correct localization of 1 to 3 errors for a (11, 5)
DFT code using the subspace (S) and generalized subspace (GS) methods with
5 additional syndrome samples.
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Figure 5.4 Probability of correct localization of 2 and 3 errors for a (11, 5)
DFT code using the subspace (S), extended subspace (ES), and generalized
subspace (GS) methods with 3 additional syndrome samples.
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Figure 5.5 Probability of correct localization of 2 and 3 errors for a (11, 5)
DFT code using the subspace, extended subspace, and generalized subspace
methods with 4 additional syndrome samples.
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Figure 5.6 Probability of correct localization of 4 errors for a (13, 5)
DFT code using the subspace, extended subspace, generalized subspace, and
generalized-extended subspace (GES) methods with 4 additional syndrome
samples.

error localization is better than the generalized subspace if just a few extra syndrome

samples are available. By increasing the extra samples the gain caused by the generalized

subspace method increases sharply such that it can catch up with and even outperform

the extended subspace method. In the extreme case, when there are k extra samples,

generalized subspace method outperforms its opponent distinctly. The performance of

the generalized subspace localization obviously depends on the number of matrices (or

equivalently, polynomials); therefore, its performance gain is noticeable when n is prime

number.

Finally, let us evaluate the performance of the generalized-extended approach for a

couple of codes. We consider a (13, 5) which is capable of correcting up to 4 errors. Since

n = 13 is a prime number, we expect that the generalized and generalized-extended perform

better than the other approaches. This is true as shown in Figure 5.6; the gain from

generalization is considerably high especially when ν → t. A similar pattern is seen for

other codes, e.g., (11, 5), (14, 5), and (17, 9) codes, to name a few.

In summary, we conclude that no one approach is superior in every situation. The
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Figure 5.7 Probability of correct localization of 3 and 4 errors for a (17, 9)
DFT code using different subspace-based error localizations with 4 additional
syndrome samples.

performances of the proposed algorithms vary with d̄, ν, t, and CEQNR. However, based

on extensive simulation, some of which presented in the chapter, the following patterns are

observed.

• The generalized and generalized-extended approaches markedly outperform the other

ones in different CEQNRs as d̄ → n, specially when n is prime (See Figure 5.6, for

example). This is because D and thus G are very large, which brings a huge gain.

• When d̄ → d, the generalized approach loses its gain as |Im| = 1. In such cases,

the extended subspace is the best. The rationale behind the generalized approach

is to use multiple syndrome matrices with smaller sizes compared with the extended

approaches that use up all syndrome samples in a large syndrome matrix. However,

it should be noted that when there are few new syndromes (d̄ → d), it is not pos-

sible to build up more than one syndrome matrix. In such cases, the generalized

approach fails to use extra syndromes while the extended approach uses them up

and thus outperforms its opponent. This is examined for a (17, 9) code in Figure 5.7
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Figure 5.8 Probability of correct localization of 3 and 4 errors for a (17, 9)
DFT code using different subspace-based error localizations with 5 additional
syndrome samples.

and Figure 5.8. As it can be seen, with 4 extra syndrome samples (Figure 5.7) the

performance of generalized subspace is the same as subspace approach. This is be-

cause with that many syndromes we cannot form any generalized syndrome matrix

for i > 1, therefore there is no gain over the subspace method; in such a case the

extended subspace gives the best results, as explained above. But, in Figure 5.8,

when only one more sample is added the gain from generalization comes in and the

generalize-extended method outperforms the extended one.

• The generalized-extended method seems to be the best choice when there are enough

extra syndrome samples to build several or more syndrome matrices. This is because

it averages as many polynomials as possible to improve the results. As the CEQNR

goes up, its dominance is less because the other approaches work well, also.

Finally, as we mentioned at the beginning of this section, if we define probability of

correct localization as the total number of correctly identified locations to the total number

of errors all curves will shift up and we will get better probability of error localization in

any error localization algorithm. To visualize the difference between the output of the

two definitions, in Figure 5.9 we plot the probability of error localization based on the new
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Figure 5.9 Probability of correct localization of 4 errors for a (13, 5) DFT
code using for methods with 4 additional syndrome samples. Note that the
definition of correct error localization is based on the total number of errors.
Compare this figure with Figure 5.6.

definition, for a (13, 5) DFT code. Note that in Figure 5.6 and Figure 5.9 the simulations are

exactly for the same setting except that in Figure 5.9 we calculate the probability of correct

localization based on the total number of correctly identified locations to the total number

of errors. In other words, Figure 5.6 shows correct block localization while Figure 5.9

shows correct sample localization. It can be seen that, for example at CEQNR=10dB, the

difference between the probability of error localization in these figures is huge.

It is also worth mentioning that numerical results proves the superiority of using R̃′m,

instead of R̃m for finding the number of errors. Finally, knowing that a better error lo-

calization implies a lower MSE between the sources [117], rate-adapted DFT codes with

extended subspace decoding can be used both to adapt the channel variations and decrease

the MSE in DSC.
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5.8 Summary

In this chapter, we have developed three subspace-based algorithms that substantially

improve the existing subspace error localization of quantized DFT codes, in favor of extra

syndrome samples. The first approach, named extended subspace, simply extends and

improves the existing subspace-based algorithms by increasing the number of vectors in

the quantization noise subspace, or equivalently, the number of polynomials obtainable

for error localization. This is followed by another method that generalizes the decoding,

and also the encoding, of the DFT codes. We proved that many syndrome matrices,

each of which uses d syndromes, can be utilized to decode DFT codes. This diversity is

exploited for increasing the decoding accuracy since by averaging the corresponding error

locating polynomials the effect of the quantization error diminishes. The third approach,

i.e., the generalized-extended subspace decoding, combines the aforementioned algorithms

to further increase the decoding gain. The extended decoding can be applied to DCT and

DST codes, whereas the extension of the generalized subspace decoding to these classes

of codes is not straightforward. The proposed algorithms are primarily useful for rate-

adaptation in a DSC system that uses DFT codes for binning; they can also be used in

the channel coding. Rate-adaptation is realized by augmenting the syndrome samples and

does not need to re-encode the sources.
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Chapter 6

Conclusions and Future Work

In this thesis, we have laid the groundwork for several promising directions in source and

channel coding based on a class of real/complex Bose-Chaudhuri-Hocquenghem (BCH)

codes, called discrete Fourier transform (DFT) codes, and signal processing tools. Here,

we summarize these contributions and discuss some open problems and research directions

that can be pursued in the future.

