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Abstract— The problem of maximizing secrecy rate of multiple-
input multiple-output multiple-eavesdropper (MIMOME) chan-
nels with arbitrary numbers of antennas at each node is studied
in this paper. First, the optimization problem corresponding
to the secrecy capacity of the MIMOME channel is converted
to an equivalent optimization based on Givens rotations and
eigenvalue decomposition of the covariance matrix. In this new
formulation, precoder is a rotation matrix which results in a
positive semi-definite (PSD) covariance matrix by construction.
This removes the PSD matrix constraint and makes the prob-
lem easier to tackle. Next, a Broyden-Fletcher-Goldfarb-Shanno
(BFGS)-based algorithm is developed to find the rotation and
power allocation parameters. Further, the generalized singular
value decomposition (GSVD)-based precoding is used to initialize
this algorithm. The proposed rotation-BFGS method provides an
efficient approach to find a near-optimal transmit strategy for
the MIMOME channel and outperforms various state-of-the-art
analytical and numerical methods. In particular, the rotation-
BFGS precoding achieves higher secrecy rates than the celebrated
GSVD precoding, with a reasonably higher computational com-
plexity. Extensive numerical results elaborate on the effectiveness
of the rotation-BFGS precoding. The new framework developed
in this paper can be applied to a variety of similar problems in
the context of multi-antenna channels with and without secrecy.

Index Terms— Physical layer security, MIMO wiretap channel,
secrecy capacity, beamforming, precoding, covariance, rotation.

I. INTRODUCTION

AS A complement to higher-layer security measures,
physical layer security has emerged as a significant

technique for security in the lowest layer of communication,
i.e., the physical layer. Founded on information-theoretic secu-
rity, which is built on classical Shannon’s notion of perfect
secrecy, physical layer security can offer unbreakable security,
unlike conventional secret-key-based cryptosystems. Physical
layer security was laid in the 1970s in Wyner’s seminal
work on the wiretap channel [2] where the idea of secure
communication based on the communication channel itself
without using encryption keys was first introduced. In this
work, Wyner proved that in a wiretap channel (a channel
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in which a transmitter conveys information to a legitimate
receiver in the presence of an eavesdropper) communica-
tion can be both robust to transmission errors (reliable) and
confidential (secure), to a certain degree, provided that the
legitimate user’s channel is better than the eavesdropper’s
channel.1 He established the capacity of the degraded wiretap
channel. Later, Csiszar and Korner [4] generalized this result
to arbitrary, not necessarily degraded, wiretap channels.

In the past decades, physical layer security has been applied
to enhance the classical wiretap channels (e.g., by includ-
ing more realistic assumptions) and to study advanced
wiretap channels (e.g., quantum communication [5], [6]).
Particularly, as multiple-input multiple-output (MIMO) net-
works continue to flourish worldwide, a significant effort
has been made to study the MIMO wiretap channel which
allows for the exploitation of space/time/user dimensions of
wireless channels for secure communications. Specifically,
secrecy capacity of Gaussian multiple-input multiple-output
multiple-eavesdropper (MIMOME) channels under an aver-
age total power constraint was established independently
in [7]–[9]. The capacity result is abstracted as an optimiza-
tion problem over input covariance matrix. This problem is
non-convex and its optimal solution is known only for limited
settings [10]–[14].

Among notable sub-optimal solutions that can be applied
to the MIMOME channel is the generalized singular value
decomposition (GSVD)-based precoding [15]. GSVD-based
precoding decomposes transmitted channel matrices into sev-
eral parallel subchannels and confidential information is trans-
mitted over subchannels where the legitimate user is stronger
than the eavesdropper. This method gives a closed-form
solution for achievable secrecy rate which is relatively fast
and is asymptotically optimal at high signal-to-noise ratios
(SNRs). However, its performance is not good at certain set-
tings, e.g., when the eavesdropper has a single antenna while
other nodes have multiple antennas [14]. Another important
sub-optimal solution is Li et al.’s alternating optimization
and water filling (AOWF) algorithm [16] which alternates the
original optimization problem to a convex problem and finds
the corresponding Lagrange multipliers in an iterative manner.
AOWF is more computationally expensive than GSVD-based
precoding but it can provide a better secrecy rate in some
settings. The performance of this method also varies depending

1Later in the 1990s, Maurer proved that secret key generation through public
communication over an insecure yet authenticated channel is possible even
when a legitimate user has a worse channel than an eavesdropper [3].
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on the number of antennas at different nodes. For example,
its performance is not as good as the GSVD-based precoding
when the number of antennas at the eavesdropper is greater
than that of the transmitter. There are also other numerical
solutions for this optimization problem [17]–[19]. Specifically,
in [17], a barrier method based iterative algorithm is tailored to
obtain global optimal with guaranteed convergence. However,
it is not straightforward to obtain the barrier parameter and
this involves a challenging optimization problem. In addition,
this solution is devised based on an upper bound custom-made
for the MIMOME channel and its extension to other related
problems is not straightforward.

Recently, based on a trigonometric parameterization of the
covariance matrix, a closed-form solution for optimal precod-
ing and power allocation of the MIMOME channel with two
transmit antennas was obtained in [14], [20]. This approach in
finding the optimal covariance matrix is completely different
from existing linear beamforming methods. It does not require
degradedness condition of [12] and [21], and thus provides the
optimal solution for both full-rank and rank-deficient cases
in one shot. The above beamforming and power allocation
schemes are, however, limited to two transmit antenna cases,
and the optimal transmit covariance matrix is still open in gen-
eral. Givens rotation has been previously investigated for quan-
tizer design in MIMO broadcast channels [22]. Later, Givens
rotation is used as a beamformer to maximize sum-rate under
average signal-to-noise ratio (SNR) with limited feedback in
multiuser multiple-input single-output (MISO) channels [23].
However, Givens rotation theory is the first time to be applied
on MIMO wiretap channel to the authors’ knowledge.

