On Limiting Expressions for the Capacity Region of Gaussian Interference Channels

Mojtaba Vaezi and H. Vincent Poor

Department of Electrical Engineering Princeton University

Asilomar, Pacific Grove, CA

Outline

- Preliminaries
 - Single-Letter vs Multiletter
 - Problem Setup
- 2 Counterexample
 - Channel model
 - Inner bound
 - Outer bound
 - Comparison
- 3 Better Use of the Multiletter Expression
 - Find a Single-Letter Expression
 - Find its Optimal Inputs

A Single-User Channel

Capacity expressions for the single-user channel [Shannon 1948]

- Discrete memoryless channel
 - Multiletter: $\frac{1}{n}I(X^n;Y^n)$, maximization over all $p(x^n)$, $n\to\infty$
 - Single-letter: I(X; Y), maximization over all p(x)

A single-letter capacity expression includes the channel input and output random variables involved in "one" use of the channel.

Single-letter/multiletter capacity expressions

A Single-User Channel

Capacity expressions for the single-user channel [Shannon 1948]

- Discrete memoryless channel
 - Multiletter: $\frac{1}{n}I(X^n;Y^n)$, maximization over all $p(x^n)$, $n\to\infty$
 - Single-letter: I(X; Y), maximization over all p(x)

A single-letter capacity expression includes the channel input and output random variables involved in "one" use of the channel.

Single-letter/multiletter capacity expressions

A Single-User Channel

Capacity expressions for the single-user channel [Shannon 1948]

- Discrete memoryless channel
 - Multiletter: $\frac{1}{n}I(X^n;Y^n)$, maximization over all $p(x^n)$, $n\to\infty$
 - Single-letter: I(X;Y), maximization over all p(x)

A single-letter capacity expression includes the channel input and output random variables involved in "one" use of the channel.

- ② Gaussian channel with $\mathbb{E}(\|X\|^2) < P$
 - Optimal input $p(x) \sim \mathcal{N}(0, P)$
 - $C = \frac{1}{2}\log(1+P) \triangleq \gamma(P)$.

Single-user channel

Discrete memoryless channel

$$R \leq \frac{1}{n}I(X^{n}; Y^{n}) + \epsilon_{n}$$

$$\stackrel{\text{(a)}}{=} \frac{1}{n}\sum_{i=1}^{n}I(X_{i}; Y_{i}) + \epsilon_{n}$$

$$\stackrel{\text{(b)}}{=} I(X; Y) + \epsilon_{n},$$

- (a) follows by the memoryless property of the channel
- (b) follows by the definition of the information capacity Gaussian channel: optimal inputs are Gaussian

$$p(x^n) \sim \mathcal{N}(\mathbf{0}, P\mathbf{I}_n)$$
 $p(x) \sim \mathcal{N}(0, P)$

- Single-letter and multiletter capacity expression are equal
- Gaussian inputs are optimal for the Gaussian channel

Introduction

Two-User Interference Channel (IC)

capacity region

- multiletter: is known [Ahlswede 1973]
- single-letter: is not known, in general

Discrete memoryless interference channel (DM-IC)

Limiting/multiletter capacity expression

$$\mathcal{C}_{\mathrm{IC}} = \lim_{n \to \infty} \mathrm{co} \left(\bigcup_{p(x_1^n) p(x_2^n)} \left\{ \begin{array}{ll} R_1 & \leq \frac{1}{n} I(X_1^n; Y_1^n) \\ R_2 & \leq \frac{1}{n} I(X_2^n; Y_2^n) \end{array} \right\} \right),$$

where $co(\cdot)$ denotes the *convex hull*. [Ahlswede 1973]

Limiting capacity expression

The above limiting capacity expression

- is computationally excessively complex
- does not provide any insight into how to best code
- does not give a hint about optimal input for the Gaussian channel

Limiting capacity expression

The above limiting capacity expression

- is computationally excessively complex
- does not provide any insight into how to best code
- does not give a hint about optimal input for the Gaussian channel

Can we limit the inputs of the limiting capacity to be Gaussian to compute the capacity region of the Gaussian interference channel

Gaussian One-Sided IC

$$Y_1 = X_1 + \sqrt{a}X_2 + Z_1,$$

 $Y_2 = X_2 + Z_2,$

and input i is subject to an average power constraint P_i

$$\mathbb{E}(\|X_i\|^2) \leq P_i, \ i = 1, 2.$$

Inner bound

Time-sharing: (R_{11}, R_{21}) and (R_{12}, R_{22}) are achievable $\Rightarrow \tau_1(R_{11}, R_{21}) + \tau_2(R_{12}, R_{22})$ is achievable, for any $\tau_1 + \tau_2 = 1$.