6.1 Thesis Summary

In Chapter 3, we have established a new framework for lossy distributed source coding,

in which real-number codes, rather than binary codes, are used to compress statistically

dependent distributed sources. In this new framework, compression is done in the real

field and is followed by quantization; that is, we quantize compressed sources instead of

compressing quantized sources. This change in the order of binning and quantization

blocks makes it possible to model the correlation between continuous-valued sources more

realistically and also to partially compensate for the quantization error. The encoding and

decoding procedures are described in detail for a class of real/complex BCH codes called

DFT codes. We leverage subspace-based techniques to improve the decoding performance

of quantized DFT codes. Moreover, by extending the subspace-based decoding, we are

able to perform distributed source coding in a rate-adaptive fashion to further improve

the decoding performance when there is uncertainty in the statistical dependence. The

mean-squared reconstruction error is shown to be reasonably low, even for very short code

length [111,117].
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While Chapter 3 focuses on syndrome-based approach, in Chapter 4 we study parity-

based distributed source coding and we extend it to the case where the transmission channel

is noisy and thus we introduce distributed joint source-channel coding based on DFT codes.

The proposed system is well suited for low-delay communications, as it directly maps

short source blocks to channel blocks. Furthermore, we introduce the notion of systematic

DFT codes (frames), in this chapter. We show that for an (n, k) DFT code there are
(
n
k

)

systematic codes, and we find the conditions for which a systematic frame is tight and thus

minimizes reconstruction error. Furthermore, in Theorem 4.7 we find the “best” systematic

DFT frames, from the minimum mean-squared reconstruction error sense.

Chapter 5 is devoted to developing algorithms that improve the encoding and decoding

of quantized DFT codes with applications in rate-adaptive coding. We first have a fresh

look on how the subspace-based error localization outperforms the coding-theoretic one.

With this insight, we propose an extension of the subspace-based error localization, based

on additional syndrome, that improves the existing one and is naturally suitable for rate-

adaptive distributed source coding. The algorithm is incremental so that there is no need to

re-encode the sources when more syndrome samples are requested. Next, as a generalization

of this work, we propose a new subspace-based algorithm to decode BCH-DFT codes.

The proposed approach introduces many, rather than one, decoding matrices for a BCH-

DFT code; this diversity is then used to diminish the effect of the quantization noise and

improve the decoding. To be specific, we prove that for an (n, k) DFT code there are φ(n)

syndrome matrices for decoding, where φ(n) is the number of positive integers less than

n that are relatively prime to n. Apart from the diversity in decoding, the generalized

subspace method brings another novelty at the encoder side; that is, the parity frequencies

of BCH-DFT codes (or, the zeros of codewords in the frequency domain) are not required

to be cyclically adjacent. This provides substantial flexibility in constructing BCH-DFT

codes, as one can select the parity frequencies in many different ways. Finally, in addition

to improving the error localization, both extended and generalized subspace algorithms

can be applied to increase the accuracy of the error detection step. Simulation results

demonstrate the capability of the proposed algorithms to perform significantly better than

the existing subspace-based error localization, in the presence of quantization noise.

Another contribution of this chapter is the construction of rate-adaptive DFT codes

that uses syndrome augmentation to increase the error correction capacity of the code and

to create rate flexibility. Rate adaptation is an existing idea that the encoder switches
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among coding rates. This capability, combined with a feedback channel from the decoder,

means that the encoder need not know in advance the degree of statistical dependency

between the sources.

6.2 Future Directions

There are several avenues for future work. Many of them revolve around improving the

decoding algorithm for DFT codes or extending the developed algorithms to other real codes

such as the discrete cosine transform (DCT) and discrete sine transform (DST) codes, or

to other fields like source localization. Further, the models contributed in this thesis can

be leveraged for signal compression through filter banks, as well as for compressive sensing

and signal processing.

6.2.1 Improving Rate-Distortion Performance

Improving the rate-distortion performance of the proposed distributed source coding is a

valuable contribution. To this end, a more accurate algorithm for error localization is a key,

as we showed in Figure 3.9. One promising direction is to explore integrating subspace-

based decoding into more powerful greedy and iterative recovery algorithms. To begin with,

one can use recursively applied and projected MUSIC to decode DFT codes. These methods

can be applied to the basic and generalized subspace-based error localization algorithms.

The decoding diversity we introduced in this thesis was used in the error localization step;

it can be useful in the other steps of decoding a DFT code; i.e., when finding the number

of errors and their amplitudes. In addition to improving the rate-distortion performance,

exploring the rate-distortion function for finite block codes is very important.

6.2.2 Generalized Decoding for DCT and DST Codes

The proposed algorithms are primarily useful for rate-adaptation in a DSC system that

uses DFT codes for binning; one can use DCT and DST codes for this purpose. DCT

codes can be specially useful when sources have temporal correlation; for example, in many

distributed video coding systems a DCT block is used exploit the temporal correlation

before binning. By using DCT codes one can combine these two steps and look for the best

possible performance with constrained computational resources. The extended decoding
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can be applied to DCT and DST codes, whereas the extension of the generalized subspace

decoding to these classes of codes is not straightforward. One possible direction to pursue

is to investigate applying this generalized algorithm to DCT and DST codes. Furthermore,

constructing any other set of spanning basis Vm, for instance (5.29), such that the entries

of VmDV
T
d−m+1 are syndrome samples, with any permutation, is valuable as it can be used,

in conjunction with the other spanning matrices, for diminishing the effect of quantization

error, in DFT, DCT, and DST codes.

6.2.3 Lossy DSC Using Oversampled Filter Banks

A more general way of inserting “structured,” soft redundancy in signals is possible through

the use of oversampled filter banks [68]. It would be interesting to extend our work to

oversampled DFT filter banks, an infinite-dimension of DFT frames, since oversampled

filter banks can be used for error correction. A filter bank, in general, comprises n channels

each with a filter of length l, in which each channel is subsampled by a factor k ≤ n. For

k = n a critically sampled filter bank is achieved; it implements a nonredundant (basis)

expansion of the input signal. An oversampled filter banks (OFB), as opposed to a critically

samples filter bank, is realized when k < n; it implements a redundant (frame) expansion

of the input signal. As a result, subband signals in an OFB contain more than enough

information for reconstruction of the original signal. This inherent redundancy can be

exploited to correct signal transmission errors. In view of the fact that an (n, k) DFT code

is a special case of an OFB in which the number of channels n is equal to the length of filters,

i.e., l = n > k, the extension of our lossy DSC system to lossy DSC by means of OFBs is

straightforward. Also, this helps integrate error correction in filter banks, as an important

tool for image and signal processing. In a relevant work, systematic wavelet subcodes, a

form of real-number convolutional codes, has been proposed for data protection [89].

