The Capacity of More Capable Cognitive Interference Channels

Mojtaba Vaezi

Department of Electrical and Computer Engineering McGill University

International Symposium on Information Theory Istanbul, Turkey

July 10, 2013

Introduction

Cognitive Interference Channel

Motivation for studying the cognitive channel

- Models an ideal cognitive radio
- Compatible for efficient spectrum utilization
- Helps understand and analyze cognitive relay networks
- Fundamental limits by themselves

Channel model

The discrete memoryless cognitive interference channel (DM-CIC)

• Encoder 2 non-causally knows M₁

Existing capacity results for DM-CIC

- Strong interference [Maric-Yates-Kramer, IT 2007]
- Weak interference [Wu-Vishwanath-Arapostathis, IT 2007]
- Cognitive-better-decoding [Rini-Tuninetti-Devroye, IT 2011]

Existing capacity results for DM-CIC

- Strong interference [Maric-Yates-Kramer, IT 2007]
- Weak interference [Wu-Vishwanath-Arapostathis, IT 2007]
- Cognitive-better-decoding [Rini-Tuninetti-Devroye, IT 2011]

Remark

Rini et al.'s region is equal to Wu et al.'s region -[M. Vaezi , IT 2013] Preliminaries Main results Comparison

Problem setup Channel model

Broadcast Channels (BC)

if $I(U; Y_1) \ge I(U; Y_2) \quad \forall \ p(u, x) \Rightarrow Y_1$ is less noisy if $I(X; Y_1) \ge I(X; Y_2) \quad \forall \ p(x) \Rightarrow Y_1$ is more capable

- Capacity is known for both classes
 - less noisy [Korner-Marton 77]
 - more capable [El Gamal 79]
- Superposition coding is optimal

Cognitive Interference Channels (CIC)

 Y_1 is in a better condition than Y_2 [Vaezi-Vu 2011]

 Y_2 is in a better condition than Y_1

Cognitive-more-capable CIC

This talk

- Cognitive receiver is less noisy than primary if $I(U; Y_2) \ge I(U; Y_1)$ for all $p(u, x_1, x_2)$
- Cognitive receiver is more capable than primary if $I(X_1, X_2; Y_2) \ge I(X_1, X_2; Y_1)$ for all $p(x_1, x_2)$

Superposition coding-based inner bound

Theorem 1

For the DM-CIC, any rate pair (R_1, R_2) that satisfies

 $egin{aligned} &R_1 \leq I(W,X_1;Y_1), \ &R_2 \leq I(X_2;Y_2|W,X_1), \ &R_1+R_2 \leq I(X_1,X_2;Y_2), \end{aligned}$

is achievable for all probability distributions $p(w, x_1, x_2)$.

Achievability

- Superposition coding at the cognitive transmitter
- Joint typicality decoding
- Y₁ can only decode M₁ (the cloud center) while Y₂ can decode the satellite codewords as well

More-capable BC capacity inspired outer bound

Theorem 2

The union of all rate pairs (R_1, R_2) such that

 $\begin{aligned} &R_1 \leq I(U, X_1; Y_1), \\ &R_1 + R_2 \leq I(U, X_1; Y_1) + I(X_2; Y_2 | U, X_1), \\ &R_1 + R_2 \leq I(X_1, X_2; Y_2), \end{aligned}$

for some joint distribution $p(u, v, x_1, x_2)p(y_1, y_2|x_1, x_2)$ provides an outer bound on the capacity region of the DM-CIC.

Proof.

