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Abstract—This article considers a one-way full-duplex decode-
and-forward relay network consisting of a source, a relay, and a
destination. Due to the self-interference (SI) channel estimation
error at the relay, SI cannot be completely canceled. In the presence
of the residual SI, there is a tradeoff between the achievable rate
of the relay–destination link in a given time slot and that of the
source–relay link in the next time slot depending on the relay
transmit power in that time slot. As the relay transmit power
increases, the achievable rate from the relay to destination in-
creases, whereas the achievable rate from the source to the relay in
the next time slot decreases. Motivated by this observation, relay
power control schemes for maximizing achievable rates over static
and time-varying channels are proposed in this article. Next, a
closed-form expression for the relay transmit power in each time
slot is derived. Numerical results show that the proposed relay
power control schemes outperform the conventional maximum
power transmission scheme in terms of achievable rates.

Index Terms—Achievable rate, decode-and-forward, full-duplex
(FD), one-way relay, power control.

I. INTRODUCTION

FULL-duplex (FD) transmission is envisaged as a key en-
abling technology for the next-generation wireless systems

to improve spectral efficiency [1]–[5] because FD systems can
transmit and receive simultaneously on the same frequency
band. In-band FD technology allows a wireless terminal to
transmit and receive simultaneously in the same frequency
band, thus increasing the throughput of wireless communication
networks. Specifically, FD relay systems have recently been
studied in [6]–[15]. The beamforming design schemes were
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proposed in [6] and [7], and the simultaneous wireless infor-
mation and power transfer systems were studied in [8]–[11].
Also, the power allocation and control schemes for FD relay
systems in the presence of the residual self-interference (SI)
were investigated in [12]–[15]. FD systems come with SI, which
degrades the system performance, if not treated. In particular, SI
cannot be wholly canceled in an FD relay due to the SI channel
estimation error at the relay and the limited dynamic range of
the analog-to-digital converters [1]–[3]. For this reason, explor-
ing techniques for mitigating SI performance degradation is
essential.

Buffer-aided relay networks have been studied in [16]–[18].
Razlighi and Zlatanov [16] proposed buffer-aided relaying
schemes with adaptive reception/transmission for the two-hop
FD relay channel with SI when the source and the relay both
perform continuous-rate transmission with adaptive-power al-
location, continuous-rate transmission with fixed-power alloca-
tion, and discrete-rate transmission, respectively. In [17], source
and relay power allocation for the buffer-aided FD relaying
networks was studied, assuming constant data rate arrivals at
the source buffer. Zlatanov et al. [18] studied the capacity of
the Gaussian two-hop FD relay channel with linear residual SI
considering the worst-case linear residual SI model. Also, the
authors presented that the capacity is achieved by a zero-mean
Gaussian input distribution at the source whose variance depends
on the amplitude of the transmit symbols at the relay.

The FD system and low-latency communication are key tech-
nologies of fifth-generation (5G) wireless communication. In
view of this trend, this article considers the FD relay-assisted
transmissions for low-latency communication. The achievable
data rate of buffer-aided relay networks can be greater than
that of buffer-free relay networks; however, buffer-aided relay
networks are considered mainly in delay-tolerant networks and
require memory. For those reasons, this article considers buffer-
free FD relay networks.

In one-way FD decode-and-forward relay networks, the signal
from the source is transmitted to the relay in a time slot, and the
decoded signal at the relay is transmitted to the destination in the
next time slot. Therefore, the achievable rate from the source to
the destination in a given time slot is determined by the minimum
value of the achievable rate from the source to the relay in the
previous time slot and the achievable rate from the relay to the
destination in that time slot.
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Fig. 1. One-way FD decode-and-forward relay networks in time slot t.