6.2.4 Parametric Frequency Estimation

In a somewhat different direction, observing that the error-localization of DFT codes can

be viewed as a problem of estimation of sinusoids in background noise, one can apply

the generalized subspace-based algorithm to the other related literature such as source

localization. Parametric estimation of sinusoids in noise is a mature subject in the area of

array signal processing [67]. Among various parameter estimation techniques, MUSIC and



6 Conclusions and Future Work 131

ESPRIT are the most widely studied techniques for direction-of-arrival (DOA) estimation.

Despite similarity of the DOA estimation and error localization in DFT codes, in the DOA

estimation there are many sets of observations available over some given time interval,

whereas in the error-correction problem there is only one set of syndrome coefficients for

each received vector. Hence, the proposed generalized subspace error-localization of DFT

codes needs to be adapted to the DOA estimation problem.

6.2.5 Spectral Compressive Sensing

Compressive sensing (CS) is a promising approach to simultaneous sensing and compression

by having sparse or compressible representation of signals in some basis. CS algorithms

seek the sparsest signal in some discrete basis or frame that agrees with the measurements.

A lot of applications feature frequency-sparse signals that can be modeled as a sum of a

small number of sinusoids; the DFT basis is a natural choice for CS recovery of such signals.

Line spectral estimation methods (e.g., MUSIC) have already been applied to improve the

state-of-the-art CS algorithms. Seeing that there is a close connection between spectral

CS and error correction in DFT codes, it seems plausible to leverage recursive MUSIC

and diversity in decoding to further improve the performance of spectral CS recovery.

Also, it might be possible to combine distributed source coding and compressive sensing to

introduce distributed compressive sensing in the context of DFT codes.
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Appendix A

BCH-DFT Codes

A.1 Introduction

The problem of error correction in the real field using real-number codes was first considered

by Marshall [72] and Wolf [124]; they proposed the discrete Fourier transform (DFT) for

this purpose. Marshall also introduced an important subclass of DFT codes, the Bose-

Chaudhuri-Hocquenghem (BCH) [58, 17] DFT codes. The ideas of coding theory can be

described within the signal processing realm by virtue of this class of complex or real BCH

codes [72], [14, Chapter 6]. Apart from being used for error and erasure correction in the

real field [85, 76, 100, 84, 16], DFT codes find applications a wide range of areas including

wireless communications [121,57,56], image transforming [40], joint source-channel coding

[41], distributed source coding [111,117], distributed joint source-channel coding [109], and

compressive sensing [33,3].

Compared with the finite-field channel codes, DFT codes are preferred for their un-

constrained codeword length, fast and easy implementation with floating-point operations,

and ability in alleviating the quantization error besides correcting the errors (erasures)

introduced by the transmission channel. On the other hand, there is a fundamental differ-

ence between the syndrome decoding of binary BCH codes and that of BCH-DFT codes.

To be transmitted over a digital communication channel, the codewords of any BCH-DFT

code have to be quantized; this adds noise to each sample of every codeword, in channel

coding. Similarly, in distributed source coding based on BCH-DFT codes [111], the parity

or syndrome samples have to be quantized before transmission. In any of those cases, the

syndrome formed at the decoder is affected by quantization noise, and thus the syndrome
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decoding of errors is feasible only if the quantization error is very small compared with the

impulse noise.

Similar to error correcting codes in finite fields, error correcting codes in the real field

insert redundancy into a message vector consisting of k samples to convert it to a codevector

of n samples (n > k). But this redundancy is inserted in the analog domain, i.e., before

quantization and entropy coding. In such settings, we are dealing with soft redundancy

rather than hard redundancy in the binary field error correcting codes. By using struc-

tured, soft redundancy, one can go beyond quantization error [113], and thus reconstruct

continuous-valued signals more accurately. In general, error correction using real-number

codes benefits from the advantage that the insertion of redundancy at the transmitter is

done before quantization, making it possible to alleviate part of quantization error at the

receiver side. The challenge is that quantization error is not distinguishable from channel

error. This means that, from the perspective of the decoder, there are always n errors

in a quantized codevector of length n, regardless of the number of channel errors. In the

absence of quantization noise it is straightforward to detect, localize, and correct the errors

introduced by the channel, by means of algebraic real codes [14]. However, the problem be-

comes more challenging considering quantization error. This problem has been investigated

in [86] and [100].

The objective of this appendix is to familiarize the reader with the concept of real-

number codes, and their convenience in lossy data transmission. More precisely, we focus

on real BCH-DFT codes and show how they are used to encode and decode data in dig-

ital communication systems. We introduce and improve the Peterson-Gorenstein-Zierler

(PGZ) decoding algorithm to reconstruct the input signal with small MSE, for quantized

DFT codes. The improvement is based on the observation that in the PGZ algorithm we

encounter overdetermined systems in different steps of error decoding, i.e., detection, local-

ization, and estimation of the errors. While neglecting quantization error theses overdeter-

mined systems are consistent, they are not so when quantization is introduced. In the latter

case, there is no exact solution. Instead, we look for the solution with the smallest 2-norm

error vector, that is the least squares (LS) solution. Thanks to the LS estimation, DFT

codes can result in a MSE lower than quantization error, even when several errors occur

during transmission. This is one of the main advantages of real-number error correcting

codes over binary codes that motivates further study in this field. It paves the way for

introduction of DFT codes in the context of lossy distributed source coding [111,117].
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(complex) DFT codes
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Figure A.1 The class of DFT codes.
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Figure A.2 The typical real BCH-DFT encoding scheme.