- The first two inequalities are from Wu et al.'s outer bound
- Similar to the converse of the more capable BC

Simplified outer bound

Consider the first and second inequalities from the outer bound

 $R_1 \leq I(U, X_1; Y_1),$ $R_1 + R_2 \leq I(U, X_1; Y_1) + I(X_2; Y_2|U, X_1).$

But, the **convex hull** of the above region is equal to the convex hull of the below region

Simplified outer bound

Consider the first and second inequalities from the outer bound

 $R_1 \leq I(U, X_1; Y_1),$ $R_1 + R_2 \leq I(U, X_1; Y_1) + I(X_2; Y_2 | U, X_1).$

But, the **convex hull** of the above region is equal to the convex hull of the below region

 $R_1 \leq I(U, X_1; Y_1),$ $R_2 \leq I(X_2; Y_2 | U, X_1).$

Alternative representation of the outer bound

Theorem 3

The union of all rate pairs (R_1, R_2) such that

 $egin{aligned} &R_1 \leq I(U,X_1;Y_1), \ &R_2 \leq I(X_2;Y_2|U,X_1), \ &R_1+R_2 \leq I(X_1,X_2;Y_2), \end{aligned}$

for some joint distribution $p(u, v, x_1, x_2)p(y_1, y_2|x_1, x_2)$ provides an outer bound on the capacity region of the DM-CIC.

Proof.

• Use the simplified version of the outer bound in Theorem 2

Capacity region for the cognitive-more-capable CIC

Theorem 4

The capacity region of the cognitive-less-noisy DM-CIC is given by the set of all rate pairs (R_1, R_2) such that

 $egin{aligned} &R_1 \leq I(W,X_1;Y_1), \ &R_2 \leq I(X_2;Y_2|W,X_1), \ &R_1+R_2 \leq I(X_1,X_2;Y_2), \end{aligned}$

for some $p(w, x_1, x_2)$.

Capacity region for the cognitive-more-capable CIC

Theorem 4

The capacity region of the cognitive-less-noisy DM-CIC is given by the set of all rate pairs (R_1, R_2) such that

 $egin{aligned} &R_1 \leq I(W,X_1;Y_1), \ &R_2 \leq I(X_2;Y_2|W,X_1), \ &R_1+R_2 \leq I(X_1,X_2;Y_2), \end{aligned}$

for some $p(w, x_1, x_2)$.

Remark

 Superposition coding, even without requiring rate splitting, provides the largest capacity result for the DM-CIC, to date.

Comparison and Classification

• The capacity region of the cognitive-more-capable CIC explicitly includes all existing capacity result for the CIC

Figure: The class of the discrete memoryless cognitive interference

Comparison and Classification

Table: Summary of existing and new capacity results for the DM-CIC. The subscripts 1 and 2, respectively, denote the primary and secondary (cognitive) users.^{*}

Label	DM-CIC class	Condition	Capacity region
C_I	cognitive-less-noisy	$I(U;Y_1) \leq I(U;Y_2)$	$R_1 \leq I(U; Y_1)$
			$R_2 \leq I(X_2; Y_2 U)$
C_{II}	strong interference	$I(X_1, X_2; Y_1) \leq I(X_1, X_2; Y_2)$	$R_1 \leq I(X_1; Y_1)$
		$I(X_2; Y_2 X_1) \leq I(X_2; Y_1 X_1)$	$R_2 \leq I(X_2;Y_2 X_1)$
C_{III}	weak interference	$I(X_1; Y_1) \leq I(X_1; Y_2)$	$R_1 \leq I(U, X_1; Y_1)$
		$I(U; Y_1 X_1) \leq I(U; Y_2 X_1)$	$R_2 \leq I(X_2; Y_2 U, X_1)$
			$R_1 \leq I(U, X_1; Y_1)$
\mathcal{C}'_{III}	better-cognitive-decoding	$I(U, X_1; Y_1) \leq I(U, X_1; Y_2)$	$R_2 \leq I(X_2;Y_2 X_1)$
			$R_1 + R_2 \le I(U, X_1; Y_1) + I(X_2; Y_2 U, X_1)$
			$R_1 \leq I(U, X_1; Y_1)$
C_{IV}	cognitive-more-capable	$I(X_1, X_2; Y_1) \leq I(X_1, X_2; Y_2)$	$R_2 \leq I(X_2; Y_2 U, X_1)$
			$R_1 + R_2 \leq I(X_1, X_2; Y_2)$

* It should be emphasized that $C'_{III} \equiv C_{III}$ [Vaezi 2013], $C_I \subseteq C_{II} \subseteq C_{III} \subseteq C_{IV}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