For these reasons, as the relay transmit power in a time slot
increases, the achievable rate from the relay to the destination
in the corresponding time slot increases, whereas the achievable
rate from the source to the relay in the next time slot decreases
due to the residual SI at the relay. This implies that there exists
a tradeoff between the achievable rate from the relay to the
destination in a time slot and the achievable rate from the source
to the relay in the next time slot depending on the relay transmit
power in that time slot. Motivated by this observation, this
article studies the relay power control scheme for maximizing
the achievable rate in each time slot.

Dun et al. [12] proposed power allocation schemes for the
base station (BS) and relay in the FD amplify-and-forward relay-
aided device-to-device communication. The optimal power al-
location for two-way FD amplify-and-forward relay networks
was studied in [13]. The power control schemes for the FD
relay networks were proposed in [14] and [15]. Li et al. [14]
proposed the relay power control scheme for two-way FD
amplify-and-forward relay networks in each time slot over static
channels. The FD decode-and-forward relay-enhanced cellular
networks consisting of an FD BS, two FD relays, and two
half-duplex user equipments (UEs) are studied in [15]. This
study proposed a power control scheme for the BS, relays, and
UEs that maximize the achievable end-to-end spectral efficiency
of the uplink and downlink UEs in a certain time slot. To the best
of our knowledge, the relay power control schemes in each time
slot for one-way FD decode-and-forward relay networks over
static and time-varying channels have not been proposed in the
literature.

The remainder of this article is organized as follows. Section II
describes the system model. Sections III and VI provide the pro-
posed relay power control schemes over static and time-varying
channels, respectively. Section V shows the numerical results for
the proposed relay power control schemes. Finally, Section VI
concludes this article.

Notations: The operator E[·] indicates the expectation. Nota-
tions |a| denotes the absolute value of a for any scalar. Notations
max(·) andmin(·) denote the largest value of the arguments and
the smallest value of the arguments, respectively.

II. SYSTEM MODEL

Consider a one-way FD decode-and-forward relay network
consisting of one source node s, one relay node r, and one
destination node d, as shown in Fig. 1. Since the relay is assumed
to operate in the FD mode, there is the SI channel. The channel
state information (CSI) of SI is assumed to be imperfect due to
channel estimation errors.

In time slot 0, the source transmits its signal x(0)
s to the relay.

The received signal at the relay is written as

y(0)r = h(0)
sr x

(0)
s + n(0)

r (1)

where h
(0)
sr is the channel coefficient between the source and

relay in time slot 0. Also, n(0)
r is the additive white Gaussian

noise (AWGN) at the relay in time slot 0 whose mean is zero
and variance is σ2

n,r.
In time slot 1, the relay forwards the decoded signal to

the destination and the source transmits its next signal to the
relay at the same time. In this manner, the source transmits its
signal to the relay and the relay transmits the decoded signal
to the destination in each time slot. In time slot t− 1, the
source transmits the signal x

(t−1)
s using maximum transmit

power ps, i.e., E[|x(t−1)
s |2] = ps. Also, the relay transmits the

signal x(t−1)
r using transmit power p(t−1)

r with E[|x(t−1)
r |2] =

p
(t−1)
r (0 < p

(t−1)
r ≤ pmax

r ). The estimated received signal at the
relay after subtracting SI in time slot t− 1 is written as

ŷ(t−1)
r = y(t−1)

r − ĥ(t−1)
rr x(t−1)

r

= h(t−1)
sr x(t−1)

s + h(t−1)
rr x(t−1)

r + n(t−1)
r − ĥ(t−1)

rr x(t−1)
r

= h(t−1)
sr x(t−1)

s +Δ(t−1)
rr x(t−1)

r + n(t−1)
r (2)

where h
(t−1)
rr , ĥ(t−1)

rr , and Δ
(t−1)
rr are the true SI channel coef-

ficient, the estimated SI channel coefficient, and the SI channel
estimation error in time slot t− 1, respectively. The mean and
the variance of the SI channel estimation error are zero and σ2

e ,
respectively. Also, h(t−1)

sr is the channel coefficient between the
source and the relay in time slot t− 1. In addition, n(t−1)