In this paper, we use Givens rotation matrices to generalize
the approach of [20] to arbitrary numbers of antennas at each
node, and introduce a new method for precoding and power
allocation in the MIMOME channel. In this approach, without
loss of generality, the precoding matrix is formed using a
rotation matrix. Then, the covariance matrix can be seen as
an operator to appropriately stretch (by power allocation) and
rotate (by precoding) the input symbols to form a transmit
signal that best fits the channels of the legitimate user and
eavesdropper. The capacity expression is then transformed into
optimizing rotation angles and power allocation parameters.
This problem is very different from the original problem,
which requires exploring new techniques to solve it. One
advantage of the new problem formulation is that it con-
verts the matrix covariance constraint (symmetric and positive
semi-definiteness (PSD)) into a set of linear constraints and
thus simplifies the optimization problem. We then provide
a numerical solution for the new optimization problem and
show that it outperforms the existing methods in various
antenna settings. The method in [14] can be seen as using
two-dimension Givens rotation for precoding.

A. Contributions

The main contributions of this paper are listed below:
• We use a rotation modeling method for the parameter-

ization of the covariance matrix. This parameterization
gives a new representation of the capacity expression for

the MIMOME channel for which more efficient solutions
can be exploited. Particularly, the PSD constraint on the
covariance matrix is removed because in the proposed
method the covariance matrix is PSD by construction.

• For nt = 1 and nt = 2, the proposed scheme reduces to
those in [11] and [14], respectively, for which closed-form
solutions are known. For nt ≥ 3, finding a closed-form
solution is still challenging. In such a case, we intro-
duce a Broyden-Fletcher-Goldfarb-Shanno (BFGS)-based
method to iteratively solve the rotation and power alloca-
tion parameters. We name this approach rotation-BFGS
method in which a rectifier is designed to remove the
constraints. Numerical results in different antenna set-
tings confirm that the proposed scheme works better
than the well-known GSVD and AOWF. Specifically, the
proposed approach outperforms GSVD when ne < nt,
and AOWF approach when ne ≥ nt, where ne is the
number of antennas at the eavesdropper. Particularly,
the gap between the proposed and GSVD-based methods
is remarkably high when the eavesdropper has a single
antenna.

• To improve the computational complexity of the pro-
posed algorithm (by reducing the number of iterations),
we develop an algorithm to exploit GSVD as an ini-
tialization for our rotation-BFGS method. This initializa-
tion improves the results and reduces the computational
complexity as it reduces the number of iterations in the
optimization problem.

B. Other Related Works

An interesting aspect of the proposed approach is its gener-
ality and its great potential for extension to other related prob-
lems. The MIMOME channel has turned out as a fundamental
tool for the study of physical-layer security in many other
related problems throughout the past decade. Many solutions
developed for the MIMOME has appeared to be instrumental
in designing transmit strategies that maximize the secrecy rate
of extensions of this basic channel model to MIMO channels
with multiple eavesdroppers [16], secure relaying [24], [25],
ergodic secrecy rate [26], finite alphabet signaling [27]–[29],
artificial noise [30] and cooperative jammer [31], among
others. The rotation method is also applicable to any problem
that can be cast as an optimization problem over a covariance
matrix. Therefore, it is worth studying the optimal covari-
ance matrix of the MIMOME channel as a general tool for
physical-layer security in various MIMO settings.

C. Organizations and Notations

The remainder of this paper is organized as follows.
Section II describes the system model and related works.
Section III introduces and elaborates on the Givens rotation
and reformulates the secrecy capacity for the MIMOME chan-
nel. Section IV, details a rotation-BFGS based algorithm to
optimize the achievable secrecy rate. In Section V, numerous
simulation results are carried out to demonstrate the effective-
ness of the proposed method. Section VI draws the conclusion.
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Fig. 1. The MIMOME channel with nt, nr , and ne antennas at the
transmitter, legitimate receiver, and eavesdropper.

Notations: Bold lowercase letters denote column vectors and
bold uppercase letters denote matrices. |x| and log2(x) denote
the absolute value and the binary logarithm of the scalar x.
A(i, j) denotes the entry (i, j) of matrix A. Besides, (A)T ,
tr(A), |A|, and diag(A) are the transpose, trace, determinate,
and diagonal of the matrix A. [A]+ replaces the negative
elements with zeros. In is a n× n identity matrix. And E{·}
is the expectation of random variables.

II. SYSTEM MODEL AND RELATED WORKS

A. System Model

We consider a MIMOME channel with nt antennas at the
transmitter, nr antennas at the receiver, and ne antennas at
the eavesdropper, as depicted in Fig. 1. The transmitter knows
the perfect channel state information (CSI) of both users.2 The
received signals at the legitimate receiver and the eavesdropper
can be, respectively, expressed as

yr = Hx + wr, (1a)

ye = Gx + we, (1b)

in which H ∈ R
nr×nt and G ∈ R

ne×nt are the channels
corresponding to the receiver and eavesdropper, x ∈ R

nt

is the transmitted signal, and wr ∈ R
nr and we ∈ R

ne

are independent and identically distributed (i.i.d) Gaussian
noises with zero means and identity covariance matrices.
A representation of secrecy capacity is given by [9]

(P1) Cs = max
Q�0,tr(Q)≤Pt

1
2

log2

|Inr + HQHT |
|Ine + GQGT | . (2)

Based on Slyvester’s determinant theorem, i.e., det(I+XY) =
det(I + YX), (2) can also be rewritten as

Cs = max
Q�0,tr(Q)≤Pt

1
2

log2

|Int + HTHQ|
|Int + GTGQ| , (3)

where Q = E{xxT } ∈ R
nt×nt is the covariance matrix of

the channel input x and Pt is the total transmit power. Q is
symmetric and positive semi-definite (PSD) by definition.

