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Motivation and Applications
Limited delay is a key design constraint in modern practi-
cal applications. We lay a foundation for a low-delay dis-
tributed joint source-channel coding (DJSCC) system for
delay-sensitive sensor networks over impulsive noise chan-
nel.
Applications:
I Substation monitoring using sensor networks
I Sensors networks interfered by urban or military radio

DSC: Different Approaches
Different approaches to distributed source coding (DSC):

1. Quantization then binning:
(i.e., using binary codes)
I Asymptotically optimal
I Incurs excessive delay
I Complexity is high

2. Analog mapping:
I Zero delay
I Low complexity
I Far from theoretical limits

3. Binning then quantization:
(i.e., using real-valued codes)
I More accurate correlation model
I Low complexity
I Suitable for low-delay applications
I Fits well for impulsive noise environment

DJSCC: The Proposed Scheme
We introduce JSCC with side information at the decoder
based on binning then quantization approach.
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Fig. 1. The DJSCC using DFT codes. Gsys represents the generator matrix
of a systematic code.

all syndrome samples, rather than some of them, for the
decision making.

IV. DISTRIBUTED JOINT SOURCE AND CHANNEL CODING

The concept of lossy DSC and Wyner-Ziv coding using DFT
codes is explained in [10], both for the syndrome and parity
approaches. This is mainly motivated by taking advantage of
modeling the correlation between the analog sources before
quantizing them [10]. That is, given x and y, two sequences
of i.i.d. random variables x1 . . . xn, and y1 . . . yn, the x-
y dependency is defined by yi = xi + ei, where ei is a
real-valued i.i.d. random variable, independent of xi. This
model captures any variation of x and can be used to model
correlation between x and y precisely. Particularly, e can have
the Gaussian or Gaussian-Erasure distributions [25], [26].

In this section, we extend the parity-based Wyner-Ziv
coding of analog sources to the case where errors in the
transmission are allowed. Thus, we introduce distributed JSSC
of analog correlated sources in the analog domain. Specifically,
we consider transmission corrupted by impulsive noise. This
model is motivated by implementation of wireless sensor
networks in power substations [27], [28]. The impulsive noise
is prevalent in power substations since it is created by partial
discharges, corona noise and electrical arcs, hosted by high-
voltage equipment such as transformers, bushings, power lines,
circuit breakers and switch-gear [28]. The magnitude of the
impulses is assumed to have a Gaussian distribution; hence, the
Gaussian-Erasure channel is used to model the transmission
channel, as well.

A. Coding and Compression

To compress and protect x, the encoder generates parity
sequence p of n−k samples, with respect to a good systematic
DFT code. The parity is then quantized and transmitted over a
noisy channel, as shown in Fig. 1. To keep the dynamic range
of parity samples as small as possible, we make use of optimal
systematic DFT codes, proposed in [19]. This increases the
efficiency of the system for a fixed number of precision bits.
Using an (n, k) DFT code a total compression ration of k :
(n − k) is achieved. Obviously, if n < 2k compression is
possible. However, since there is little redundancy the end-to-
end distortion could be high. Conversely, a code with n > 2k
expands input sequence by adding soft redundancy to protect
it in a noisy channel.

B. Decoding

Let p̃ = p̂ + ec, be the received parity vector which is
distorted by quantization error q (p̂ = p+q) as well as channel
error ec. Also, let y = x+ ev denote side information where
ev represents the error due to the “virtual” correlation channel.
The objective of the decoder is to estimate the input sequence
from the received parity and side information. Although we
only need to determine ev , effectively it is required to find
both ev and ec. From an error correction point of view, this
is equal to finding the error vector e = [ev ec]

T that affects
the codevector [x p]T . Hence, to find the syndrome of error
at the decoder, we append the parity p̃ to the side information
y and form z̃, a valid codevector perturbed by quantization
and channel errors. Without quantization (q = 0)

z =

[
y
p̃

]
=

[
x
p

]
+

[
ev
ec

]
= Gsysx+ e, (3)

and, multiplying both sides by H , we obtain

sz = se, (4)

where sz ≡Hz and se ≡He. It should be emphasized that
in this case (q = 0), error vector can be determined exactly, as
long as the number of errors is not greater than t. In practice,
quantization is also involved and we have

z̃ =

[
x
p

]
+

[
ev
ec

]
+

[
0
q

]
= Gsysx+ e+ q′. (5)

Thus,

sz̃ = se + sq′ , (6)

in which sq′ ≡ Hq′. That is, we obtain a distorted version
of the syndrome of error. Knowing the syndrome of error, we
use the error detection and localization algorithm, explained
in Section III, to find and correct error.