r is
the AWGN at the relay in time slot t− 1, and it has zero mean
whose variance is σ2

n,r.
The received signal at the destination in time slot t is written

as

y
(t)
d = h

(t)
rdx

(t)
r + n

(t)
d (3)

where h
(t)
rd is the channel coefficient between the relay and the

destination in time slot t. In addition, n(t)
d is the AWGN at the

destination in time slot t, and it has zero mean whose variance
is σ2

n,d.
The achievable rate from the source to relay in time slot t− 1

is given by

R(0)
sr = log2

(
1 +

p
(0)
s |h(0)

sr |2
σ2
n,r

)

R(t−1)
sr = log2

(
1 +

p
(t−1)
s |h(t−1)

sr |2
σ2
n,r + σ2

ep
(t−1)
r

)
for t ≥ 2. (4)

Note that the relay is not affected by the residual SI in time
slot 0 because the source only transmits the signal to the relay.
The achievable rate from the relay to destination in time slot t
is given by

R
(t)
rd = log2

(
1 +

p
(t)
r |h(t)

rd |2
σ2
n,d

)
for t ≥ 1. (5)
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In FD decode-and-forward relay networks, the achievable rate
from the source to the destination in time slot t is determined
by the minimum value of R(t−1)

sr and R
(t)
rd [15], [19]. Therefore,

R(t) is given by

R(t) = min(R(t−1)
sr , R

(t)
rd ) for t ≥ 1. (6)

It follows from (4) and (5) that as p(t)r increases, R(t)
rd increases;

however, R(t)
sr decreases due to the residual SI.

III. PROPOSED RELAY POWER CONTROL SCHEME OVER

STATIC CHANNELS

This section introduces a relay power control scheme provided
that CSI in each time slot is fixed. Therefore, the relay knows
the CSI in all time slots. We consider the minimum achievable
rate among the achievable rate in each time slot for guaranteeing
the quality of service. When one frame consists of T time slots
and the relay transmits the decoded signal to the destination
until time slot T , the optimization problem for maximizing the
minimum achievable rate can be written as

(P1.1) maximize
p
(1)
r ,...,p

(T )
r

min{R(1), . . . , R(T )} (7a)

subject to 0 < p(1)r , . . . , p(T )
r ≤ pmax

r (7b)

where T is the number of time slots in one frame. In prob-
lem (P1.1), the minimum achievable rate can be obtained by
Lemma 1.

Lemma 1: The minimum achievable rate min{R(1),
. . . , R(T )} is equivalent to

min

(
ps|hsr|2

σ2
n,r + σ2

epmax
,
pmin|hrd|2

σ2
n,d

)
(8)

where pmax = max(p
(1)
r , . . . , p

(T−1)
r ) and pmin = min(p

(1)
r ,

. . . , p
(T−1)
r ).

Proof: The logarithm is an increasing function and
min{min(c1, c2), . . . ,min(c2T−1, c2T )} is equivalent to
min(c1, c2, . . . , c2T−1, c2T ). Therefore, min{R(1), . . . , R(T )}
can be simply rewritten as

Rmin = min

{
ps|hsr|2
σ2
n,r

,
ps|hsr|2

σ2
n,r + σ2

ep
(1)
r

, . . . ,
ps|hsr|2

σ2
n,r + σ2

ep
(T−1)
r

,

× p
(1)
r |hrd|2
σ2
n,d

, . . . ,
p
(T−1)
r |hrd|2

σ2
n,d

,
p
(T )
r |hrd|2
σ2
n,d

}
(9)

where p
(0)
s = · · · = p

(T−1)
s = ps, |h(0)

sr |2 = · · · = |h(T−1)
sr |2 =

|hsr|2, and |h(1)
rd |2 = · · · = |h(T )

rd |2 = |hrd|2 by assumption.
Since the source transmits until time slot T − 1 and the re-
lay transmits until time slot T , p(T )