2A perfect CSI is assumed, as we are deriving the theoretical limits. This
may provide an upper bound in terms of achievable secrecy rates. The method
we are developing in this paper is, however, applicable to the case with
imperfect CSI. In our future works, we will relax this idealized assumption
and consider the practical scenarios with imperfect CSI.

Fig. 2. The structure of linear precoding and power allocation. s1, . . . , snt

are the independent input symbols, λ1, . . . , λnt are their corresponding
allocated powers, and x1, . . . , xnt are the transmitted signals.

The architecture of the linear precoding and power alloca-
tion is depicted in Fig. 2. In this figure, s1, . . . , snt are input
symbols which are i.i.d Gaussian random variables with zero
means and unit variances, λis are power allocation coefficients,
V is the precoding matrix, and x = [x1, . . . , xnt ]T is the
transmit vector whose covariance is Q.

B. Existing Results

The optimal transmission over the MIMOME channel is still
an open problem in general. However, there are a number of
notable analytical results for special numbers of antennas as
well as numerical results as listed below.

1) Analytical Solutions: An analytical capacity-achieving
covariance matrix is known only for special cases. These are
limited to:

• nt = 1: this is the single-input multiple-output (SIMO)
case in which Q is a scalar and the optimal solution is
either Pt or 0 [11].

• nr = 1: the so-called multiple-input single-output
multiple-eavesdropper (MISOME) channel in which gen-
eralized eigenvalue decomposition of H and G achieves
the capacity [32].

• nt = 2, nr = 2, and ne = 1: the optimization problem is
shown to be the Rayleigh quotient and optimal signaling,
which is the maximum eigenvalue of this problem, is
unit-rank [10].

• nt = 2: in which the secrecy capacity is obtained
by modeling the covariance matrix as a 2 × 2 rotation
matrix [14], [20].

• Q is full-rank (which implies HTH − GTG � 0) and
also Pt is greater than a certain threshold [12], [21]: in
this case the problem is convex and Karush–Kuhn–Tucker
(KKT) conditions are used to find the optimal Q.
It is worth noting that, as nt grows, few channel realiza-
tions satisfy the above conditions. For nt = 3, nr = 3,
and ne = 1, for example, the probability of having
a full-rank solution is less than 18.2%.3 This value
decreases when ne goes up. Therefore, it can be said
that an analytical solution for the MIMOME channel is
still an open problem in many practical cases.

3This is obtained by Monte Carlo experiments with 106 trails where H and
G have the same distributions.
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2) Suboptimal Analytical Solution: For a general MIMOME
channel, a sub-optimal solution can be obtained using
GSVD-based beamforming [15]. By applying GSVD on H
and G, the optimization problem (3) is simplified to a set of
parallel non-interfering channels whose optimal power alloca-
tion can be obtained using Lagrange multiplier and KKT con-
ditions. Since parallelization using GSVD does not necessarily
convert this problem into an equivalent one, GSVD-based
beamforming is not the optimal solution in general. It is not
even close enough to the capacity in some cases. For example,
GSVD-based beamforming achieves less than 70% of the
capacity when nt = 3, nr = 2, and ne = 1.

3) Numerical Solutions: There are still important cases of
the MIMOME for which optimal Q is unknown. Due to the
intractability of the problem in an analytical form, numerical
solutions have been developed to tackle this problem. The
AOWF [16], which is computationally efficient to implement,
is one of them. Despite its effectiveness in many cases, AOWF
experiences problems when ne is greater than nt, for example,
which is caused by a failure in finding an optimal Lagrange
multiplier. We modify this issue in this paper, as we will see
later in Section V. The price is a higher time consumption in
the modified approach.

In the next section, we apply a rotation-based model for the
covariance matrix Q which is a generalization of the solution
in [14], [16], from nt = 2 to any arbitrary nt. This model is
then used to find transmit signaling that can be used to achieve
secrecy capacity of the MIMOME channel regardless of the
number of antennas at different nodes.

III. A ROTATION MODELING OF THE PROBLEM

In the following subsections, we further model matrix
V using the rotation matrix related method by reviewing
nt = 2 [20] first and then generalizing it to an arbitrary nt

with proof.
The covariance matrix Q can be eigendecomposed as

Q = VΛVT , (4)

in which Λ is a diagonal matrix and its diagonal elements are
the eigenvalues of Q, which are real and non-negative, i.e.,

Λ = diag(λi), λi ≥ 0, i = 1, 2, . . . , nt, (5)

and the total power constraint tr(Q) ≤ Pt will be equivalent
to

nt∑
i=1

λi ≤ Pt. (6)

Also, V ∈ R
nt×nt is the matrix composed of nt corresponding

eigenvectors of Q in R
nt vector space. Since Q is symmetric,

the matrix V is orthonormal.
With this, an immediate implication of the above decompo-

sition is that linear precoding can achieve the capacity of the
MIMOME channel.

A. Rotation Modeling for nt = 2

The capacity region of MIMOME channel with two transmit
antennas has been established in [14], [20], using a rotation

matrix in two-dimensional (2D) space. In this case, the eigen-
value matrix Λ can be written as

Λ =
[
λ1 0
0 λ2

]
, (7)

and, without loss of generality, the eigenvectors can be written
as the following orthonormal (rotation) matrix

V = V12 �
[
cos θ12 − sin θ12

sin θ12 cos θ12

]
. (8)

The rotation angle θ12 in rotation matrix V12 corresponds
to the rotation from the direction of the standard basis (unit
vector) e1 = (1, 0)T to the standard basis e2 = (0, 1)T in R

2

vector space. This rotation is achieved on the plane defined by
e1 and e2. Then, the covariance matrix Q can be built using
three parameters: the two non-negative eigenvalues λ1 and λ2,
and the rotation angle θ12. These parameters are complete
to represent any arbitrary 2 × 2 covariance matrix as in (4).
Then the original optimization problem (3) can be equivalently
converted to

Cs = max
λ1,λ2,θ12

1
2

log2

|Int + HTHVΛVT |
|Int + GTGVΛVT | , (9a)

s. t. λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 ≤ Pt. (9b)

In light of this modeling, an analytical solution for optimal
precoding matrix and power allocation scheme are obtained
in [20] by finding θ12, λ1 and λ2. In the next subsection,
we extend this method to the cases for an arbitrary nt.