A.2 Real BCH-DFT Codes

Discrete Fourier transform (DFT) codes are linear block codes over the complex field. A

DFT code is defined by its generator and parity-check matrices, which are based on a IDFT

matrix. The parity-check matrix of an (n, k) DFT code is comprised of any n− k columns

from the IDFT matrix of size n (WH
n ); the remaining k columns of WH

n can be used to

construct the corresponding generator matrix; thus, HG = 0. This code has a blocklength

n and designed minimum distance d + 1 where d , n − k. DFT codes are cyclic codes

in complex and real fields and their codewords satisfy certain spectral properties in the

frequency domain [72], [13, Chapter 4]. More specifically, the spectrum of each codeword

of a BCH code must be zero in a block of d cyclicly adjacent components [14]. Within

the class of DFT codes, there are BCH codes in the complex and real fields. Figure A.1

shows the family of DFT codes. A real DFT code has a generator matrix with real entries,

making it suitable for encoding of real data. A real BCH-DFT code has these properties



A BCH-DFT Codes 135

altogether. Figure A.2 represents the typical encoding scheme for an (n, k) real BCH-DFT

code 1. The generator matrix of this code is given by

G =

√
n

k
WH
n ΣWk, (A.1)

in which Wk and WH
n respectively are the DFT and IDFT matrices of size k and n, and Σ

is an n× k matrix [86,40].

The code generated by (A.1), as illustrated in Fig. A.2, is a real BCH code provided

that Σ inserts n − k successive zeros in X, while keeping the conjugacy constraint [13,

Chapter 4], [74]. Real BCH-DFT codes exist for any n > k ≥ 1 except when both n, k

are even [72]. Particularly, for odd k, Σ has exactly k nonzero elements given as Σ00 = 1,

Σi,i = Σn−i,k−i = 1, i = 1 : k−1
2

[86], [100]. The parity-check matrix H is then comprised

of the columns of the IDFT matrix WH
n corresponding to those n − k zeros. Because of

the unitary property of the IDFT matrix, HG = 0. Throughout this appendix, an (n, k)

DFT code refers to a code generated by (A.1) using the zero-padding matrix Σ as specified

above; thus, it is a BCH code in the real field. Also, k is assumed to be an odd number

while n can be any integer greater than k. Furthermore, we assume ν ≤ t is the number of

errors where t = bn−k
2
c represents the maximum number of errors that can be corrected by

the employed DFT code. In the rest of this appendix, we show how real BCH-DFT codes

can be decoded, without and with quantization.

A.3 Decoding Algorithm for BCH-DFT Codes

Although any general decoding technique for cyclic codes can be used to decode BCH codes,

there are much better algorithms that have been developed specifically for decoding BCH

codes. We use the Peterson-Gorenstein-Zierler (PGZ) decoding algorithm; the Peterson

algorithm finds the locations of the errors, and the Gorenstein-Zierler algorithm finds their

magnitudes. More precisely, we explain the extension of the binary PGZ algorithm to the

real field [13], [14], in two different setting: 1) When quantization does not exist 2) When

quantization come into play. These are elaborated in following sections.

1In general, the DFT matrix can be replaced by an IDFT matrix of the same size. Likewise, the IDFT
matrix can be replaced by a DFT matrix of the same size. Thus, four different combinations are plausible;
in each case, the resulting code is a real BCH-DFT but possibly with a differen G.
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A.3.1 Neglecting Quantization

Consider an (n, k) DFT code with parity-check matrix H and generating matrix G as

described in Section A.2. Let the n × 1 vector c denote the transmitted codevector over

some noisy channel. The received vector is corrupted version of c by noise vector e. The

syndrome samples of the received vector r = c+ e can be expressed as

s = Hr = H(c+ e) = He, (A.2)

and s is a complex vector of length n−k. From (A.2), it is evident that the syndrome does

not depend on the transmitted codevector c; it only depends on the error pattern e. Thus,

s 6= 0 indicates that one or more errors have occurred, and we need to correct them. Note

that the syndrome is a sufficient statistics for determining the error pattern, because any

two vectors yield the same syndrome if and only if they belong to the same coset of code.

Suppose there are ν ≤ t errors in locations i1, i2, . . . , iν with corresponding magnitudes

ei1 , ei2 , . . . , eiν . Then, the error polynomial is

e(x) = ei1x
i1 + ei2x

i2 + . . .+ eiνx
iν . (A.3)

For DFT codes2, the partial syndromes3 are complex values si = e(αi) where α = e−j
2π
n and

1 ≤ i ≤ 2t; these are calculated in (A.2). Using the change of variables X1 = αi1 , . . . , Xν =

αiν for error locators and renaming error magnitudes E1 = ei1 , . . . , Eν = eiν , from (A.2) we

get

s1 = E1X1 + . . .+ EνXν ,

s2 = E1X
2
1 + . . .+ EνX

2
ν ,

...

s2t = E1X
2t
1 + . . .+ EνX

2t
ν .

(A.4)

That is, the partial syndromes constitute a system of 2t equations with 2ν unknowns, i.e.,

2In general, for a BCH code over GF (q), partial syndromes are values in decoder alphabet (GF (qm)),
and α is an element of GF (qm). Each row of H is a row of finite field Fourier transform matrix of size
n. For a t-error correcting, primitive narrow-sense BCH code, the rows of H are the first 2t powers of
consecutive powers of α [14].

3“Partial syndromes” and “syndrome samples” are used interchangeably, in this appendix.
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error locators (Xp) and error magnitudes (Ep), where 1 ≤ p ≤ ν. The goal is to reduce

this system of equations to a one-variable polynomial with ν solutions. The (syndrome)

decoding algorithm of DFT codes, and BCH codes in general, has the following major steps:

• Detection (to find the number of errors)

• Localization (to determine the location of errors)

• Calculation (to calculate the magnitude of errors)

These steps are elaborated in the following.

Error Detection

Let ν ≤ t be the number of errors where t = bn−k
2
c is the maximum number of errors that

can be corrected by the DFT code; ν can be found by forming the syndrome matrix

Mt =




s1 s2 . . . st

s2 s3 . . . st+1

...
...

. . .
...

st st+1 . . . s2t−1



, (A.5)

and evaluating its rank. The entries of this matrix are the partial syndromes, picked from

the syndrome vector s = [s1, s2, . . . , s2t]
T , which is calculated by (A.2). Now, if Mµ is

nonsingular for µ = ν < t but it is singular for µ = ν + 1, then ν indicates the number of

channel errors [14, Chapter 6]. Equivalently, the rank of Mt gives the number of errors ν;

this is formally proved in Chapter 5.

Error Localization

The error locator polynomial Λ(x) for a BCH code is defined as a polynomial whose roots

are the reciprocals of error locators, which are of interest. That is,

Λ(x) =
ν∏

i=1

(1− xX−1
i ) = Λ0 + Λ1x+ . . .+ Λνx

ν . (A.6)

The decoder requires to find the roots of Λ(x), i.e., X1, . . . , Xν , which are the error locators.

