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Motivation
Accurate modeling of the correlation between the sources
plays a crucial role in the efficiency of distributed source
coding (DSC) systems. When binary codes like LDPC and
turbo codes are use for compression, this correlation is
commonly modeled in the binary domain by using a “sin-
gle” binary symmetric channel (BSC), both for binary and
continuous-valued sources.
We introduce a more accurate model for the correlation
between continuous-valued source, e.g., in sensor net-
works and video coding.

Existing and Proposed Correlation Models
The correlation between analog sources X and Y can be
defined by

Y = X + E , (1)
where E is a real-valued random variable. Specifically,
for the Gaussian sources, E is Gaussian. However, when
binary codes, e.g., LDPC and turbo codes, are use for
compression, this correlation is commonly modeled in the
binary domain, as shown below

A. Correlation Between Binary Sources

The correlation and virtual communication channel between
the binary sequences x and y are the same [10] and are usually
modeled by a BSC with crossover probability p. The parameter
of this channel is defined by (1). Equivalently, one can obtain
p by averaging the Hamming weight of x⊕ y for a long run
of input data and side information, i.e.,

p = lim
n→∞

1

n
wH(xn ⊕ yn). (2)

Then, using binary channel coding, near-lossless compression
with a vanishing probability of error can be achieved provided
that the length of the channel code goes to infinity [1], [11].

B. Correlation Between Analog Sources

In general, the correlation between the two analog sources
X and Y can be defined by

Y = X + E, (3)

where E is a real-valued random variable. Specifically, for the
Gaussian sources we usually have

E ∼





N (0, σ2
e) w.p. q1,

N (0, σ2
e + σ2

i ) w.p. q2,

0 w.p. 1− q1 − q2,
(4)

in which σ2
i � σ2

e and q1 + q2 ≤ 1. This model contains
several well-known models which are suited for video coding
and sensor networks. For example, for q1 = 1 or q2 = 1 the
Gaussian correlation is obtained, which is broadly used in the
literature when X and Y are Gaussian. Further, for q1+q2 = 1
the GBG and for q1 + q2 < 1, q1q2 = 0 the GE models are
realized. The latter two models are more suitable for video
applications [8]. These models are also used for evaluating
theoretical bounds and performance limits [7], [8].

Although the correlation between continuous-valued sources
can be modeled more accurately in the continuous domain,
practically it is usually modeled in the binary domain. This
is due to the fact that, even for continuous-valued sources,
compression is mostly done through the use of binary channel
codes.1 To do so, the two sources are quantized and their
correlation is modeled by a virtual BSC in the binary domain,
as shown in Fig. 1(a). In the next section, however, we show
that this assumption is not very accurate, and we propose an
alternative, more accurate model.

III. A NEW CORRELATION CHANNEL MODEL

A. Evaluating the Single BSC Model

Let X and Y be two continuous-valued sources. When using
binary channel codes for compression, X and Y need to be
quantized before compression.1 Then, as shown in Fig. 1(a),
the correlation between x and y (the binary representation of
X and Y ) is defined in the binary domain by means of a BSC.

1It is possible to do compression before quantization; this requires real-
number channel codes and brings about a different paradigm for DSC [9].
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Fig. 1. Virtual correlation channel models in binary domain (for continuous-
valued sources) (a) Current model. (b) New model for b-bit scalar quantizer.
x1 to xb are b subsequences of x that contain data belonging to the different
bit-planes.
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Fig. 2. Crossover probabilities of different BSCs, each corresponding to
one bit-plane, at different channel error-to-quantization noise ratio (σ2

e/σ
2
q ).

X ∼ N (0, 1) and Y is defined by (3), (4) where q1 = 1/5 and q2 = 0.
Quantization is done using a 6-bit scalar uniform quantizer.