B. Generalization to an Arbitrary nt

To generalize the rotation modeling method to an arbitrary
nt × nt covariance matrix, Λ ∈ R

nt×nt is a diagonal matrix
with non-negative elements Λ(i, i) � λi. V is a rotation
matrix in R

nt×nt vector space which can be obtained by

V =
nt−1∏
i=1

nt∏
j=i+1

Vij , (10)

in which the basic rotation matrix Vij is the Givens
matrix [33] defined as

Vij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · · · · 0
...

. . .
...

vii · · · vij

...
. . .

...
vji · · · vjj

...
. . .

...
0 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

and [
vii vij

vji vjj

]
=
[
cos θij − sin θij

sin θij cos θij

]
. (12)

Vij represents a rotation from the ith standard basis to the
jth standard basis in R

nt vector space with a rotation angle θij .
That is, we show that an arbitrary orthogonal matrix V
can be represented by (10). Further, an arbitrary covariance
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matrix Q ∈ R
nt×nt can be represented by nt non-negative

eigenvalues and 1
2nt(nt − 1) rotation angles.

It should be noted that the order of multiplication in (10) is
not unique, and a different order will lead to different rotation
angles θij . In this paper, without loss of generality, we use the
order definition in (10).

Lemma 1: To reach the secrecy capacity of the MIMOME
with nt ≥ 2, it is sufficient to use a PSD diagonal Λ and
the rotation matrix V given in (10) to generate the input
covariance matrix Q = VΛVT .

Proof: First, we prove that Q = VΛVT is a covari-
ance matrix. It is straightforward to check that V in (10)
is an orthonormal matrix, i.e., VVT = I. Since diagonal
elements of Λ are non-negative, Q is symmetric and PSD,
i.e., a covariance matrix.

Next, we prove that an arbitrary covariance matrix Q can be
written as Q = VΛVT while V is defined as (10). It suffices
to find θij such that (13) holds for a given orthonormal V⎛

⎝nt−1∏
i=1

nt∏
j=i+1

Vij

⎞
⎠

T

V = I. (13)

This process is carried out in Algorithm 1. In fact, (13) applies
a series of Givens rotation on V. They keep the relative
orthogonality and rotates V to identity matrix I.

To better appreciate this, we note that if we expand the
product of matrices on the left side of V in (13), we see that
V is initially multiplied with VT

12. Then, the corresponding
rotation angle θ12 can be chosen to set the entry (2, 1) of
(V12V) to zero. Next, VT

13 is multiplied to the new V and
θ13 can be chosen to set the entry (3, 1) to zero. This process
continues until the last element under the main diagonal of V,
i.e., the entry (nt, nt−1), becomes zero. We note that, since V
is orthonormal, the upper triangle also will be zero throughout
this process. That is, the left side of (13) becomes an identity
matrix. This proves Lemma 1. The rotation angles θij can
be obtained by Algorithm 1 which is a generalization of
Algorithm 5.1.3 of [33] for vectors in R

nt , where atan2(·, ·)
is the four-quadrant inverse tangent denoted by atan2 in
MATLAB.

In certain cases, the eigenvalue decomposition of Q may
give an improper rotation matrix [34] whose determinate is −1
and cannot be converted to an identical matrix by rotation. As a
result, Vij for (13) does not exist. To deal with this issue,
the improper rotation matrix can be converted to a proper
rotation matrix by exchanging arbitrary two eigenvectors of
V and the corresponding eigenvalues of Λ. As an example,
we can define V′ = VI′ and Λ′ = I′T ΛI′, where

I′ =

⎡
⎢⎢⎢⎢⎢⎣

1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 0 1
0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

nt×nt . (14)

This specific I exchanges the last two eigenvectors and eigen-
values of Q. Since I′I′T = I, it is clear that

V′Λ′V′T = (VI′)
(
I′T ΛI′

)
(VI′)T = VΛVT = Q. (15)

Algorithm 1 Rotation Angles Solution

1: Initialize [V,Λ] = eig(Q), i = 1;
2: if det(V) = −1 then
3: Exchange first two columns of V;
4: Exchange first two values on diagonal of Λ;
5: end if
6: while i ≤ (nt − 1) do
7: j = i + 1;
8: while j ≤ nt do
9: θij = −atan2(−V(j, i),V(i, i));

10: Vrot = Int ;
11: Vrot(i, i) = Vrot(j, j) = cos θij ;
12: Vrot(j, i) = −Vrot(i, j) = sin θij ;
13: V = VrotV;
14: j = j + 1;
15: end while
16: i = i + 1;
17: end while
18: Output θij , ∀1 ≤ i < j ≤ nt.

In such a case, V′ is a rotation matrix and the Q will remain
the same. This completes the proof of Lemma 1. �

Lemma 1 shows that any covariance matrix can be formed
using a rotation matrix and a diagonal power allocation matrix.
This is useful in many optimization problems, including that of
the MIMOME channel in (3), as it removes the PSD constraint
of the covariance matrix (i.e., Q � 0). Instead, we will have a
set of linear constraints to make sure that the diagonal elements
of the power allocation matrix are non-negative and their sum
is not greater than Pt.