$$au_1 au_2 au_1 au_2 au_1 au_2 au_1 au_1 au_2 au_2 au_1 au_2 au_2 au_2 au_1 au_2 au_2 au_2 au_2 au_2 au_1 au_2 au_$$

$$(R_1, R_2) = \tau_1(R_{11}, R_{21}) + \tau_2(R_{12}, R_{22})$$

Achievability

- Time-sharing in two dimensions
- Han-Kobayashi (HK) during τ_1 fraction of channel uses
- Single-user transmission during τ_2 ($R_{21} = 0$)

Inner bound

Theorem $\, 1 \,$

The set of non-negative (R_1, R_2) satisfying

$$R_1 \le \tau_1 R_{11},$$

 $R_2 \le \tau_1 R_{21} + \tau_2 R_{22},$

in which

$$R_{11} \leq \gamma \left(\frac{\frac{P_1}{\tau_1}}{1 + a\beta_1 P_{21}} \right),$$

$$R_{21} \leq \gamma \left(\frac{a\bar{\beta}_1 P_{21}}{1 + \frac{P_1}{\tau_1} + a\beta_1 P_{21}} \right) + \gamma (\beta_1 P_{21}),$$

$$R_{22} \leq \gamma (P_{22}),$$

is achievable for the one-sided Gaussian interference channel where $\tau_1 + \tau_2 = 1$, $\tau_1 P_{21} + \tau_2 P_{22} = P_2$, $0 \le \beta_1 \le 1$, and $\bar{\beta}_1 = 1 - \beta_1$.

13

Inner bound

Weighted sum-rate

$$\mu R_1 + R_2 = \tau_1 \left(\mu R_{11} + R_{21} \right) + \tau_2 R_{22}$$

$$\leq \tau_1 \left[\mu \gamma \left(\frac{\frac{P_1}{\tau_1}}{1 + a\beta_1 P_{21}} \right) + \gamma \left(\frac{a\bar{\beta}_1 P_{21}}{1 + \frac{P_1}{\tau_1} + a\beta_1 P_{21}} \right) + \gamma (\beta_1 P_{21}) \right] + \bar{\tau}_1 \gamma \left(\frac{P_2 - \tau_1 P_{21}}{\bar{\tau}_1} \right),$$

in which $0 \le \tau_1 \le 1$, $0 \le \beta_1 \le 1$, and $0 \le P_{21} \le \frac{P_2}{\pi}$.

From limiting capacity expression we have

$$\mu R_1 + R_2 \leq \frac{1}{n} [\mu I(X_1^n; Y_1^n) + I(X_2^n; Y_2^n)],$$

for some $p(x_1^n)p(x_2^n)$, when $n \to \infty$.

We let

$$\begin{split} \rho(x_1^n) &\sim \mathcal{N}(\boldsymbol{0}, K_1), & \rho(x_2^n) \sim \mathcal{N}(\boldsymbol{0}, K_2), \\ \operatorname{tr}(K_{X_1^n}) &\leq n P_1, & \operatorname{tr}(K_{X_1^n}) \leq n P_1. \end{split}$$

Outer bound

From limiting capacity expression we have

$$\mu R_1 + R_2 \leq \frac{1}{n} [\mu I(X_1^n; Y_1^n) + I(X_2^n; Y_2^n)],$$

for some $p(x_1^n)p(x_2^n)$, when $n \to \infty$.

We let

$$\begin{split} \rho(x_1^n) &\sim \mathcal{N}(\boldsymbol{0}, K_1), & \rho(x_2^n) \sim \mathcal{N}(\boldsymbol{0}, K_2), \\ \operatorname{tr}(K_{X_1^n}) &\leq n P_1, & \operatorname{tr}(K_{X_1^n}) \leq n P_1. \end{split}$$

$$\mu R_1 + R_2 \leq \xi \left[\mu \gamma \left(\frac{\frac{P_1}{\xi}}{1 + a P_2'} \right) + \gamma (P_2') \right] + \bar{\xi} \gamma \left(\frac{P_2 - \xi P_2'}{\bar{\xi}} \right),$$

in which $0 \le \xi \le 1$, $\overline{\xi} = 1 - \xi$, and $0 \le P_2' \le P_2$.

Figure: The inner and the outer bounds for a = 0.6, $P_1 = 7$ and $P_2 = 7$.

- In the multiletter capacity of the IC, we cannot limit the inputs to Gaussian for Gaussian IC
- This does not imply that Gaussian inputs are not capacity-achieving for the Gaussian IC
- We may still find single-letter or a different multiletter expression the Gaussian IC in which Gaussian inputs are optimal (see [Cheng and Verdú 1993] for the MAC).

