Handcrafted and Neural Network based Features for Outlier Modulation Detection

Yue Qi*, Ruixuan Wang*, Mojtaba Vaezi*, Jonathan Francis**, and Xun Jiao*

- *Department of Electrical and Computer Engineering, Villanova University, Villanova, PA 19085, USA
- **L3Harris Technologies, Communications Systems East Camden, NJ, 08103, USA

Paper ID: 1032

Outlier detection

Outlier signals: undesired signals that might bring in interference and confusion to receivers.

Feature extraction

Handcrafted features

- Instantaneous time domain features: Mean, Variance, Kurtosis, skewness.
- Transform domain features: power spectral density.
- •Statistical features: Higher order moment (HOM), higher order cumulants (HOC), and higher order cyclic cumulants (HOCCs), etc.

$$M_{pq} = \mathbb{E}[r^{p-q}(t)(r^*(t))^q]$$

$$\frac{M_{20} M_{21} M_{40} M_{41} M_{42} M_{43} M_{60} M_{61} M_{62} M_{63}}{C_{20} C_{21} C_{40} C_{41} C_{42} C_{43} C_{60} C_{61} C_{62} C_{63}}$$

Motivations

- No knowledge of the outlier signals is available in the training stage.
- Existing classifiers, such as k-means clustering, is effective on simple modulation datasets.
- Strong confuser (16QAM to QPSK) is hard to identify.

Main Contribution

- Proposed selected handcrafted features from feature engineering with distance-based classifier.
- Handcrafted and NN-based features with different classifiers, including k-means, OCSVM, iForest, and OCNN.

Classification Binary classifier: OCNN **Distance-based**

- **Step 1:** Chose some features that possibly classify the outliers in training dataset.
- Step 2: Find the feature center in hyper dimension for each known signal type.
- Step 3: Calculate the distance for each test data.
- Step 4: Hist the minimum Euclidean distance between the feature of test data and the closest feature cluster.
- **Step 5:** Set a threshold γ based on the training dataset.

Simulation Results

Inlier signals: BPSK, QPSK, 8PSK, 16QAM, FSK, ABSSB-upper sideband (USB), AM-SSB-lower sideband (LSB), AM, and FM. Outlier signals: 64QAM, 128QAM, PAM4, and PAM8.

Data generalization [2]: 1024 points with SNR from -20dB to 20dB

Training: 80% of 3000 signals of each modulation **Testing:** 20% of 3000 signals of each modulation.

Method 1:

Accuracy of selected feature with ED (%)								
	SNR (dB)	-10	-5	0	5	10	15	20
	64QAM	51.0	52.5	59.5	68.0	76.9	80.3	81.3
	128QAM	52.5	51.4	56.1	70.0	81.6	83.0	83.7
	PAM4	58.7	84.7	95.6	99.0	99.5	99.7	99.8
	PAM8	58.8	84.7	95.9	99.1	99.7	99.8	99.8
	all outliers	54.6	67.4	72.9	77.5	83.8	85.8	86.2

Accuracy of selected feature with MD (%) 75.5 93.8 97.8 99.6 100.0 99.9 100.0 all outliers 63.0 72.0 74.8 77.7 81.2 82.8 81.7

Conclusion

- Method 1: Selected features with distance-based discrimination.
- Method 2: Machine learning based features with binary classifiers.
- Results: 100% accuracy for mild confusers and 80% for the strong.

References

- [1] Y. Shi, et al, "Deep learning for RF signal classification in unknown and dynamic spectrum environments," in Proc. IEEE Int. Symp. on Dyn. Spec. Access Netw., pp. 1–10, 2019.
- [2] T. J. O'shea and N. West, "Radio machine learning dataset generation with GNU radio," in Proc. GNU Radio Conf., vol. 1, 2016.