We observe that this model is not very accurate. This is
because the bits resulting from quantization of a sample and
its corresponding side information are not independent. For
example, if Xi (a sample of X) and its counterpart Yi are
the same, then all bits resulted from those samples will be
identical. That is, the correlation between these bits cannot
be modeled independently. A more quantitative example is
obtained by considering the model in (3) and (4) with q1 = 1.
Hence, E ∼ N (0, σ2

e) and Pr(|E| ≥ 2σe) ≤ 5%. Now
if σe = ∆/2, where ∆ is the quantization step size, we
will have Pr(|E| ≥ ∆) ≤ 5%. This means that in y (the
binary representation of Y ), most probably only the first two
lower significant bits will be affected. In other words, higher
significant bits of x and y are similar with high probability.
Numerical results in Fig. 2 verifies this observation.

The above discussion indicates that at low channel error-
to-quantization noise ratios (σ2

e/σ
2
q , σ

2
q = ∆2/12) the higher

significant bits of x ⊕ y (error in binary domain) are, with
high probability, 0. Therefore, correlation parameters differ
depending on the bit position (bit-plane); i.e., an independent
error in the sample (continuous) domain cannot be translated
to an i.i.d. error in the binary domain. Conversely, a bitwise

Simulation shows that an independent error in the contin-
uous domain is not translated to an i.i.d. error in the binary
domain, and the correlation parameters differ depending
on the bit position (bit-plane).
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This suggest that “multiple” BSCs can lead to a more ac-
curate model, and thus a better compression.

Given a b-bit quantizer, we use b BSCs to model the
correlation, where p1, . . . ,pb is the parameter of the BSC
channel corresponding to the LSB to MSB, respectively.

A. Correlation Between Binary Sources

The correlation and virtual communication channel between
the binary sequences x and y are the same [10] and are usually
modeled by a BSC with crossover probability p. The parameter
of this channel is defined by (1). Equivalently, one can obtain
p by averaging the Hamming weight of x⊕ y for a long run
of input data and side information, i.e.,

p = lim
n→∞

1

n
wH(xn ⊕ yn). (2)

Then, using binary channel coding, near-lossless compression
with a vanishing probability of error can be achieved provided
that the length of the channel code goes to infinity [1], [11].

B. Correlation Between Analog Sources

In general, the correlation between the two analog sources
X and Y can be defined by

Y = X + E, (3)

where E is a real-valued random variable. Specifically, for the
Gaussian sources we usually have

E ∼





N (0, σ2
e) w.p. q1,

N (0, σ2
e + σ2

i ) w.p. q2,

0 w.p. 1− q1 − q2,
(4)

in which σ2
i � σ2

e and q1 + q2 ≤ 1. This model contains
several well-known models which are suited for video coding
and sensor networks. For example, for q1 = 1 or q2 = 1 the
Gaussian correlation is obtained, which is broadly used in the
literature when X and Y are Gaussian. Further, for q1+q2 = 1
the GBG and for q1 + q2 < 1, q1q2 = 0 the GE models are
realized. The latter two models are more suitable for video
applications [8]. These models are also used for evaluating
theoretical bounds and performance limits [7], [8].

Although the correlation between continuous-valued sources
can be modeled more accurately in the continuous domain,
practically it is usually modeled in the binary domain. This
is due to the fact that, even for continuous-valued sources,
compression is mostly done through the use of binary channel
codes.1 To do so, the two sources are quantized and their
correlation is modeled by a virtual BSC in the binary domain,
as shown in Fig. 1(a). In the next section, however, we show
that this assumption is not very accurate, and we propose an
alternative, more accurate model.

III. A NEW CORRELATION CHANNEL MODEL

A. Evaluating the Single BSC Model

Let X and Y be two continuous-valued sources. When using
binary channel codes for compression, X and Y need to be
quantized before compression.1 Then, as shown in Fig. 1(a),
the correlation between x and y (the binary representation of
X and Y ) is defined in the binary domain by means of a BSC.

1It is possible to do compression before quantization; this requires real-
number channel codes and brings about a different paradigm for DSC [9].
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Fig. 1. Virtual correlation channel models in binary domain (for continuous-
valued sources) (a) Current model. (b) New model for b-bit scalar quantizer.
x1 to xb are b subsequences of x that contain data belonging to the different
bit-planes.
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Fig. 2. Crossover probabilities of different BSCs, each corresponding to
one bit-plane, at different channel error-to-quantization noise ratio (σ2

e/σ
2
q ).

