The Capacity of Less Noisy Cognitive Interference Channels

Mojtaba Vaezi

Department of Electrical and Computer Engineering McGill University

50th Annual Allerton Conference Monticello, Illinois

October 4, 2012

Introduction

Cognitive Interference Channel

Introduction

Cognitive Interference Channel

Motivation for studying the cognitive channel

- Models an ideal cognitive radio
- Compatible for efficient spectrum utilization
- Helps understand and analyze cognitive relay networks
- Fundamental limits by themselves

This Talk

- Introduction
- 2 Two inner bounds
 - Superposition coding
- Outer bound
 - More capable idea
- Capacity for the less noisy CIC
 - cognitive-less-noisy CIC
- Extension to more capable CIC
 - cognitive-more-capable CIC

Channel model

The DMS cognitive interference channel (DMS-CIC)

• Encoder 2 non-causally knows X_1^n and M_1

Broadcast Channels (BC)

if $I(U; \frac{Y_1}{I}) \ge I(U; Y_2)$ $\forall p(u, x) \Rightarrow Y_1$ is less noisy if $I(X; \frac{Y_1}{I}) \ge I(X; Y_2)$ $\forall p(x) \Rightarrow Y_1$ is more capable

Broadcast Channels (BC)

if
$$I(U; Y_1) \ge I(U; Y_2)$$
 $\forall p(u, x) \Rightarrow Y_1$ is less noisy if $I(X; Y_1) \ge I(X; Y_2)$ $\forall p(x) \Rightarrow Y_1$ is more capable

- Capacity is know for both classes
 - less noisy [Korner-Marton 77]
 - more capable [El Gamal 79]
- Superposition coding is optimal

Cognitive Interference Channels (CIC)

 Y_1 is in a better condition than Y_2 [Vaezi-Vu 2011]

Cognitive Interference Channels (CIC)

 Y_1 is in a better condition than Y_2 [Vaezi-Vu 2011]

 Y_2 is in a better condition than Y_1

Cognitive-less-noisy CIC

This talk

- Cognitive receiver is less noisy than primary if $I(U; Y_2) \ge I(U; Y_1)$ for all $p(u, x_1, x_2)$
- Cognitive receiver is more capable than primary if $I(X_1, X_2; Y_2) \ge I(X_1, X_2; Y_1)$ for all $p(x_1, x_2)$

Existing capacity results for DM-CIC

- Strong interference [Maric-Yates-Kramer, IT 2007]
- Weak interference [Wu-Vishwanath-Arapostathis, IT 2007]
- Cognitive-better-decoding [Rini-Tuninetti-Devroye, IT 2011]

Existing capacity results for DM-CIC

- Strong interference [Maric-Yates-Kramer, IT 2007]
- Weak interference [Wu-Vishwanath-Arapostathis, IT 2007]
- Cognitive-better-decoding [Rini-Tuninetti-Devroye, IT 2011]

Remark

Rini et al.'s region is equal to Wu et al.'s region

-To appear in IT

Superposition coding-based inner bound

Theorem 1

For the DM-CIC, any rate pair (R_1, R_2) that satisfies

$$R_1 \le I(W, X_1; Y_1),$$

 $R_2 \le I(X_2; Y_2 | W, X_1),$ (1)
 $R_1 + R_2 \le I(X_1, X_2; Y_2),$

is achievable for all probability distributions $p(w, x_1, x_2)$.

Achievability

- Superposition coding at the cognitive transmitter
- Joint typicality decoding
- Y_1 can only decode M_1 (the cloud center) while Y_2 can decode the satellite codewords as well

Theorem 2

The union of all rate pairs (R_1, R_2) such that

$$R_1 \le I(U; Y_1),$$

 $R_2 \le I(V; Y_2),$
 $R_1 + R_2 \le I(X_2; Y_2|U) + I(U; Y_1),$
 $R_1 + R_2 \le I(X_1; Y_1|V) + I(V; Y_2),$

for some joint distribution $p(u, v, x_1, x_2)p(y_1, y_2|x_1, x_2)$ provides an outer bound on the capacity region of the DM-CIC.

Proof.

- Similar to the converse of the more capable BC
- Observe the symmetry of outer bound

Simplified outer bound

Consider the first and third inequalities from the outer bound

$$R_1 \le I(U; Y_1),$$

 $R_1 + R_2 \le I(X_2; Y_2|U) + I(U; Y_1),$

This region is equal to

Simplified outer bound

Consider the first and third inequalities from the outer bound

$$R_1 \le I(U; Y_1),$$

 $R_1 + R_2 \le I(X_2; Y_2|U) + I(U; Y_1),$

This region is equal to

$$R_1 \le I(U; Y_1),$$

 $R_2 \le I(X_2; Y_2|U),$

Simplified inner bound

Consider the inner bound in Theorem 1 and let $U = W, X_1$ Then it is easy to see that

- Sum rate (the third inequality) is redundant
- The achievable region reduces to

$$R_1 \le I(U; Y_1),$$

 $R_2 \le I(X_2; Y_2|U),$

Capacity region for the cognitive-less-noisy CIC

$\mathsf{Theorem}$

The union of all rate pairs (R_1, R_2) such that

$$R_1 \le I(U; Y_1),$$

 $R_2 \le I(X_2; Y_2|U)$

for some input distribution $p(u, x_1, x_2)$ gives the capacity region for the cognitive-less-noisy DM-CIC.

Remark

• In this capacity region U can be replaced by W, X_1

Extension to the cognitive-more-capable CIC

- This work is extended to the cognitive-more-capable CIC, and
 - Theorem 1 gives the capacity of the cognitive-more-capable CIC
 - -available on arXiv
 - It includes all existing capacity result for the CIC
 - It is the largest capacity result for the CIC

Extension to the cognitive-more-capable CIC

- This work is extended to the cognitive-more-capable CIC, and
 - Theorem 1 gives the capacity of the cognitive-more-capable CIC
 - -available on arXiv
 - It includes all existing capacity result for the CIC
 - It is the largest capacity result for the CIC

Concluding remark

 Superposition coding, even without requiring rate splitting, provides the largest capacity result for the DM-CIC, to date.

Thank you!