Remarks

- In the multiletter capacity of the IC, we cannot limit the inputs to Gaussian for Gaussian IC
- This does not imply that Gaussian inputs are not capacity-achieving for the Gaussian IC
- We may still find single-letter or a different multiletter expression the Gaussian IC in which Gaussian inputs are optimal (see [Cheng and Verdú 1993] for the MAC).

Q

Can multiletter expression still be useful? Yes! if we can find a single letter expression or a multiletter expression for which Gaussian inputs are optimal.

 Manipulate it to get a single-letter expression (e.g., IC in the strong interference [Costa and A. El Gamal 1987])

$$R_{1} + R_{2} \leq \frac{1}{n} I(X_{1}^{n}; Y_{1}^{n}) + \frac{1}{n} I(X_{2}^{n}; Y_{2}^{n})$$

$$\stackrel{(a)}{\leq} \frac{1}{n} I(X_{1}^{n}; Y_{1}^{n} | X_{2}^{n}) + \frac{1}{n} I(X_{2}^{n}; Y_{2}^{n})$$

$$\stackrel{(b)}{\leq} \frac{1}{n} I(X_{1}^{n}; Y_{2}^{n} | X_{2}^{n}) + \frac{1}{n} I(X_{2}^{n}; Y_{2}^{n})$$

$$\stackrel{(c)}{=} \frac{1}{n} \sum_{i=1}^{n} I(X_{1i}, X_{2i}; Y_{2i})$$

- (a) is due to the independence of X_1^n and X_2^n
- (b) from the strong IC condition $I(X_1; Y_1|X_2) \leq I(X_1; Y_2|X_2)$
- (c) by the memoryless property of the channel, and

How to better use the multiletter expression

We can write the multiletter expression as

$$\mu R_1 + R_2 \leq \lim_{n \to \infty} \bigcup_{p(x_1^n)p(x_2^n)} \frac{1}{n} [\mu I(X_1^n; Y_1^n) + I(X_2^n; Y_2^n)],$$

or equivalently,

$$\mu R_1 + R_2 \le \frac{1}{n} \left[\mu I(X_1^n; Y_1^n) + I(X_2^n; Y_2^n) \right]$$

$$= \frac{1}{n} \left[\mu h(X_1^n + \sqrt{a}X_2^n + Z_1^n) - \mu h(\sqrt{a}X_2^n + Z_1^n) + h(X_2^n + Z_2^n) - h(Z_2^n) \right] \triangleq \frac{1}{n} U_o.$$

and find the optimal input for all μ .

Improving the Outer Bounds

Finding the optimal inputs for the μ -sum rate is not easy! Instead, we may rewrite the terms inside the bracket as

$$W = U_o + h(Z_2^n)$$

= $\mu h(X_1^n + \sqrt{a}X_2^n + Z_1^n) - \mu h(\sqrt{a}X_2^n + Z_1^n) + h(X_2^n + Z_2^n)$

and try to outer bound it.

First Outer bound (trivial!):

$$\underbrace{\mu h(X_1^n+\sqrt{a}X_2^n+Z_1^n)}_{W_1}\underbrace{-\mu h(\sqrt{a}X_2^n+Z_1^n)}_{W_2}\underbrace{+h(X_2^n+Z_2^n)}_{W_3}$$

Improving the Outer Bounds

Second Outer bound:

$$\underbrace{\mu h(X_1^n + \sqrt{a}X_2^n + Z_1^n)}_{W_1} \underbrace{-\mu h(\sqrt{a}X_2^n + Z_1^n) + h(X_2^n + Z_2^n)}_{W_2}$$

Third Outer bound (Conjecture!):

Improving the Outer Bounds

Second Outer bound:

$$\underbrace{\mu h(X_1^n + \sqrt{a}X_2^n + Z_1^n)}_{W_1} \underbrace{-\mu h(\sqrt{a}X_2^n + Z_1^n) + h(X_2^n + Z_2^n)}_{W_2}$$

Third Outer bound (Conjecture!):

$$\underbrace{\frac{h(X_1^n + \sqrt{a}X_2^n + Z_1^n)}{W_1}}_{W_1} + \underbrace{(\mu - 1)h(X_1^n + \sqrt{a}X_2^n + Z_1^n) - \mu h(\sqrt{a}X_2^n + Z_1^n) + h(X_2^n + Z_2^n)}_{W_2}$$

Summary

- Gaussian inputs are not sufficient to achieve the border of the multiletter capacity of the IC
- This does not imply that Gaussian inputs are not necessarily capacity-achieving for the Gaussian IC
- The multiletter capacity region still can be useful to improve outer bound

Thank you!