r is set to pmax
r . Due to

p
(T )
r = pmax

r , p
(T )
r |hrd|2
σ2
n,d

is greater than or equal to p
(t)
r |hrd|2
σ2
n,d

for

1 ≤ t ≤ T − 1. In addition, ps|hsr |2
σ2
n,r

is greater than ps|hsr |2
σ2
n,r+σ2

ep
(t)
r

for 1 ≤ t ≤ T − 1 unless σ2
e is zero, i.e., when there is no

residual SI. Therefore, Rmin can be written as

Rmin = min(a1, a2) (10)

where a1 and a2 are given by

a1 = min

(
ps|hsr|2

σ2
n,r + σ2

ep
(1)
r

, . . . ,
ps|hsr|2

σ2
n,r + σ2

ep
(T−1)
r

)

a2 = min

(
p
(1)
r |hrd|2
σ2
n,d

, . . . ,
p
(T−1)
r |hrd|2

σ2
n,d

)
. (11)

In (11), a1 and a2 can be rewritten as f1(pmax) and f2(pmin),
respectively

f1(pmax) =
ps|hsr|2

σ2
n,r + σ2

epmax

f2(pmin) =
pmin|hrd|2

σ2
n,d

(12)

where pmax = max(p
(1)
r , . . . , p

(T−1)
r ) and pmin = min(p

(1)
r ,

. . . , p
(T−1)
r ). �

By Lemma 1, the problem (P1.1) can be rewritten as

(P1.2) maximize
pmax,pmin

Rmin(pmax, pmin)

= min{f1(pmax), f2(pmin)}
subject to 0 < pmax, pmin ≤ pmax

r . (13)

Lemma 2: The minimum achievable rate Rmin

(pmax, pmin) = min{f1(pmax), f2(pmin)} is maximized when
pmax = pmin.

Proof: By definition, pmax is greater than or equal to pmin.
Let p�max and p�min be the optimal solution for pmax and pmin that
maximizes min{f1(pmax), f2(pmin)}. First of all, we consider
pmax > pmin. Suppose p�max > p�min. We can divide the problem
into three cases depending on the relation between f1(p�max) and
f2(p

�
min).

1) Case f1(p
�
max) < f2(p

�
min): In this case,

Rmin(p
�
max, p

�
min) = f1(p

�
max). We consider the case

in which p�max is decreased by ε, where ε is a small
positive value such that satisfy f1(p

�
max − ε) < f2(p

�
min).

When p�max is decreased by ε, Rmin(p
�
max − ε, p�min) >

Rmin(p
�
max, p

�
min) because of f1(p�max − ε) > f1(p

�
max).

In other words, there exists pmax and pmin that satisfy
Rmin(pmax, pmin) > Rmin(p

�
max, p

�
min). Therefore, this

case is a contradiction to the supposition that p�max and
p�min are optimal.

2) Case f1(p
�
max) > f2(p

�
min): In this case,

Rmin(p
�
max, p

�
min) = f2(p

�
min). We consider the case

in which p�min is increased by ε, where ε is a very small
positive value such that satisfy f1(p

�
max) > f2(p

�
min + ε).

When p�min is increased by ε, Rmin(p
�
max, p

�
min + ε) >

Rmin(p
�
max, p

�
min) because of f2(p

�
min + ε) > f2(p

�
min).

In other words, there exists pmax and pmin that satisfy
Rmin(pmax, pmin) > Rmin(p

�
max, p

�
min). Therefore, this

case is a contradiction to the supposition that p�max and
p�min are optimal.

3) Case f1(p
�
max) = f2(p

�
min): We consider this case be-

cause we have identified two cases. In this case,
Rmin(p

�
max, p

�
min) = f1(p

�
max) = f2(p

�
min). We consider
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the case in which p�max is decreased by ε1 and p�min is
increased by ε2, where ε1 and ε2 are very small positive
values such that satisfy f1(p

�
max − ε1) = f2(p

�
min + ε2).