Specifically, for any nt, the optimization problem (3) is
equivalently reformulated as

(P2) Cs = max
λ,θ

1
2

log2

|Int + HTHVΛVT |
|Int + GTGVΛVT | , (16a)

s. t.
nt∑

i=1

λi ≤ Pt, (16b)

λi ≥ 0, i ∈ {1, . . . , nt}, (16c)

in which we have defined

λ � {λi}, 1 ≤ i ≤ nt, (17a)

θ � {θij}, 1 ≤ i < j ≤ nt. (17b)

as the compact form of the parameters of (10)-(12).4

Different from (3), this new representation replaces the con-
straint that Q is symmetric and PSD by linear constraints on
λ only while rotation angles can take any number, i.e., θ ∈ R.
Then, numerical methods can be applied to optimize the
parameters θ and λ to obtain the optimal secrecy rate. For Q

4It is worth mentioning that Givens rotation method applied in many
problems can finally boil down to finding the optimal rotation parameters.
However, the application of the rotation method is different. In [23], only the
optimal unitary beamforming without power allocation is evaluated because it
constrained the precoding matrices to be unitary for limited feedback. On the
other hand, the optimization approach is in different manners. In their iterative
algorithm, the rotation angles of each covariance matrix are obtained one by
one. In our paper, these parameters can be updated vector-wised once.
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Fig. 3. The system design of rotation-BFGS method.

with dimension nt, the required number of eigenvalues is nt,
whilst this number is 1

2nt(nt − 1) for the rotation angle. The
total number of parameters is 1

2nt(nt + 1), which is equal
to the number of the elements of the upper triangular of Q.
Theoretically, the rotation modeling method can provide a
systematic approach to traverse Q by traversing λ and θ in
finite regions. The feasible region of λ is given in (16b)-(16c)
and for each rotation angle the regions can be [0, 2π).5 The
rotation method can be applied to many other problems, some
listed in Section I-B.

As mentioned earlier, for nt = 2 a closed-form solution for
(P2) is known in [14]. However, finding closed-form solutions
of λ and θ is challenging for nt ≥ 3. Next, we introduce a
structure to solve this problem effectively.

IV. SOLVING THE NEW OPTIMIZATION PROBLEM

In this section, we develop a novel method to solve (P2).
Specifically, we convert (P2) to an unconstrained problem
and resort to BFGS [35] to solve it. We should highlight
that various iterative optimization methods, such as gradient
descent, Newton’s method, and quasi-Newton algorithms with
interior-point method (that is, MATLAB convex optimization
tool fmincon), may be used to optimize (P2). Among them,
Newton’s method is the fastest, but it requires the local Hessian
matrix and its inverse, which may not exist at some points.
Quasi-Newton methods keep the convergence advantage of
Newton’s method without requiring the local Hessian matrix
and its inverse. BFGS algorithm is an outstanding variety of
quasi-Newton methods that can converge faster for non-convex
problems [36], [37]. The proposed method is called rotation-
BFGS. The block diagram of this method is given in Fig. 3
in which the inputs are channel matrices H and G and
average power Pt, and the outputs are the parameters of the
rotation model (i.e., λ∗ and θ∗) as well as the corresponding
secrecy rate R∗. As shown in Fig. 3, there are four blocks
in the BFGS-based optimizer: GSVD for initialization, BFGS
for optimization, eigenvalues rectifier, and objective function
(16a) evaluator. In the following subsections, we introduce the
functionality of each block and the optimization algorithm.

5It can be proved that in some cases the optimal θij is in [0, π). See, for
example, the case for nt = 2 [14].

A. Functionality of Each Block

1) Initialization Using GSVD: While initial values of λ
and θ can be chosen randomly, efficient initial values can save
time by reducing the number of iterations. For this reason, and
knowing that GSVD-based beamforming is a good solution
for this problem, we use GSVD to find the initial values
(λ(0) and θ(0)) for our rotation-BFGS algorithm. The solution
given by GSVD-based beamforming provides a precoding
matrix E which satisfies:

HE = ΨrC, (18a)

GE = ΨeD, (18b)

CTC + DT D = I, (18c)

where E ∈ R
nt×q, q = min(nt, nr + ne), CTC = diag(ci)

and DT D = diag(di), i ∈ {1, . . . , q}, are diagonal matrices,
and Ψr ∈ R

nr×nr and Ψe ∈ R
ne×ne are orthonormal

matrices. Besides, the power allocation matrix P = diag(pi)
is determined by [15]

pi=

⎧⎪⎨
⎪⎩
max(0,

2(ci−di)/(μei)−2
1+
√

1−4cidi+4(ci−di)cidi/(μei)
), if ci >di,

0, otherwise,

(19)

in which pi and ei are the ith diagonal element of P and ETE
respectively, and μ is the Lagrange multiplier to ensure

tr(EPET ) = Pt. (20)

GSVD-based Q is then EPET . Thus, we can determine V(0)

and Λ(0) from eigenvalue decomposition of EPET , i.e., from

Q(0) = EPET = V(0)Λ(0)V(0)T . (21)

Then, λ(0) = diag(Λ(0)) and θ(0) can be obtained from V(0)

using Algorithm 1.
2) BFGS Optimizer: Different iterative optimization meth-

ods, such as gradient descent, Newton’s method, and
quasi-Newton algorithms may be used to optimize (P2).
Among the above methods, Newton’s method is the fastest
method, but it requires a local Hessian matrix and its inverse,
which may not exist or hard to obtain. Quasi-Newton meth-
ods keep the convergence advantage of Newton’s method
without requiring the local Hessian matrix and its inverse.
An outstanding variety of quasi-Newton methods is the BFGS
algorithm [35]. We give a brief introduction to this method in
the following.

Given an unconstrained optimization problem

arg min
x

f(x), (22)

with argument vector x and objective function f(x), BFGS
algorithm updates the vector x iteratively according to

x(k+1) = x(k) − α(k)M(k)g(k), k ≥ 0, (23)

in which

• α(k) is the step size to minimize f(x(k+1)), which can
be obtained via a line search.
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• g(k) is the gradient of f(·) at x(k).
• M(k) is an approximation of the inverse of the Hessian

matrix.