Meanwhile, the decoder needs to find the degree of Λ(x) as well. In fact, the PGZ algorithm
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first determines ν, the degree of Λ(x) or equivalently the number of errors, as explained

earlier under “error detection.”

The coefficients of Λ(x) can be found by solving the following set of equations [14]

sjΛν + sj+1Λν−1 + · · ·+ sj+ν−1Λ1 = −sj+ν , (A.7)

for j = 1, . . . , 2t− ν, ν ≤ t. This set of equations are consistent and can be written in the

following matrix equation




s1 s2 . . . sν

s2 s3 . . . sν+1

...
...

. . .
...

sν sν+1 . . . s2ν−1




︸ ︷︷ ︸
Mν




Λν

Λν−1

...

Λ1




= −




sν+1

sν+2

...

s2ν



. (A.8)

Thus, the coefficients of Λ(x) are obtained by solving (A.8) for Λ1, . . . ,Λν . Finally, to find

the error locations, we evaluate Λ(αi) for i = 1, 2, . . . , n, where α = e−j
2π
n . Let i1, i2, . . . , iν

be those indices for which Λ(αi) = 0. Thus, the location of errors is known and the error

polynomial can be defined once the magnitude of errors is determined.

Error Calculation

The last step is to find the magnitude of errors. This step is rather simple. Let He denote

the matrix consisting of the columns of H corresponding to error indices, then the errors

magnitude E = [E1, E2, . . . , Eν ]
T = [ei1 , ei2 , . . . , eiν ]

T can be determined by solving

HeE = s, (A.9)

which gives a set of n−k consistent equations with ν errors. One can choose any ν arbitrary

equations and solve them for E. Hence, without loss of generality, we can write

He,νE = sν , (A.10)
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where sν = [s1, s2, . . . , sν ]
T contains the first ν syndrome samples, and He,ν includes those

rows of He corresponding to sν . This completes the error correction algorithm by deter-

mining the error vector.

Consider that, with this algorithm, we obtain the exact value of channel errors as long

as the number of errors is not greater than the error correction capability of the code.

Admittedly, we cannot expect such an exact result in the presence of quantization error,

as quantization error affects each and every sample of the codewords. Since quantization

error is random, the decoding becomes an estimation problem. This issue is dealt with in

the following sections.

A.3.2 Quantized BCH-DFT Codes

The transmission of continuous-valued signals in digital communication systems is subject

to quantization; therefore, it is necessary to modify the decoding algorithm stated in Sec-

tion A.3.1 to take into account the error introduced by quantization. This problem has

been considered in [86] and [100]. The former focuses on error localization, assuming the

number of channel errors is known. The latter, on the other hand, focuses on determining

the number of errors with the assumption that amplitude of quantization noise is lower

than that of channel errors. We briefly explain the whole decoding process in what follows.

Let ĉ be the quantized version of the codevector c, and q denote the associated quan-

tization error, i.e., ĉ = c + q. The received vector, which is affected by channel noise as

well as quantization error, is given by r = c + q + e. As a result, the syndrome samples

will be distorted and the new syndrome is given by

s̃ = Hr = H(q + e) = sq + se, (A.11)

where sq ≡ Hq, and se ≡ He. However, we can use this distorted syndrome to perform

decoding, particularly if quantization noise is much smaller than channel errors [86], [100].

The new syndrome matrix S̃t, is the same as St except that its entries are distorted syn-

drome samples, as given in (A.11). Obviously, the rank of S̃t is not necessarily equal to the

number of errors, since it is unlikely to get a singular matrix. It is thus common to set a

threshold, either theoretically [100] or empirically [40], to determine the rank of S̃t. This

is usually accomplished by doing singular value (eigenvalue) decomposition and estimating

the number of nonzero diagonal elements (eigenvalues).
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The rest of decoding, namely, error localization and calculation, is similar to what

we discussed in Section A.3.1, except that syndrome samples are replaced by distorted

syndrome samples in (A.7)-(A.10). With resulting distorted error locating polynomial, it is

difficult to reliably localize errors, unless quantization noise is much smaller than channel

errors. The last step in decoding algorithm is also affected by quantization error, and the

problem of computing the magnitude of errors also becomes an estimation problem, as the

syndrome samples are random.

A.4 LS Decoding Algorithms for Quantized BCH-DFT Codes

To somewhat alleviate the effect of quantization noise, one can use the least squares (LS)

solution to estimate the number of errors [113], coefficients of the error locating polynomial

and magnitude of errors [86,113]. This is based on the observation that every decoding step

in Section A.3 is using only a limited number of available syndrome samples. More precisely,

without quantization, ν syndrome samples are enough to exactly determine the magnitude

of ν errors in (A.10) and 2ν samples are sufficient for detection and localization of ν errors.

There is no benefit in using more samples. Nevertheless, in quantized codevectors, one can

utilize the remaining 2t − ν and 2t − 2ν samples to, respectively, improve the estimation

of error magnitudes as well as the quantity and location of errors.

A.4.1 Error Detection and Localization

Consider the error locating polynomial in (A.7) for quantized DFT codes, i.e., with distorted

syndrome. To have a better visualization, we rewrite it in the following matrix form




s̃1 s̃2 . . . s̃ν

s̃2 s̃3 . . . s̃ν+1

...
...

. . .
...

s̃ν s̃ν+1 . . . s̃2ν−1

...
...

. . .
...

s̃2t−ν s̃2t−ν+1 . . . s̃2t−1




︸ ︷︷ ︸
Lν,t




Λν

Λν−1

...

Λ1




= −




s̃ν+1

s̃ν+2

...

s̃2ν

...

s̃2t




. (A.12)
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Now, it is easy to see that for ν < t the system is overdetermined, i.e., there are more

equations than unknowns. Precisely speaking, there are 2t−ν equations with ν unknowns.

Thus, the estimation of Λ = [Λν ,Λν−1, . . . ,Λ1]T becomes more accurate if we find the LS

solution. The accuracy of the LS estimation depends on the the number of equations per

unknowns, which is 2t−ν
ν

. Thus, it increases as the number of errors decreases.