When p�max is decreased by ε1 and p�min is increased by
ε2, Rmin(p

�
max − ε1, p

�
min + ε2) > Rmin(p

�
max, p

�
min) be-

cause of f1(p
�
max − ε1) = f2(p

�
min + ε2) > f1(p

�
max) =

f2(p
�
min). In other words, there exists pmax and pmin that

satisfy Rmin(pmax, pmin) > Rmin(p
�
max, p

�
min). There-

fore, this case is a contradiction to the supposition that
p�max and p�min are optimal.

To sum up, p�max should not be greater than p�min. There-
fore, there exists the optimal p�max and p�min for maximizing
Rmin(pmax, pmin) when p�max = p�min. �

By Lemma 2, we consider the case that p�max and p�min are the
same. For p�max and p�min to be equal, the relay transmit power in
each time slot should be the same because p�max and p�min are the
maximum and minimum values of the relay transmit power value
in each time slot, respectively. We define pr as p�max = p�min and
problem (P1.2) can be rewritten as

(P1.3) p∗r = arg max
pr

min{f1(pr), f2(pr)} (14a)

subject to 0 < pr ≤ pmax
r (14b)

where f1(pr) and f2(pr) are given by

f1(pr) =
ps|hsr|2

σ2
n,r + σ2

epr

f2(pr) =
pr|hrd|2
σ2
n,d

. (15)

Theorem 1: The optimal relay transmit power p∗(t)r for max-
imizing the minimum achievable rate min{f1(pr), f2(pr)} is
min(α, pmax

r ) for 1 ≤ t ≤ T − 1 and pmax
r for t = T , where

α =

√(
σ2
n,r

2σ2
e

)2

+
σ2
n,dps|hsr|2
σ2
e |hrd|2 − σ2

n,r

2σ2
e

. (16)

Proof: It is noted that f1(pr) is a strictly decreasing function
and f2(pr) is a strictly increasing function with respect to pr.
In addition, f1(0) is greater than f2(0). Therefore, f1(pr) and
f2(pr) meet at one point if we ignore the constraint, which is
defined as α. By solving f1(pr) = f2(pr) using the quadratic
formula, α can be obtained.

Two cases are considered depending on the relation between
α and pmax

r . Fig. 2 shows possible cases. We determine pr for
maximizing min{f1(pr), f2(pr)}.

1) Case I (0 < α ≤ pmax
r ): As shown in Fig. 2(a),

min{f1(pr), f2(pr)} can be written as

min{f1(pr), f2(pr)} =

{
f2(pr), for 0 < pr ≤ α

f1(pr), for α ≤ pr ≤ pmax
r .

(17)

According to (17), min{f1(pr), f2(pr)} is strictly increas-
ing on (0, α] and strictly decreasing on [α, pmax

r ]. There-
fore, pr for maximizing min{f1(pr), f2(pr)} is α.

Fig. 2. Possible cases depending on the relation between α and pmax
r .

(a) 0 < α ≤ pmax
r . (b) 0 < pmax

r ≤ α.

2) Case II (0 < pmax
r ≤ α): As shown in Fig. 2(b),

min{f1(pr), f2(pr)} can be written as

min{f1(pr), f2(pr)} = f2(pr) for 0 < pr ≤ pmax
r

(18)

According to (18), min{f1(pr), f2(pr)} is strictly in-
creasing on (0, pmax

r ]. Therefore, pr for maximizing
min{f1(pr), f2(pr)} is pmax

r . From the two cases, the
optimal p∗r is given by

p∗r =

{
α, for 0 < α ≤ pmax

r

pmax
r , for 0 < pmax

r ≤ α.
(19)

As mentioned, the optimal p∗(t)r is pmax
r . Therefore, the

optimal relay transmit power in each time slot is given by

p∗(t)r =

{
min(α, pmax

r ), for 1 ≤ t ≤ T − 1

pmax
r , for t = T.