The matrix M is initialized by a unity matrix, i.e., M(0) = I,
and is then updated as [35]

M(k+1) =

(
I− δ(k)

x δ(k)T
g

δ(k)T
g δ(k)

x

)
M(k)

(
I − δ(k)

g δ(k)T
x

δ(k)T
g δ(k)

x

)

+
δ(k)
x δ(k)T

x

δ(k)T
g δ(k)

x

, (24)

in which

δ(k)
x � x(k+1) − x(k), (25a)

δ(k)
g � g(k+1) − g(k), (25b)

respectively, represent the difference between the arguments
and the gradients in two successive iterations. The gradient
can be obtained analytically or numerically.

Due to its fast convergence speed and self-correcting prop-
erty [36], BFGS is widely used in unconstrained optimization
problems. However, the problem in this paper is a constrained
optimization problem due to (16b) and (16c). To overcome
this limitation, we relax the constraints of (P2) when using
the BFGS optimizer, but we add a new block called a rectifier,
as shown in Fig. 3. The rectifying block is used to ensure that
the constraint on λis are satisfied as elaborated on in what
follows.

3) Rectifying Eigenvalues: To use BFGS, the optimization
problem should be unconstrained. However, the eigenvalues in
(P2) need to be constrained. To overcome this issue, we rectify
the eigenvalues to ensure that the constraints in (16b)-(16c) are
satisfied.

Before talking about the rectification process, we highlight
that we only optimize the first nt − 1 eigenvalues because
the last eigenvalue will be obtained by

∑nt

i=1 λi = Pt. That
is, we use Pt −

∑nt−1
i=1 λi as the value of the last eigenvalue

(λnt ) since in the MIMOME channel it is known that optimal
solution uses the total power [7], [13], [14].

Suppose λ̃ ∈ R
nt−1 is the vector of first nt − 1 uncon-

strained eigenvalues obtained from the BFGS algorithm.
We obtain λ ∈ R

nt (the rectified eigenvalue vector) from

λ = r(λ̃, Pt), (26)

where the rectifying function r(·, ·) is defined by the following
successive processes:

λ+ = [λ̃]+, (27a)

λ̄ =

⎧⎨
⎩

λ+ · Pt∑nt−1
i=1 λ+

i

,
∑nt−1

i=1 λ+
i > Pt,

λ+, otherwise,
(27b)

λ =

[
λ̄, Pt −

nt−1∑
i=1

λ̄

]
. (27c)

In (27a), [·]+ is an element-wise operation which forces all
negative elements of λ̃ to 0 while keeping non-negative values
unaltered. This will take care of the constraints in (16c). But,
the elements of the new vector λ+ may not still satisfy (16b).

Fig. 4. Illustration of eigenvalues rectification for nt = 3.

In such a case, in (27b), we scale the new vector such that
the sum of the eigenvalues does not exceed Pt. Finally, in the
(27c), the last eigenvalue is added. Thus, the problem (P2)
can be solved using an unconstrained optimization method,
namely, the BFGS.

This process illustrated in Fig. 4 for nt = 3 and Pt = 5,
as an example. In this figure, the blue (shaded) area denotes
the feasible region of the eigenvalues, red points outside the
region are unconstrained eigenvalues λ̃ = [λ1, λ2, · · · , λnt−1]
(the output of the BFGS block), and green squares denote
their corresponding rectified eigenvalues. With the proposed
rectification in (27a)-(27b), unrestricted inputs will be forced
to new points on the boundary of the feasible region. For
example, for the point (−1, 4) we have λ̃ = [−1, 4], λ̄ =
λ+ = [0, 4] (the second case in (27b)) and λ = [λ1, λ2, P −
λ1 − λ2] = [0, 4, 1], following (27a)-(27b). Similarly, the red
point (−1,−1) will result in λ = [0, 0, 5].

4) The Objective Function: In this paper, our goal is to
maximize the secrecy rate R defined by

R(λ, θ) � 1
2 log2

|Int+VT HT HVΛ|
|Int+VT GT GVΛ| , (28)

which is a function of θ and λ as shown in (P2). Noting
that our problem is a maximization rather than a minimization
problem, in comparison to (22), we define the objective
function f(x) = −R. With this, we can link BFGS and
rotation method together.

B. Rotation-BFGS Algorithm

As shown in Fig. 3, GSVD provides an initial value for
the argument x in the BFGS block. The rectifier and the
objective function can be considered together which require
the current value of x and provide corresponding achievable
rate back to the BFGS. Then, BFGS will update x and check
the termination condition.

To link the BFGS to the rotation model, we need to define
the relation between x, the arguments inside BFGS, and the
parameters λ and θ. This is given by

x � [λ̃, θ], (29)

where λ̃ is the first nt − 1 elements of λ and θ is the
same as we defined in (17b). In this way, we reduce one
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argument (eigenvalue) for efficiency. Then, in the kth iteration
(k ≥ 0) of the rotation-BFGS algorithm, the relation between
argument x(k) in the BFGS and the eigenvalues λ(k) in
precoding is

x(k) � [λ̃
(k)

, θ(k)], (30a)

λ(k) � r(λ̃
(k)

, Pt), (30b)

in which λ̃
(k)

denotes the first nt−1 unconstrained eigenvalues
and λ(k) is the constrained (rectified) eigenvalues which are
obtained by (26)-(27c). Besides, the value of the function is
denoted as

f (k) � f(x(k)) = −R(r(λ̃
(k)

, Pt), θ(k)), (31)

in which λ(k) and θ(k) can be obtained from x(k) according
to (30a)-(30b), and f(·) denotes the mapping from x(k) to
f (k). Finally, the gradient vector g(k) with respect to x(k) is
obtained numerically. Specifically, the ith element of g in the
kth iteration is given by

g
(k)
i =

f(x(k) + εi) − f (k)

|εi| , (32)

where εi has the same length as x and its all components are
zero except for the ith element which is a constant ε1.

In our proposed rotation-BFGS method, as shown in Fig. 3,
GSVD-based beamforming is first applied to find initial values
of λ(0), θ(0) which are obtained by GSVD decomposition

as described in Section IV-A.1. Thus x(0) = [λ̃
(0)

, θ(0)].
We should also highlight that λ̃

(0)
contains the first nt − 1

elements of λ(0).