The question that remains is how to determine the number of errors. In other words,

with this arrangement, can we also estimate ν more accurately than what we did in Section

A.3.2? The answer is positive and the new arrangement of syndrome samples in matrix Lν,t

in (A.12) also gives rise to an improved estimation of the number of errors in the presence

of quantization error. Similar to what we discussed in Section A.3.2, to find the number of

errors we begin with evaluating the rank of Lt,t, which is essentially the square matrix S̃t,

i.e., Lt,t = S̃t. As we mentioned earlier, with distorted syndrome samples, the rank of S̃t is

not necessarily equal to the number of errors, and we need to set a threshold to determine

its rank. Then, similar to what we did in Section A.3.2, we can determine if Lt,t is a full

rank matrix or not. But unlike that, if this matrix is singular, we evaluate the singularity

of Lt−1,t rather than S̃t−1 = Lt−1,t−1 in the next step. In general, if Lµ,t is nonsingular for

µ = ν < t but it is singular for µ = ν + 1, then ν indicates the number of channel errors.

Observe that, for µ = ν + 1 ≤ t, Lµ,t is a tall matrix which makes use of 2t− 1 syndrome

samples while the square matrix S̃µ includes only part of them (2µ − 1); thus, a better

estimation is attainable in the first case.

A.4.2 Error Estimation

Although a reliable localization is necessary for proper decoding, with conventional esti-

mation method, presented in Section A.3.2, even perfect error localization does not imply

a small estimation error. We show that the LS solution can largely overcome this problem

and reduce the MSE between reconstructed and original sequences. The gain comes from

the exploitation of more syndrome samples by

HeE = s̃, (A.13)

which engages all 2t syndrome samples to estimate ν ≤ t errors. The accuracy of estimation

depend on the number of equations per input sample, which is a function of code rate

(n−k
k

= 1
R
− 1). The lower the code-rate, the more accurate the error estimation.
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A.5 Performance Analysis and Reconstruction Error

Any continuous-valued signals is required to be approximated to a set of discrete levels

before being transmitted in digital communication systems. This approximation from con-

tinuous to discrete space is realized by quantization which is a non-invertible process. In

this section, we analyze the effect of soft redundancy inserted by DFT codes on the quan-

tization error, and we show that the MSE introduced by quantization error reduces on

account of this redundancy. Owing to its efficacy in measuring signal fidelity, particu-

larly in conjunction with Gaussian random variables and linear systems, we use the MSE

between transmitted and reconstructed codevectors to measurers end to end distortion.

A.5.1 Quantization Model

In order to be able to analyze and compare the performance of quantized DFT codes, we

need to model quantization noise stochastically. We assume that the range of the quantizer

covers the dynamic range of all codevectors of the DFT code. Let q denote the quantization

error vector. Our model is based on the following assumptions [51]:

• Each noise component qi has mean equal to zero and variance σ2
q .

• The noise components qi and qj are uncorrelated for i 6= j.

Therefore, for any 0 ≤ i, j ≤ n we have

E{qi} = 0, E{qiqj} = σ2
qδij, (A.14)

where δ denotes the Kronecker delta function. The design of quantizer depends on the

dynamic range and statistical distributions of the source sequence [51]. For simplicity, we

consider a uniform quantizer with a fixed quantization step size ∆. Although the choice of

∆ is arbitrary, decreasing ∆ decreases quantization error but increases the amount of data

to be transmitted. In order for the quantizer to satisfy the criteria in (A.14), we assume

that ∆ is small enough such that the probability distribution of the quantization noise

vector is uniform on the interval [−∆/2, ∆/2]. Therefore, σ2
q = ∆2/12.
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A.5.2 Reconstruction

The codevectors in a DFT code are generated by c = Gx where G is defined in (A.1).

Since G is not a square matrix, one possibility to linearly reconstruct x form c is to use

the pseudoinverse of G [51], which is defined by G† = (GTG)−1GT . It is easy to check that

G†G = Ik, hence G†(Gx) = x. Since GTG = n
k
Ik [86], the pseudoinverse G† is further

simplified and the linear reconstruction can be written as

x = G†c = (GTG)−1GTc =
k

n
GTc. (A.15)

Let q denote the quantization error that satisfies the conditions in Section A.5.1. Suppose

we want to estimate x from ĉ = Gx+ q. From (A.15), we obtain

x̂ =
k

n
GT ĉ = x+

k

n
GTq, (A.16)

thus reconstruction error due to quantization is k
n
GTq and the mean squared reconstruction

error is [86], [51],

MSEq =
1

k
E{‖x̂− x‖2} =

1

k
E{‖k

n
GTq‖2}

=
k

n2
E{qTGGTq} =

k

n2
Var{q} tr

(
GGT

)

=
k

n
σ2
q

(A.17)

where tr(.) represent the trace function. Note that the second line follows from E[xTAx] =

tr[Var[q]AAT ] + E[q]TAE[q], the third line results from GTG = n
k
Ik. Since k < n, (A.17)

proves that DFT codes decrease quantization error when there is no channel error [86], [51].

We show that this is correct even if channel errors exist. To see this, let e denote channel

errors, then received codevector is affected both by quantization and channel errors, that

is, ĉ = Gx + η where η = q + e. Assuming that the quantization and channel errors are

independent, we have [113]
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MSEq+e =
1

k
E{‖x̂− x‖2} =

1

k
E{‖k

n
GTη‖2}

=
k

n
σ2
η =

k

n2
E{qTq + qTe+ eTq + eTe}

=
k

n

[
σ2
q +

ν

n
σ2
e

]
,

(A.18)

where ν is the number of errors and E{eTe} , νσ2
e . Also, note that E{eTq} = E{eT}E{q} =

0 based on the assumption in (A.14). Similarly, E{qTe} = 0.

From (A.18), it is evident that reconstruction error has two distinct parts, one due to

the quantization error and another one due to the channel error. It also proves that DFT

codes decrease both channel error and quantization error by a factor of k/n, which is equal

to the code rate Rc. Moreover, we also conclude that the MSE is monotonically increasing

with the number of errors as well as their power. It is also worth noting that, even without

correcting errors, the MSE using DFT codes with linear reconstruction can be smaller than

quantization error. More precisely, MSEq+e ≤ σ2
q for

σ2
e

σ2
q

≤ n

k

n− k
ν
' n

k

2t

ν
, (A.19)

without error correction but merely using linear reconstruction. Then, while σ2
e ≤ 2

Rc
σ2
q ,

a reconstruction error better than quantization error is guaranteed if the number of errors

is within the error correction capability of code (ν ≤ t). Eventually, in the extreme case,

when all samples in a codevector are corrupted by channel errors (ν = n), reconstruction

error is less than quantization error as long as

σ2
e ≤ (

1

Rc

− 1)σ2
q . (A.20)

This simply proves the superiority of DFT (real-number) to binary channel coding, for a

given code rate, when the distribution of channel errors is such that (A.20) holds.