(20)

�

IV. PROPOSED RELAY POWER CONTROL SCHEME OVER

TIME-VARYING CHANNELS

This section considers a different scenario in which the CSI in
each time slot is variant. In time slot t, the relay knows the CSI
in time slot t. Due to the causality, it is impossible to consider
the achievable rate after the (t+ 1)th time slot in time slot t over
time-varying channels. Therefore, we formulate the problem for
finding p

(t)
r that maximizes the weighted sum rate of R(t) =

min(R
(t−1)
sr , R

(t)
rd ) and R

(t)
sr in each time slot. The optimization

problem that maximizes R(t)(p
(t)
r ) + λR

(t)
sr (p

(t)
r ) for λ ≥ 0 can

be written as

(P2) maximize
p
(t)
r

R(t)(p(t)r ) + λR(t)
sr (p

(t)
r ) (21a)

subject to 0 < p(t)r ≤ pmax
r . (21b)

It is difficult to solve the problem (P2) because it is nonconvex
problem. As mentioned, R(t+1) is determined by R

(t+1)
rd as well

as R(t)
sr . Since R

(t+1)
rd cannot be considered in the tth time slot,

we maximize R(t)(p
(t)
r ) and then R

(t)
sr (p

(t)
r ) by setting λ to very

close to zero. When λ is very close to zero, the problem (P2)

can be changed to the problem for maximizingR(t)
sr (p

(t)
r ) among

p
(t)
r values that maximize R(t)(p

(t)
r ). The reformulated problem
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can be written as

(P3) maximize
p
(t)
r

R(t)
sr (p

(t)
r ) (22a)

subject to p(t)r ∈ {p̄(t)r |p̄(t)r = argmax
0<p

(t)
r ≤pmax

r

R(t)(p(t)r )}

(22b)

The set A(t) � {p̄(t)r |p̄(t)r = argmax
0<p

(t)
r ≤pmax

r
R(t)(p

(t)
r )} is

the set of p(t)r that maximizes R(t)(p
(t)
r ) subject to the constraint

0 < p
(t)
r ≤ pmax

r . Also, R(t)(p
(t)
r ) is given by

R(t)(p(t)r ) = min{log2(1 + c(t−1)
sr ), log2(1 + f

(t)
rd (p

(t)
r ))}

(23)

where c
(t−1)
sr and f

(t)
rd (p

(t)
r ) are given by

c(0)sr =
p
(0)
s |h(0)

sr |2
σ2
n,r

c(t−1)
sr =

p
(t−1)
s |h(t−1)

sr |2
σ2
n,r + σ2

ep
(t−1)
r

, for t ≥ 2

f
(t)
rd (p

(t)
r ) =

p
(t)
r |h(t)

rd |2
σ2
n,d

, for t ≥ 1. (24)

First, we find the set A(t). The optimization problem for obtain-
ing the set A(t) can be written as

(P4.1) p∗(t)r = arg max
p
(t)
r

R(t)(p(t)r ) (25a)

subject to 0 < p(t)r ≤ pmax
r . (25b)

Since logarithm is a monotonically increasing function, the
problem (P4.1) can be rewritten as

(P4.2) maximize
p
(t)
r

min{c(t−1)
sr , f

(t)
rd (p

(t)
r )} (26a)

subject to 0 < p(t)r ≤ pmax
r . (26b)

From (24), we can know that c(t−1)
sr is constant and f

(t)
rd (p

(t)
r )

increases as p
(t)
r increases. Let β(t) denote p

(t)
r for satisfying

c
(t−1)
sr = f

(t)
rd (p

(t)
r ), and it is given by

β(0) =
p
(0)
s σ2

n,d|h(0)
sr |2

σ2
n,r|h(1)

rd |2

β(t−1) =
p
(t−1)
s σ2

n,d|h(t−1)
sr |2

(σ2
n,r + σ2

ep
(t−1)
r )|h(t)

rd |2
, for t ≥ 2. (27)

The two cases are considered depending on the relation be-
tween β(t) and pmax

r . Fig. 3 shows possible cases in the tth time
slot. We determine p

(t)
r for maximizing R(t).