Algorithm 2 Rotation-BFGS Method

1: Initialize: ε1 = ε2 = 10−4, k = 0, and M(0) = I;
2: Find V(0) and Λ(0) using GSVD in (21);
3: Find λ(0) which is the diagonal of Λ(0);

4: Find λ̃
(0)

which is the first (nt − 1) elements in λ(0);
5: Find θ(0) using Algorithm 1;
6: Find R(0) using (28);
7: Find x(0), g(0), and f (0) using (30a)-(32);
8: while 1 do
9: Find α(k) = α∗ by line search using Algorithm 3;

10: Find x(k+1) using (23);
11: Find λ(k+1) and θ(k+1) from x(k) using (30a)-(30b);
12: Find R(λ(k+1), θ(k+1)) using (28);
13: Find g(k+1) and f (k+1) using (30a)-(32);
14: Find M(k+1) using BFGS by (24)-(25b);
15: if |f (k+1) − f (k)| < ε2 then
16: R∗ = −f (k+1), λ∗ = λ(k+1), and θ∗ = θ(k+1);
17: Break;
18: end if
19: k = k + 1;
20: end while
21: Output: R∗, λ∗, and θ∗.

Algorithm 2 illustrates the details of the proposed opti-
mization process. Within this algorithm, we require a line

TABLE I

ACHIEVABLE RATE (IN BPS/HZ) OF EACH METHOD
FOR nt = 3 AND Pt = 30W

search. The details of the line search are given in Algorithm 3
in the Appendix. Algorithm 2 will terminate if the secrecy
rate at two successive iterations are very close, i.e., when their
difference is smaller than a tolerance (ε2). Algorithm 2 guar-
antees a global convergence based on the global convergence
theorem [35, Chapter 7, pp. 196–204], because the optimized
function (31) (the objective function together with the rectifier
in Fig. 3) is continuous, and the iteration in (23) can lead to
a decreasing sequence, i.e., f(x(k+1)) ≤ f(x(k)).

We analyze the complexity of the different algorithms
here. The computation of matrix multiplications and matrix
inverse yields the complexity of O(L3) where L =
max(nt, nr, ne). GSVD-based precoding [15], used as the
initial point generator, has the complexity of O(L3 +
L log(1/ε)) [38] in which ε is the convergence tolerance of
the algorithm, while bisection search requires O(log(1/ε))
iterations [39]. Besides, the BFGS algorithm has the com-
plexity of O(n2) [37], where n is the size of input variables
which is the total number of optimized rotation parameters,
i.e., 1

2nt(nt +1). Thus, the overall complexity of Algorithm 2
is O(n4

t + L3 + L log(1/ε)). AOWF [16, Algorithm 1] yields
O(L3

ε log(1/ε)), in which O(1
ε ) and O(log(1/ε)) are the outer

layer loop and inner bisection search, respectively. It should
also be mentioned that rotation-Fmin has the same asymptotic
complexity as rotation-BFGS. However, for small values of nt,
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TABLE II

ACHIEVABLE RATE (IN BPS/HZ) OF EACH
METHOD FOR nt = 4 AND Pt = 30W

rotation-BFGS has about an order of magnitude smaller com-
plexity than rotation-Fmin, as we show in Section V.

V. NUMERICAL RESULT

In this section, extensive numerical results are provided
to illustrate the performance of the proposed rotation-BFGS
method. Four methods are taken into account:

• Rotation-BFGS: the proposed rotation-BFGS parameter-
ization solved by the BFGS method.

• Rotation-Fmin: the proposed rotation modeling solved
using MATLAB convex optimization tool fmincon.

• GSVD: GSVD-based beamforming with optimal power
allocation [15], as described in Section IV-A.1.

• AOWF: alternating optimization and water-filling [16].
All results are based on averaging over 1000 realizations of
independent H and G. These entries of H and G are generated
based on the standard Gaussian distribution, i.e., N (0, 1).
Two performance metrics are considered. In the first part,
we focus on the achievable secrecy rate. In the second part,
the time consumption is analyzed for different methods in
various antenna configurations.

A. Achievable Secrecy Rate

We evaluate the performance of the Rotation-BFGS,
Rotation-Fmin, GSVD, and AOWF approaches with respect to
the variation of the number of antennas. The average secrecy

Fig. 5. Comparisons between the secrecy transmission rates of the proposed
method with GSVD and AOWF.

rates are listed in Tables I and II respectively for nt = 3
and nt = 4. As expected, increasing the number of antennas
at the eavesdropper decreases secrecy rate. On the contrary,
the secrecy rate will increase when the legitimate receiver or
transmitter has higher number of antennas. To better appreciate
the improvement due to our proposed numerical method,
relative secrecy rate improvement between Rotation-BFGS
and GSVD and Rotation-BFGS and AOWF is investigated
in the following and illustrated in Fig. 5. Let us define
relative rate improvement with respect to GSVD and AOWF,
respectively, as

ηg =
Rr − Rg

Rg
× 100%, (33a)

ηa =
Rr − Ra

Ra
× 100%, (33b)

where Rr, Rg, and Ra represent the secrecy rate achieved
by the proposed method, GSVD, and AOWF, respectively.6

As shown in Fig. 5, the proposed approach is capable of

6Rotation-Fmin is similar to rotation-BFGS in terms of the achievable rate
(details are in Table I and II), so relative rate improvements of that to GSVD
and AOWF are the same as those in rotation-BFGS.
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Fig. 6. Secrecy rate of the MIMOME channel versus the transmit power.
The proposed algorithms (Rotation-BFGS and Rotation-Fmin) are compared
with GSVD and AOWF.

achieving the same or better secrecy rate in almost any antenna
setting. The darker the cell color, the higher improvement is
achieved by the proposed method.

