On the Capacity of the Cognitive Z-Interference Channel

Mojtaba Vaezi and Mai Vu

Department of Electrical and Computer Engineering
McGill University

Canadian Workshop on Information Theory
Kelowna, British Columbia

May 18, 2011
Introduction

Cognitive Interference Channel
Introduction

Cognitive Interference Channel

Cognitive Z-Interference Channel

Mojtaba Vaezi & Mai Vu (McGill) On the Capacity of the Cognitive ZIC CWIT 2011 3
Motivation

Motivation for studying the cognitive channel

- Models an ideal **cognitive radio**
- Compatible for efficient spectrum utilization
- Helps understand and analyze cognitive relay networks
- Fundamental limits by themselves
1 Introduction

2 New inner bound
 - Superposition coding

3 New outer bound
 - More capable idea

4 Capacity for the Gaussian CZIC
 - Very strong interference
The DMS cognitive interference channel (DMS-CIC)

- Encoder 2 non-causally knows X_1^n and M_1
More capable channels

\[I(X; Y_1) \geq I(X; Y_2) \quad \text{for all } p(x) \]
More capable channels

\[I(X; Y_1) \geq I(X; Y_2) \quad \text{for all } p(x) \]

\[I(X_1, X_2; Y_1) \geq I(X_1, X_2; Y_2) \quad \text{for all } p(x_1, x_2) \]
Strong cognitive interference

\[I(X_2; Y_1 | X_1) \geq I(X_2; Y_2 | X_1) \quad \text{for all } p(x_1, x_2) \]
Superposition coding-based inner bound

Theorem

For the DM-CIC, any rate pair \((R_1, R_2)\) that satisfies

\[
R_1 \leq I(X_1; Y_1|U) \\
R_2 \leq I(U; Y_2) \\
R_1 + R_2 \leq I(X_1, X_2; Y_1)
\] (1)

for some joint distribution that factors as

\[
p(u)p(x_1) \\
p(x_2|x_1, u)p(y_1, y_2|x_1, x_2)
\]
is achievable.

Achievability

- **Superposition coding** at the cognitive transmitter
- Joint typicality decoding
- \(Y_2\) can only decode \(M_2\) (the cloud center) while \(Y_1\) can decode the satellite codewords as well
Theorem

The union of all rate pairs \((R_1, R_2)\) such that

\[
R_2 \leq I(U; Y_2) \\
R_1 + R_2 \leq I(X_1; Y_1|U) + I(U; Y_2) \\
R_1 + R_2 \leq I(X_1, X_2; Y_1)
\]

for some joint distribution \(p(u, x_1, x_2)p(y_1, y_2|x_1, x_2)\) provides an outer bound on the capacity region of the more capable DM-CIC.

Proof.

- Similar to the converse of the more capable BC
- This theorem also applies for the DM-CIC with strong cognitive interference
Additive white Gaussian noise (AWGN) cognitive channel

\[Y_1 = X_1(m_1) + aX_2(m_1, m_2) + Z_1 \]
\[Y_2 = bX_1(m_1) + X_2(m_1, m_2) + Z_2 \]
The Gaussian cognitive Z-channel (GCZIC)

Practical situations for one-way interference
- Tx_2 is close to Rx_2
- Unbalanced power
- Blockage (close to primary user)
Inner bound for the GCZIC

Lemma

Any rate pair \((R_1, R_2)\) satisfying

\[
R_1 \leq C \left(\left(\sqrt{P_1} + a\sqrt{\alpha P_2} \right)^2 \right)
\]

\[
R_2 \leq C \left(\frac{\bar{\alpha}P_2}{1 + \alpha P_2} \right)
\]

\[
R_1 + R_2 \leq C \left(P_1 + a^2 P_2 + 2a\sqrt{\alpha P_1 P_2} \right)
\]

with \(\alpha \in [0, 1]\) is achievable for the GCZIC.

Achievability

- \(X_1 = \sqrt{P_1} V(m_1), X_2 = \sqrt{\alpha P_2} V(m_1) + \sqrt{\bar{\alpha} P_2} U(m_2)\)
- The cognitive receiver: treat other codeword as interference
- The primary receiver: uses successive cancelation
Thank you!
An outer bound for the GCZIC with \(a^2 \geq 1 \)

Denoting \(\alpha \triangleq 1 - \rho_2^2 \), \(\beta \triangleq 1 - \rho_1^2 \), and \(\bar{x} \triangleq 1 - x \) for any \(x \in [0, 1] \), we obtain

Corollary

An *outer bound* on the capacity region of the GCZIC with \(|a| \geq 1 \) is the set of all rate pairs \((R_1, R_2)\) satisfying

\[
R_2 \leq C\left(\frac{\bar{\alpha} P_2}{1 + \alpha P_2} \right)
\]

\[
R_1 + R_2 \leq C\left(\left(\sqrt{\beta P_1} + |a| \sqrt{\alpha P_2} \right)^2 \right) + C\left(\frac{\bar{\alpha} P_2}{1 + \alpha P_2} \right)
\]

\[
R_1 + R_2 \leq C\left(P_1 + a^2 P_2 + 2|a|(\sqrt{\alpha \beta} + \sqrt{\bar{\alpha} \bar{\beta}}) \sqrt{P_1 P_2} \right)
\]

for \(\alpha, \beta \in [0, 1] \).
Converse: Corollary 1

Proof.

- If the second bound is not redundant, on the boundary of this outer bound, we must have
 \[R_2 \leq \frac{1}{2} \log \left(1 + \left(\sqrt{\beta P_1} + |a| \sqrt{\alpha P_2} \right)^2 \right) \]

- Comparing this inequality with the first inequality of Lemma 2, \(\iff \beta = 1 \) (since otherwise the outer bound becomes less than the inner bound!)

- For \(|a| \geq \sqrt{1 + P_1} \) the second inequality cannot be redundant

- Thus, for \(|a| \geq \sqrt{1 + P_1} \), \(\beta = 1 \) is optimum and capacity region is established