1) Case I (0 < β(t) ≤ pmax
r ): This case considers 0 <

β(t) ≤ pmax
r . As shown in Fig. 3(a), R(t) can be written

as

R(t) =

{
f
(t)
rd (p

(t)
r ), for 0 < p

(t)
r ≤ β(t)

c
(t−1)
sr , for β(t) ≤ p

(t)
r ≤ pmax

r .
(28)

Fig. 3. Possible cases depending on the relation between β(t) and pmax
r in

time slot t. (a) 0 < β(t) ≤ pmax
r . (b) 0 < pmax

r ≤ β(t).

R(t) is a strictly increasing function with respect to p
(t)
r

on (0, β(t)] and constant on [β(t), pmax
r ]. Therefore, p(t)r

for maximizing R(t) in the tth time slot is [β(t), pmax
r ].

2) Case II (0 < pmax
r ≤ β(t)): This case considers 0 <

pmax
r ≤ β(t). As shown in Fig. 3(b), R(t) can be written

as

R(t) = f
(t)
rd (p

(t)
r ), for 0 < p(t)r ≤ pmax

r . (29)

R(t) is a strictly increasing function with respect to p
(t)
r

on (0, pmax
r ]. Therefore, p(t)r for maximizing R(t) is pmax

r .
From the two cases, p̄(t)r is given by

p̄(t)r =

{
[β(t), pmax

r ], for 0 < β(t) ≤ pmax
r

pmax
r , for 0 < pmax

r ≤ β(t).
(30)

Hence, the set A(t) is {p̄(t)r |min(β(t), pmax
r ) ≤ p

(t)
r ≤ pmax

r }.
In problem (P3), since R(t)

sr decreases as p(t)r increases, p∗(t)r

for maximizing R
(t)
sr should be the smallest of the set A(t).

Therefore, p∗(t)r is given by

p∗(t)r =

{
β(t), for 0 < β(t) ≤ pmax

r

pmax
r , for 0 < pmax

r ≤ β(t).
(31)

V. NUMERICAL RESULTS

In this section, we numerically investigate the performances
of the proposed relay power control schemes over static and
time-varying channels. We compare the proposed relay power
control schemes with the maximum power transmission scheme.
In the maximum power transmission scheme, the relay transmits
the decoded signal using the maximum transmit power in each
time slot. It is assumed that the transmit power in each time slot
at the source is the same, i.e., p(1)s = p

(2)
s = · · · = ps. Also, we

assume that the noise variance at each node is the same, i.e.,
σ2
n,d = σ2

n,r = σ2
n. The signal-to-noise ratio (SNR) and

interference-to-noise ratio (INR) are defined as ps/σ
2
n and

σ2
e/σ

2
n, respectively.

Fig. 4 plots the performance for the proposed power control
scheme over static channels when |h(t)

sr |2 = |h(t+1)
rd |2 = 1 for

t ≥ 0. Fig. 4(a) shows the minimum achievable rate versus SNR
for different INRs when ps = 27 dBm and pmax

r = 27 dBm.
It is seen that the minimum achievable rate of the proposed
power control scheme is greater than that of the maximum
power transmission scheme. The ideal FD system refers to the
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Fig. 4. Performance for the proposed power control and maximum power
transmission schemes over static channels. (a) Minimum achievable rate versus
SNR for different INRs. (b) Minimum achievable rate versus maximum transmit
power at the relay for different INRs.