There is a clear pattern that when the eavesdropper has a
smaller number of antennas than the transmitter, the proposed
method outperforms GSVD. The best case is [nr, ne] = [2, 1]
where the improvement is about 32%. On the other hand,
for cases with larger ne, the rotation-BFGS performs better
than AOWF. The best case is [nr, ne] = [6, 6] where the
improvement is 7.5%. This pattern not only exist when nt = 3
but also at higher nts, at least nt = 4. Some more detailed
comparisons are presented as follows:

1) The MIMOME With Small ne: GSVD-based beamform-
ing fails to get close to the secrecy capacity. This phenomenon
has been verified by previous literature [14]. As can be seen
in Fig. 6(a), rotation-BFGS and AOWF can achieve similar
results. On the contrary, GSVD clearly has a gap with those
methods which results from sub-optimality of GSVD.

2) The MIMOME With Large ne: In this setting, AOWF
does not perform very well because the Lagrange multiplier of
AOWF cannot be obtained properly. As illustrated in Fig. 6(b)
and Fig. 5, our proposed method outperforms AOWF in this
regime.

Fig. 7. Time costs of the proposed methods, GSVD and AOWF, for
(a) nt = 3, (b) nt = 4, with nr and ne from 1 to 6.

From the simulation results, it is seen that the proposed
rotation-BFGS is robust in a wide range of practical antennas
settings on each node. This is a big advantage as the robustness
towards the variation of ne is necessary to guarantee secure
communication. We note that the eavesdropper can have any
number of antennas, and the solution for wiretap channels
should be robust to such variations. This makes the proposed
precoding highly competitive the existing solutions of the
MIMOME channel.

B. Time Consumption

Besides computational complexity, the execution time of
each algorithm is also important and provides a means
to evaluate the complexity. This evaluation is shown in
Figs. 7(a)-7(b) for nt = 3 and nt = 4 respectively, which
are averaged over 1000 channel realizations in each setting.
GSVD has, by far, the best time cost since it transforms the
problem into finding the best Lagrange multiplier. However,
as we illustrated previously, the precoding provided by GSVD
may be far from the optimal solution. The proposed rotation-
BFGS method clearly outperforms AOWF, whose time con-
sumption is very high, especially when ne ∈ [4, 5, 6]. The
gap becomes larger when ne increases. In such cases, AOWF
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Algorithm 3 Line Search (Golden Section [35]) for the BFGS

1: Requires from Algorithm 2: ε2, x(k), M(k), g(k), and f (k);
2: Define: x � x(k), d � M(k)g(k);
3: Initialize: ε3 = 5 × 10−4, τ1 = 3, τ2 = 0.382, and τ3 =

0.618;
4: Initialize: α � [α1, α2, α3, α4] = [0, 0, 0, 0.1];
5: Initialize: f � [f1, f2, f3, f4] = [f (k), 0, 0, f(x− α4d)];
6: while α4 < 20 and f1 < f4 do
7: Let α4 = τ1α4 and f4 = f(x− α4d);
8: end while
9: Let α2 = τ2α4 and α3 = τ3α4;

10: Let f2 = f(x− α2d) and f3 = f(x− α3d);
11: while α4 − α1 > ε3 and max(f) − min(f ) > ε2 do
12: Define: m is the index of the smallest element in f ;
13: Define: q1 � max(1, m − 1) and q2 � min(4, m + 1);
14: Let α1 = αq1 and α4 = αq2 ;
15: Let α2 = α1 + τ2(α4 −α1) and α3 = α1 + τ3(α4 −α1);
16: if m = 2 then
17: Let f3 = f2 and f2 = f(x − α2d);
18: else if m = 3 then
19: Let f2 = f3 and f3 = f(x − α3d);
20: else
21: Let f2 = f(x− α2d) and f3 = f(x− α3d);
22: end if
23: end while
24: Output: α∗ = αm.

does not perform well either in terms of achievable rate or
time cost. On the other hand, our approach is robust in any
antenna setting and more efficient in time cost compared with
AOWF. Rotation-Fmin achieves almost the same performance,
but its execution time is higher. This is because fmincon
includes BFGS and interior-point method, and instead of the
interior-point method, we use a rectifier which is more efficient
in terms of programming.

In summary, the proposed rotation-BFGS method gives
robust precoding and power allocation for the MIMOME
channel. By applying BFGS as an optimizer, the rotation
method has a better performance compared to other numerical
methods like AOWF in secrecy and time complexity. In addi-
tion, the framework we provided in this paper can be used to
solve many other problems, some listed in Section I-B.

VI. CONCLUSION

In this paper, we have developed a rotation-based method,
called rotation-BFGS, for precoding and power allocation of
Gaussian MIMOME channels. In this method, the transmit
covariance matrix is constructed using Givens rotation matri-
ces. With this construction, the PSD constraint of the transmit
covariance matrix is removed and the capacity optimization
problem is simplified. The precoding (rotation) matrix and
power allocation coefficients have been obtained iteratively
using a modified BFGS algorithm. Compared to existing
approaches, the proposed method is robust and performs well
regardless of the number of antennas at each node. The
proposed method outperforms the GSVD-based beamforming

when ne < nt and AOWF particularly when ne ≥ nt. This
approach can also use the results of existing precoding and
power allocation methods, such as the GSVD-based approach,
as an initial point to expedite finding the solution.

In addition, the proposed rotation-BFGS method has a great
potential for finding precoding and power allocation in various
other applications, including in MIMO broadcast channel
and MIMO channel with energy harvesting constraints, both
with and without secrecy. Future works will focus on further
improving the efficiency of solving parameters and extension
of this approach to other related problems.

APPENDIX A
LINE SEARCH ALGORITHM FOR THE BFGS METHOD

The line search method we use is the Golden section
search [35] and summarized in Algorithm 3, where αi and
fi for 1 ≤ i ≤ 4 are temporary records for line search steps
size and function values.
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