Although the extension of parity-based DSC to DJSCC is
straightforward, it is not clear how to do this for syndrome-
based DSC. This is because, in a syndrome-based DSC with
noisy transmission, the decoder can only form sev +ec, where
sev is the difference between the transmitted syndrome and
syndrome of side information, i.e., sev = sy−sx, as it was in
the DSC [10]. However, with sev+ec the rank of the syndrome
matrix St is not necessarily equal to ν, even if quantization
error is assumed to be zero. Therefore, the PGZ and subspace-
based methods fail to find the number and location of errors.

V. SIMULATION RESULTS

To evaluate the performance of the proposed systems we
perform simulations over a Gauss-Markov source with mean
0, variance 1, and correlation coefficient 0.9. Parity samples
are generated using the (10, 5) DFT code, quantized with a
6-bit uniform quantizer, and transmitted over an impulsive
noise channel; the effective range of the input sequences is
assumed to be [−4, 4]. The “virtual” correlation channel and
transmission channel altogether insert up to t errors generated
by N (0, σ2

e). The decoder detects, localizes, and decodes
errors. To measure the end-to-end distortion, we compare

Why JSCC?
I The separation theorem is optimal only asymptotically

(infinite complexity and delay)
I JSCC (and DJSCC) can outperform separate coding in

some practical cases

Encoding
Since binning is performed before quantization, we need
real-number codes. We use discrete Fourier transform (DFT)
codes, a class of BCH codes in the DFT domain.
Given an (n, k) systematic DFT code
I To compress and protect x , the encoder generates and

transmits parity sequence p of n − k samples, with respect
to the code

I Total compression ration is η = k
n−k

(for n > 2k expansion happens)

Decoding
Let ec and ev represent the channel error and virtual
correlation channel error. Then, neglecting quantization,
received parity vector is given by: p̃ = p + ec,
and, side information is equal to: y = x + ev
For decoding
I At the decoder, we form

z =

[
y
p̃

]
=

[
x
p

]
+

[
ev
ec

]
= Gsysx + e,

and, multiplying both sides by the parity-check matrix H to
obtain the syndrome of error

sz = se.

I Then, we apply syndrome decoding of BCH-DFT codes
I With quantization, we get

sz = se + sq,

in which sq ≡ Hq is the syndrome of quantization error

Other Contributions
In general, the decoding of DFT codes has three steps
(detection, localization, correction). In this paper

1. We integrate subspace-base error localization, rather than
coding theoretic approach, in the context of DSC and
DJSCC

2. We improve the first step (error detection), which is
applicable to channel coding as well

New detection:
Estimate the number of errors based on the eigenvalues of the
syndrome matrix rater than its determinant. To do this, we fix
a threshold for maximum eigenvalue when there is quantiza-
tion error only (no channel errors) and we use that threshold
during decoding.

Simulation Results
Simulations are carried out for Gauss-Markov source with
mean 0, variance 1, and correlation coefficient 0.9.
Parity samples are generated using (10,5) DFT code, quan-
tized with a 6-bit uniform quantizer, and transmitted over an
impulsive noise channel.
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Figure: Error detection (top left), error localization (top right), and
mean-squared reconstruction error (bottom) for DJSCC based on a (10,
5) DFT code.

I Even using a very short code we can achieve MSE which is
better than the ideal case in quantize and bin approach, if
no further estimation exist after Slepian-Wolf decoding

I Complexity of encoding and decoding is much less due to
short block length and non-iterative decoding

I The performance improves with rate-adaptation

Conclusions and Future Work
We have studied a low-complexity, low-delay scheme for lossy
JSCC with side information at the decoder which is suitable for
impulsive noise environments.

Future work includes integrating subspace based decoding
into more powerful iterative recovery algorithms, to further im-
prove the decoding.