proposed scheme when INR = 0, i.e., there is no residual SI.
Therefore, the minimum achievable rate of the ideal FD system
is superior to those of the other schemes. Fig. 4(b) shows the
minimum achievable rate versus pmax

r for different INRs when
SNR = 25 dB and ps = 25 dBm. The minimum achievable rate
of the proposed power control scheme is greater than that of the
maximum power transmission scheme. It can be verified that
when INR= 5 dB, the optimal p∗(t)r is pmax

r for 20 ≤ pmax
r ≤ 23

dBm and the optimal p
∗(t)
r is α for 23 ≤ pmax

r ≤ 30 dBm.
Therefore, the minimum achievable rate of the proposed power
control scheme and that of the maximum power transmission
scheme are the same for 20 ≤ pmax

r ≤ 23 dBm. In addition,
the minimum achievable rate of the maximum power transmis-
sion scheme increases for 20 ≤ pmax

r ≤ 23 dBm and decreases
for 23 ≤ pmax

r ≤ 30 dBm. Similarly, when INR = 10 dB, the
minimum achievable rate of the maximum power transmission
scheme increases for 20 ≤ pmax

r ≤ 21 dBm and decreases for
21 ≤ pmax

r ≤ 30 dBm.

Fig. 5. Performance for the proposed power control and maximum power
transmission schemes over time-varying channels. (a) Achievable rate versus
SNR for different INRs in time slot 15. (b) Achievable rate versus time slot for
different INRs.

Fig. 5 plots the achievable rates for the proposed power
control scheme over time-varying channels when ps = 25 dBm,
pmax
r = 25 dBm, |h(t)

sr |2 = 1, and |h(t+1)
rd |2 = 1 for t ≥ 0.

Fig. 5(a) shows the achievable rate versus SNR for dif-
ferent INRs up to the 15th time slot. The achievable
rate of the proposed power control scheme is greater
than that of the maximum power transmission scheme re-
gardless of SNR and INR values. Fig. 5(b) shows the
achievable rate versus time slot for different INRs when
SNR = 10 dB. It can be seen that the achievable rate of the
proposed power control scheme is greater than that of the max-
imum power transmission scheme in each time slot. It can also
be seen that the achievable rate of the proposed power control
scheme changes from a time slot to another. This is because relay
transmit power in each time slot is updated by its transmit power
in the previous time slots in order to maximize the achievable
rate. Therefore, the influence of the relay transmit power in the
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Fig. 6. Performance of the proposed power control and maximum power trans-
mission schemes over time-varying channels when channel gains are changed.
(a) Achievable rate versus SNR for different INRs in time slot 15. (b) Achievable
rate versus time slot for different INRs.

latest time slot on the achievable rate decreases as the number
of time slots increases. Hence, the achievable rate becomes
constant as the number of time slots goes to infinity. Since
only the source transmits a signal in time slot 0, the achievable
rate in time slot 1 is not affected by residual SI. Therefore, the
achievable rate of all schemes is the same in time slot 1.

Fig. 6 plots the achievable rates for the proposed power
control scheme over time-varying channels when ps = 25 dBm,
pmax
r = 25 dBm, |h(t)

sr |2 = 1, and |h(t+1)
rd |2 = 0.1(t+ 1) for

t ≥ 0. Fig. 6(a) shows the achievable rate versus SNR for
different INRs up to the 15th time slot. Even if the channel gain
changes, it is observed that the achievable rate of the proposed
power control scheme is greater than that of the maximum power
transmission scheme. Fig. 6(b) shows the achievable rate versus
time slot for different INRs when SNR = 10 dB. In addition, a
general trend seen in all achievable rate plots in Figs. 4–6 is that
the minimum achievable rate increases as the SNR increases or
the INR decreases.

VI. CONCLUSION

In this article, we proposed two power control schemes at the
relay for one-way FD decode-and-forward relay networks over
static and time-varying channels. The relay transmit power in
each time slot was updated by the transmit power in the previous
time slots. Even if the channel gain, channel estimation error
variance, and noise variance are invariant, the transmit power at
the relay should be different in each time slot to maximize the
achievable rate. Since the proposed power control scheme has a
closed-form solution, its complexity is very low.
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