X ∼ N (0, 1) and Y is defined by (3), (4) where q1 = 1/5 and q2 = 0.
Quantization is done using a 6-bit scalar uniform quantizer.

We observe that this model is not very accurate. This is
because the bits resulting from quantization of a sample and
its corresponding side information are not independent. For
example, if Xi (a sample of X) and its counterpart Yi are
the same, then all bits resulted from those samples will be
identical. That is, the correlation between these bits cannot
be modeled independently. A more quantitative example is
obtained by considering the model in (3) and (4) with q1 = 1.
Hence, E ∼ N (0, σ2

e) and Pr(|E| ≥ 2σe) ≤ 5%. Now
if σe = ∆/2, where ∆ is the quantization step size, we
will have Pr(|E| ≥ ∆) ≤ 5%. This means that in y (the
binary representation of Y ), most probably only the first two
lower significant bits will be affected. In other words, higher
significant bits of x and y are similar with high probability.
Numerical results in Fig. 2 verifies this observation.

The above discussion indicates that at low channel error-
to-quantization noise ratios (σ2

e/σ
2
q , σ

2
q = ∆2/12) the higher

significant bits of x ⊕ y (error in binary domain) are, with
high probability, 0. Therefore, correlation parameters differ
depending on the bit position (bit-plane); i.e., an independent
error in the sample (continuous) domain cannot be translated
to an i.i.d. error in the binary domain. Conversely, a bitwise

Decoding Using LDPC Codes
We investigate three different implementations of the
multiple BSC model in the Slepian-Wolf coding based on
LDPC codes. These are

1. Parallel Decoding
2. Sequential Decoding
3. Hybrid Decoding
In parallel decoding, the complexity increases b times as
there are b LDPC decoders each corresponding to one
correlation channel. By using sequential decoding, the
number of decoders can be reduced to one at the cost of
increased delay.
A yet more efficient integration of the new correlation
model into the LDPC-based DSC can be achieved just by
using a single LDPC encoder/decoder.

Hybrid Decoding
This is done in two steps, as explained in the following.
I Manipulating the LLRs:
The parameters of the multiple BSC correlation model
can be incorporated into the LDPC decoder by setting
the log-likelihood ratios (LLR) sent from (to) the variable
nodes as

qi ,0 = log
Pr[xi = 0|yi]

Pr[xi = 1|yi]
= (1− 2yi) log

1− pk [i ]
pk [i ]

, (2)

in which i = 1, . . . ,n, pk [i ] ∈ {p1, . . . ,pb}, and k
represents the bit-plane to which yi (or xi) belongs, as
shown here

LDPC block 1 LDPC block 2 LDPC block 3

p1 p2 p3 p4 p5 p6 p1 p2 p3 p4 p5 p6 · · · p1 p2 p3 p4 p5 p6 · · · p1 p2 p3 p4 p5 p6 · · ·

Y1 Y2 Ydnb e Yd 2nb e

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 · · · yn-3 yn-2 yn-1 yn y1 y2 · · · yn-1 yn y1 y2 y3 y4 · · ·

Fig. 3. Variable nodes and their corresponding p in the hybrid LDPC-based decoding for the block length n = 104 and b = 6.

we set the length of interleaving block equal to the length of
the LDPC code. The improvement in the BER and MSE, only
due to interleaving, is remarkably high. Obviously, we can
use interleaving and LLR’s manipulation simultaneously; this
requires applying interleaving to the crossover probabilities,
depicted in Fig. 3, as well.

Another important advantage of this approach is that it can
be used to combat the bursty correlation channels, as a perfect
interleaver transforms a bursty channel into an independently
distributed channel. The bursty correlation channel model is
capable of addressing the bursty nature of the correlation
between sources in applications such as sensor networks and
video coding, since it takes the memory of the correlation into
account [12].