The above results are valid when no error correction is done. With error correction,

the MSE mainly depends on the accuracy of estimation at localizing the errors and finding

their magnitude. The former improves when the number of errors is small compared to t,

whereas the latter depends on the code rate and substantially improves for low-rate codes.
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A.6 Numerical Results

To evaluate the performance of the LS decoding, simulations are carried out for transmitting

both memoryless source with uniform distribution and Gauss-Markov source with zero

mean, unit variance, and correlation coefficient 0.9, over an impulsive channel for a range

of channel-error-to-quantization-noise ratio (CEQNR), defined as σ2
e/σ

2
q . The generated

sequences are encoded using a DFT code. The codevectors are then quantized with a 6-

bit quantizer, and transmitted over a noisy channel that randomly inserts ν ≤ t errors,

generated by N (0, σ2
e). For each setting, we evaluate the effect of LS estimation assuming

perfect or imperfect localization of errors, and compare the MSE of received and decoded

codevectors with respect to the input signal.

Perfect Localization

To evaluate the effect of the LS solution in the estimation of errors, first we assume that

the location of errors are perfectly known to the decoder. Effectively, this gives rise to an

erasure channel which has applications in packet networks such as the internet where some

packets are lost during transmission [51].

In Fig. A.3(a), for a (17, 9) DFT code, we compare the LS estimation method with the

conventional error estimation as well as the case where error correction is not performed.

The latter corresponds to (A.18) and referred to as “not decoding.” The performance

gap between the LS estimation and the existing method is remarkably high, and almost

constant, in any CEQNR. At very low CEQNR “not decoding” results in a MSE lower than

quantization error, for any ν ≤ t; the plot in Fig. A.3(a) is for ν = t = 5. This is due to

the fact that DFT codes, and tight frames in general, minimize the MSE [51]. This elegant

property, which is achieved in light of soft redundancy, is one of the main reason to use

these codes in the context of error correction. To get a better visibility, we compare the

result for the LS method with quantization noise in a separate figure. Figure A.3(b) clearly

shows that the MSE between transmitted and linearly reconstructed signals is less than

quantization error for several error patterns. The LS estimation substantially decreases the

estimation error even when code length goes up. Moreover, for low-rate codes, the MSE

is better than quantization for any error pattern [113]. This indicates that, in DFT codes

the MSE can go under quantization error level even though there are many errors.
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Figure A.3 The MSE performance of a (17, 9) DFT code with perfect error
localization for different error patterns. (a) The merit of LS estimation to the
existing approach. (b) The LS estimation: This figure shows DFT codes can
result a MSE better than quantization error, even when several errors occur.

Considering Localization Error

When error localization is not perfect, the LS estimation still performs much better than the

existing approach. This improvement, however, is not the same for different CEQNRs since

error localization depends on CEQNR. It is noticeably high at low CEQNRs but gradually

comes down as CEQNR increases. This loss is due to the fact that as CEQNRs becomes

larger even one localization error can lead to a poor estimation and severely increase the

MSE. Fascinatingly, at low CEQNRs, even with very poor probability of error localization,

the LS estimation gives an acceptable MSE. In this range of CEQNR it is very challenging

to reliably localize errors, as it is hard to distinguish between channel and quantization

errors. Previous works have ignored this region either by limiting their study to the case

that channel errors are larger than quantization error [100] or by excluding the results for

this range [86]. Considering conventional localization approaches, either coding theoretic or

subspace-based approaches, in such a range of CEQNR, not decoding would be better than

decoding if we use the existing estimation method. The LS estimation, however, overcomes

this deficiency [113]. This becomes more important noting that without the LS estimation,

even perfect error localization cannot guarantee relatively low MSE, as shown in [113].
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Appendix B

Proofs of Chapter 4

B.1 Proof of Theorem 4.3

Proof. Let n = Mk + l, 0 < l < k, then G can be partitioned as

G = [GH
k |G1H

k | · · · |G(M−1)H
k |GMH

k×l ]H .

where Gk, G
1
k, . . . , G

M−1
k are square submatrices and GM is an l × k submatrix of G. In

general, Gk, G
1
k, . . . , G

M−1
k and GM

k×l include arbitrary rows of G, hence they have different

spectrums, i.e., different sets of eigenvalues. Suppose, for the purpose of contradiction, that

λk(G
H
k Gk) = 1; this can occur only if Gk consist of the rows of G such that the distance

between each two successive rows is at least M .1 Such an arrangement guarantees the

existence of G1
k, . . . , G

M−1
k so that GmH

k Gm
k , for any 1 ≤ m ≤M−1, has the same spectrum

as GH
k Gk. To find the row indices corresponding to Gm

k , we can simply add m to each row

index of Gk. Then, to show these matrices have the same spectrum, we use Lemma 4.1.

Given a Gk, one can verify that (Gm
k )i,j = ej

2πm
n (Gk)i,j and thus (Gm

k )Hi,j = e−j
2πm
n (Gk)

H
i,j.

Therefore, GmH
k Gm

k and GH
k Gk have the same spectrum for any 1 ≤ m ≤M − 1. Next, we

see that GHG = A + B in which A = GH
k Gk + · · · + G

(M−1)H
k GM−1

k and B = GMH
k×l G

M
k×l.

Then, in consideration of the above discussion, λi(A) = Mλi(G
H
k Gk) for any 1 ≤ i ≤ k.

1λk(GHk Gk) = 1 is the optimal solution for (4.28) and necessitate dmin = M , as discussed in Theorem 4.7.
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Hence, from (4.20), for i = 1, j = k, we will have

λk(A) + λ1(B) ≤ λ1(A+B)

⇔Mλk(G
H
k Gk) ≤

n

k
− λ1(B)

⇔ λk(G
H
k Gk) ≤

n
k
− 1

M
=

n
k
− 1

bn
k
c < 1,

(B.1)

where the last line follows using λ1(B) ≥ 1 from Theorem 4.1. But this is contradicting

our assumption λk(G
H
k Gk) = 1, and thus completes the proof that, for n 6= Mk, the largest

possible λk(G
H
k Gk) is strictly less than 1, for any Gk.

