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Real BCH-DFT Codes
Applications

Motivations for studying BCH-DFT codes

Resilience to additive noise including quantization error

Erasures and errors correction (channel coding)

Distributed lossy source coding (new)

Better performance w.r.t. delay and complexity

Better performance under particular channel characteristics

Connection to Frame Theory

Complex BCH-DFT codes are harmonic frames

Real BCH-DFT codes are rotated harmonic frames
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Real BCH-DFT Codes
Encoding

DFT
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Figure: Real BCH-DFT encoding scheme
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Σn×k inserts n-k consecutive zeros in the transform domain
=⇒ BCH code

DFT is used to convert vector x ∈ Rk to a circularly
symmetric X ∈ Ck , guaranteeing a real y

Removing the DFT block, we obtain complex BCH-DFT codes
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Real BCH-DFT Codes
Coding scheme

Impulsive 

noise channel
Decoder
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Figure: Channel coding using real-valued BCH codes

H takes N-K columns of WH
N corresponding to zeros of Σ

For every codeword, s = Hy = HGx ≡ 0

Without quantization:

yn = xn + en ⇒ sy = se
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Real BCH-DFT codes
Decoding

- How can we decode?

1 Without quantization error

yn = xn + en ⇒ se = sy
Decoding algorithms (e.g., the Peterson-Gorenstein-Zierler) for
a BCH code, in general, has the following major steps

1 Detection (to determine the number of errors)
2 Localization (to find the location of errors)
3 Calculation (to calculate the magnitude of errors)

2 With quantization error

yn = xn + qn + en ⇒ sy = se + sq
Modify the above algorithm
Each step becomes an estimation problem
Least squares solution largely improves the decoding accuracy
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The PGZ algorithm
Detection without quantization

1 Detection (ν =?)

St =


s1 s2 . . . st
s2 s3 . . . st+1
...

...
. . .

...
st st+1 . . . s2t−1


Then, ν = µ iff Sν is nonsingular for ν = µ but is singular for
ν > µ. This is because

Sµ = VµDV
T
µ

Vµ =

 1 . . . 1
...

. . .
...

Xµ−1
1 . . . Xµ−1

µ

 ,D =

 Y1X1 . . . 0
...

. . .
...

0 . . . YµXµ


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The PGZ Algorithm
Detection with quantization

Assume there are ν ≤ t errors. Form S̃t

S̃t =


s̃1 s̃2 . . . s̃t
s̃2 s̃3 . . . s̃t+1

...
...

. . .
...

s̃t s̃t+1 . . . s̃2t−1


Existing Approach

1 Set an empirical threshold γ

2 If
∏

eig(S̃
H
t S̃t) < γ2 then remove the last row and column to

find S̃t−1

3 Continue step 2 until
∏

eig(S̃
H
µ S̃µ) ≥ γ2, then ν = µ

Equivalently we can start from S̃1 and go up to S̃µ+1.
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The PGZ Algorithm
Error Detection

Proposed Approach

Form L̃t,t where L̃ν,t =



s̃1 s̃2 . . . s̃ν
s̃2 s̃3 . . . s̃ν+1

...
...

. . .
...

s̃ν s̃ν+1 . . . s̃2ν−1

...
...

. . .
...

s̃2t−ν s̃2t−ν+1 . . . s̃2t−1


1 Set an empirical threshold γ′

2 If
∏

eig(L̃
H
t,t L̃t,t) < γ′2 then remove the last row and column

to find L̃t−1,t

3 Continue step 2 until
∏

eig(L̃
H
µ,t L̃µ,t) ≥ γ′2, then ν = µ

Equivalently we can start from S̃1 and go up to S̃µ+1.
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The PGZ Algorithm
Comparison

Consider the extreme case where ν = 1 then

Existing approach:

The decision is based on one sample, i.e., s̃1

S̃1 = s̃1 ⇒ eig(S̃
H
1 S̃1) = |s̃1|2 R

ν≥1

ν=0
γ2

1

Proposed approach:

The decision is based on t − 1 samples, i.e., s̃1 to s̃t−1

L̃1,t =


s̃1

s̃2

...
s̃2t−1

 ⇒ eig(L̃
H
1,t L̃1,t) =

2t−1∑
i=1

|s̃i |2
ν≥1

R
ν=0

(2t − 1)γ2
1

New decision rule is more reliable than the existing one as it is
based on several samples.
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The PGZ Algorithm
Error Localization

Error-locator polynomial is defined as

Λ(x) =
ν∏

i=1

(1− xXi ) = Λ0 + Λ1x + . . .+ Λνx
ν

The roots of Λ(x), i.e. X−1
1 , . . . ,X−1

ν , give the reciprocals of
of error locators.

The coefficients of Λ(x), are found by solving end

sjΛν + sj+1Λν−1 + · · ·+ sj+ν−1Λ1 = −sj+ν ,

for j = 1, . . . , 2t − ν, ν ≤ t.
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The PGZ Algorithm
Error Localization

To find [Λ1, . . . ,Λν ]T we can solve


s̃1 s̃2 . . . s̃ν
s̃2 s̃3 . . . s̃ν+1

...
...

. . .
...

s̃ν s̃ν+1 . . . s̃2ν−1


︸ ︷︷ ︸

S̃ν


Λν

Λν−1

...
Λ1

 = −


s̃ν+1

s̃ν+2

...
s̃2ν

 . (1)

For ν < t, the result will be more accurate by finding the least squares solution for

s̃1 s̃2 . . . s̃ν
s̃2 s̃3 . . . s̃ν+1

...
...

. . .
...

s̃ν s̃ν+1 . . . s̃2ν−1

...
...

. . .
...

s̃2t−ν s̃2t−ν+1 . . . s̃2t−1


︸ ︷︷ ︸

L̃ν,t


Λν

Λν−1

...
Λ1

 = −



s̃ν+1

s̃ν+2

...
s̃2ν

...
s̃2t


. (2)
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The PGZ Algorithm
Error Localization

LS for error localization (step 2)

The accuracy of the LS estimation depends on the number of
equations per unknowns which is 2t−ν

ν

It improves when the number of errors (unknowns) decreases

LS for error calculation (step 3)

The LS is also use to improve the last step of decoding

The accuracy of estimation, however, depends on the code
rate, i.e., n−k

k = 1
R − 1

The lower the code-rate, the more accurate the error
estimation
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Performance Analysis
Linear Reconstruction

Erasure only [Goyal et al, 2001] and [Rath and Guillemot, 2004]

BCH-DFT codes are tight frames

The mean squared reconstruction error is minimized by tight
frames and is equal to MSEq = k

nσ
2
q

Erasure and Error

ŷ = Gx + η, η = q + e

x̂ = G†y = x +
k

n
GTη

MSEq+e =
1

k
E{‖x̂− x‖2} =

1

k
E{‖k

n
GTη‖2}

=
k

n

[
σ2
q +

ν

n
σ2
e

]
, (3)
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Performance Analysis
Linear Reconstruction

Using BCH-DFT codes, without error correction but merely using
linear reconstruction, MSEq+e ≤ σ2

q is possible

MSEq+e ≤ σ2
q for

σ2
e

σ2
q

≤ n

k

n − k

ν
' n

k

2t

ν
,

A the worst case where ν = n, reconstruction error is less than
quantization error as long as

σ2
e ≤ (

1

R
− 1)σ2

q.
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Performance Analysis
MSE for 6-bit quantization
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Figure: The LS estimation versus existing approach with perfect error
localization for different error patterns in a (17, 9) DFT code.
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Performance Analysis
MSE for 6-bit quantization
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Figure: The MSE performance of a (36, 9) DFT code (t = 13) with
perfect error localization.
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Performance Analysis
MSE for 6-bit quantization
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Figure: The LS decoding (detection, localization, and estimation) and
existing approach for a (17, 9) DFT code.
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Thank you!
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