V. SIMULATION RESULTS AND PERFORMANCE
EVALUATION

In this section, we numerically compare the new decoding
algorithm with the conventional approach which considers just
one BSC for the correlation model. We use irregular LDPC
code of rate 1/2 with the degree distribution [1]

λ(x) = 0.234029x+ 0.212425x2 + 0.146898x5

+ 0.102840x6 + 0.303808x19, (8)

ρ(x) = 0.71875x7 + 0.28125x8. (9)

The frame length is 104 and the bit error rate (BER) and
corresponding mean-squared error (MSE) are measured after
50 itinerations in both schemes. The source X is a zero mean,
unit variance Gaussian. Also the correlation between X and
Y is defined by GE channel with q1 = 1/5, q2 = 0 in (4),
and channel error-to-quantization noise ratio (σ2

e/σ
2
q ) varies as

shown in Fig. 4(b). Both sources are quantized with a 6-bit
scalar uniform quantizer.

Simulation results are presented in Fig. 4(a)-Fig. 4(c). In
these figures, the “actual data” refers to the case where binary
sequences x and y are obtained from quantizing X and Y . We
also compute the BER for the case that side information y is
generated by passing x through a virtual BSC with parameter
p, which is conventional in practical Slepian-Wolf coding [1]–
[5]. This is labeled as “artificial data.” The fact that “actual”
and “artificial” side information result in very different BERs,
by itself, indicates that a single BSC is not an appropriate
model for correlation between continuous-valued sources. On

the contrary, the BER resulted from hybrid decoding with
actual side information is significantly better than that of the
conventional approach which shows the suitability of the new
model. Figure 4(b) represents the corresponding MSE in the
real domain. From these figures, it can be seen that the new
scheme (hybrid decoding) greatly outperforms the existing
method, for actual data. Furthermore, as shown is Fig. 4(c), the
number of iterations required to achieve such a performance is
much smaller than the existing method owing to more accurate
initial LLRs.

The performance of parallel and sequential decodings, for
a same code, are the same. These schemes benefit from the
advantage of working over data belonging to separate bit-
planes. Hence, one BSC can effectively approximate the cor-
responding correlation for each bit-plane. Simulation results
verify that separate compression of data belonging to different
bit-planes that uses actual data is as effective as the case that
uses artificial side information. Moreover, there is no need
for interleaving. However, an efficient compression, in parallel
and sequential decoding, requires codes with different rates for
each bit-plane.

VI. CONCLUSIONS

We have introduced an improved model for the virtual cor-
relation between the continuous-valued sources in the binary
domain. This model exploits multiple BSCs rather than the
conventional single-BSC model so that it can deal with the
dependency among the bits resulting from quantization of each
error sample by converting the error sequence into multiple
i.i.d. sequences. An efficient implementation of the new model
is realized just by using a single LDPC decoder but judiciously
setting the LLR sent from (to) the variable nodes. The number
of iterations required to achieve the same performance reduces
noticeably as a result of this prudent setting of initial LLRs.
Besides, by interleaving the data and side information the bits
belonging to one error sample are shuffled which increases the
performance of the decoding to a great extent. This significant
improvement in the BER and MSE is achieved without any
increase in complexity or delay. The new scheme can also be
used to combat the bursty nature of the correlation channel in
practical applications.

I Interleaving:
Since the bits corresponding to each error sample are
correlated, by interleaving x and y before feeding them
into the Slepian-Wolf encoder and decoder, we introduce
randomness to the errors. Then, it makes better sense to
encode data belonging to all bit planes altogether as in
the conventional approach.
The longer the permutation block input the better the
performance. Interleaving, however, can increase
decoding delay.

Simulation Results
Simulations are carried out for a zero mean, unit variance
Gaussian source X . The correlation between X and Y is
defined by Gaussian Erasure channel. The LDPC frame
length is 104 and the BER and corresponding MSE are
measured after 50 itinerations, for different channel error-
to-quantization noise ratio. Both sources are quantized
with a 6-bit scalar uniform quantizer.
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Conclusions
Using Multiple BSCs to model the virtual correlation be-
tween the continuous-valued sources in the binary domain
is shown to be more efficient than the conventional single-
BSC model, as the new model can deal with the depen-
dency among the bits resulting from quantization of each
error sample by converting the error sequence into multi-
ple i.i.d. sequences.
By judiciously setting the LLR and using an interleaver,
significant improvement in the BER and MSE is achieved
without any increase in the complexity or delay.