2 The proof of the other bound

(λ1(GH
k Gk) > 1) is then immediate because

k∑

i=1

λi(G
H
k Gk) =

k∑

i=1

aii = k

.

B.2 Proof of Theorem 4.7

Proof. Consider an (n, k) DFT frame, let M = bn/kc, and assume that all rows in Irk ,
except the first and last rows, are equally spaced with distanceM (without loss of generality,

we assume ir1 = 1, then irj = (j − 1)M + 1, j ≤ k). Hence dmin = M , where the minimum

distance dmin is defined as the smallest circular distance among the selected rows. In such

a setting, from (4.49) and similar to (4.51), we can write

det(VkV
H
k ) =

2k(k−1)

kk

k−1∏

r=1

(
sin2 π

n
Mr
)k−r

. (B.2)

We prove that, in view of (4.45), the systematic frame corresponding to the above

arrangement has better performance than any other arrangement in which dmin among the

systematic rows is less than M . To this end, we first assume that all selected rows in Irk
remain the same except one row which is shifted one unit in a way that dmin decreases.

2Note that when n = Mk, B is an empty matrix and we must plug λ1(B) = 0 into (B.1) which result
in λk(GHk Gk) ≤ 1 and does not guarantee a bound strictly less than 1.
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For example, without loss of generality, consider I ′rk for which i′r1 = 2, i′rj = irj , 1 < j ≤ k;

hence dmin = M − 1. Then, from (4.49), we obtain

det(VkV
H
k )|I′rk

det(VkV H
k )|Irk

=

∏k−1
r=1 sin2 π

n
(Mr − 1)

∏k−1
r=1 sin2 π

n
Mr

< 1. (B.3)

To prove the inequality, equivalently, we show that

sin (M−1)π
n

sin (2M−1)π
n
· · · sin ((k−1)M−1)π

n

sin Mπ
n

sin 2Mπ
n
· · · sin (k−1)Mπ

n

< 1. (B.4)

We break up this inequality into bk/2c inequalities, each of which strictly less than one.

First, consider the first and last terms in the numerator and denominator. We can write

sin (M−1)π
n

sin ((k−1)M−1)π
n

sin Mπ
n

sin (k−1)Mπ
n

=
cos (k−2)Mπ

n
− cos (kM−2)π

n

cos (k−2)Mπ
n

− cos kMπ
n

< 1, (B.5)

where the inequality follows since cos (kM−2)π
n

> cos kMπ
n

, as kM
n
π ≤ π. Likewise, for the

second and penultimate terms we have

sin (2M−1)π
n

sin ((k−2)M−1)π
n

sin 2Mπ
n

sin (k−2)Mπ
n

=
cos (k−4)Mπ

n
− cos (kM−2)π

n

cos (k−4)Mπ
n

− cos kMπ
n

< 1. (B.6)

A similar reasoning can be used for other terms that are equally spaced from the two ends.

Clearly, the same argument is valid when 2 < i′r1 < M and the other rows are the same,

i.e., i′rj = irj , 1 < j ≤ k and dmin = M − i′r1 . Moreover, when more than one row index is

changed, in a way that two or more selected rows have a distance less than M , the above

argument is valid and we can show that new determinant is even less than the case with one

changed index. In fact, in such a case, it is easier to compare the new one with its parent;

i.e., to compare the case with two changes with the case with one change. As a result, we

can see that any combination of rows with dmin < M performs worse than the case with

dmin = M , on account of (37); that is, dmin = M is necessary condition for optimality. In

other words, that optimal systematic frame must satisfy dmin = M .
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Next, we show that among systematic frames with dmin = M the one that satisfies (4.52)

is the best. That is, the optimal systematic frame has l = n − bn/kck systematic rows

with successive circular distance of dn/ke and m = k − l systematic rows with successive

circular distance of bn/kc. To prove this, again we compare det(VkV
H
k ) in (4.49) for this

case and the other cases with dmin = M . The arguments are very similar to what we used

above. Before moving on, we should mention that for l ∈ {0, 1, k− 1} the proof in the first

part is sufficient.

Let Iork denote the set of rows satisfying the constraints in (4.52); obviously, dmin = M .

We claim that any other selection of systematic rows, for which dmin is M , results in a

smaller det(VkV
H
k ); that is, det(VkV

H
k )|Irk < det(VkV

H
k )|Iork . Let us evaluate the case

where only the row index for one of those l rows varies, provided that dmin = M is kept.3

We then have

det(VkV
H
k )|Irk

det(VkV H
k )|Iork

=

∏k−1
r=1 sin2 π

n
Mr

∏k−1
r=1 sin2 π

n
(Mr + 1)

< 1. (B.7)

Again it suffice to prove that

sin Mπ
n

sin 2Mπ
n
· · · sin (k−1)Mπ

n

sin (M+1)π
n

sin (2M+1)π
n
· · · sin ((k−1)M+1)π

n

< 1, (B.8)

and this can be done by the same divide and conquer approach, used in the first part of

this proof. For instance, for the first and last terms in the numerator and denominator we

have

sin Mπ
n

sin (k−1)Mπ
n

sin (M+1)π
n

sin ((k−1)M+1)π
n

=
cos (k−2)Mπ

n
− cos kMπ

n

cos (k−2)Mπ
n

− cos (kM+2)π
n

< 1, (B.9)

where the inequality follows for cos (kM+2)π
n

< cos kMπ
n

. Finally, the other cases, where two

or more rows change, can be proved comparing their determinant with their ancestor’s with

a similar reasoning. This completes the proof that a systematic frame with the most evenly

3 Note that, with this shift of row, we are looking for an arrangement of a systematic frame that does
not satisfy (4.52); otherwise, det(VkV

H
k ) will not vary, as the frame properties has not changed essentially.

More specifically, a new, different arrangement will introduce a new distance equal to dn/ke+ 1.
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spaced systematic rows, or equivalently data samples in the corresponding codewords, is

the best in the minimum MSE sense.



152

References

[1] The DISCOVER codec: Complexity performance evaluation. [Online]. Available:
http://www.img.lx.it.pt/~discover/complexity.html [Accessed October 2013].

[2] A. Aaron and B. Girod. Compression with side information using turbo codes. In
Proc. IEEE Data Compression Conference, pages 252–261, 2002.
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