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Real BCH-DFT Codes

Applications

Motivations for studying BCH-DFT codes

Resilience to additive noise including quantization error

Erasures and errors correction (channel coding)

(*]

]

@ Distributed lossy source coding (new)

@ Better performance w.r.t. delay and complexity
]

Better performance under particular channel characteristics
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@ Distributed lossy source coding (new)

@ Better performance w.r.t. delay and complexity
]

Better performance under particular channel characteristics

Connection to Frame Theory

@ Complex BCH-DFT codes are harmonic frames

@ Real BCH-DFT codes are rotated harmonic frames
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Real BCH-DFT Codes

Encoding

zero Yecr ER”
: < IDFT |+ Y
padding

Figure: Real BCH-DFT encoding scheme

G = \/ZW[’ZW,(

@ X ..k inserts n-k consecutive zeros in the transform domain
=—> BCH code

o DFT is used to convert vector x € R* to a circularly
symmetric X € CX, guaranteeing a real y

@ Removing the DFT block, we obtain complex BCH-DFT codes
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Real BCH-DFT Codes

Coding scheme
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Figure: Channel coding using real-valued BCH codes

sn—k

@ H takes N-K columns of W,\’f corresponding to zeros of X

@ For every codeword, s = Hy = HGx =0

J
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Real BCH-DFT Codes

Coding scheme
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S
Figure: Channel coding using real-valued BCH codes

@ H takes N-K columns of W,\’f corresponding to zeros of
@ For every codeword, s = Hy = HGx =0

Without quantization:

y'=x"+e"=s, =5
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Real BCH-DFT codes

Decoding

Motivation Encoding Decoding

- How can we decode?
@ Without quantization error

o y'=x"+e"=s. =5,
o Decoding algorithms (e.g., the Peterson-Gorenstein-Zierler) for
a BCH code, in general, has the following major steps

@ Detection (to determine the number of errors)
@ Localization (to find the location of errors)
@ Calculation (to calculate the magnitude of errors)

@ With quantization error
o y'=x"+q"+e"= s =5 +54
e Modify the above algorithm
e Each step becomes an estimation problem
e Least squares solution largely improves the decoding accuracy
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The PGZ algorithm

Detection without quantization

© Detection (v =7)

51 So e St

S S3 cee St41
St = o

St St+1 --- S2t-1

Then, v = pu iff S, is nonsingular for v = p but is singular for
v > p. This is because

.
S, = V,DV,
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The PGZ Algorithm

Detection with quantization

Assume there are v < t errors. Form S;

55 5 5
) % & ... Ey
St -

St Stq1 ... S

Existing Approach
@ Set an empirical threshold

QIf Hgig(gfgt) < 72 then remove the last row and column to
find S;_1

. c . &Hz
@ Continue step 2 until [Teig(S,S,) > 7?, then v = 1

Equivalently we can start from S; and go up to g#+1.
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The PGZ Algorithm

Error Detection

Proposed Approach

S1 S .. s,
% 53 . S
Form L., where Ly = - - -
Sy Su+1 o Sov—1
L S2t—v  St—w41 ... 521

@ Set an empirical threshold ~/
o]
@ If [Teig(L; L) <+ then remove the last row and column
to flnd i:t—].,t

. : . oH &
@ Continue step 2 until [Teig(L, ;L) >+, then v = 1

Equivalently we can start from S; and go up to §u+1-
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The PGZ Algorithm

Comparison

Consider the extreme case where v = 1 then

The decision is based on one sample, i.e., §;

>v>1

= - o i3l ~
S1=5 == eig(S; S1) = |32 = fy%
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The PGZ Algorithm

Comparison

Consider the extreme case where v = 1 then

The decision is based on one sample, i.e., §;

>v>1 2
Zz/:O fyl

The decision is based on t — 1 samples, i.e., $; to §;_1

§.=3 = eig(gygl) =[5/

% 2t—1

Li: = . = eig( L1 le ¢ Z |s,

fan

(2t — 1)

1 AIVIV

S2t-1
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The PGZ Algorithm

Comparison

Consider the extreme case where v = 1 then

The decision is based on one sample, i.e., §;

o T 5 >1
S:=5% = e1g($1 Sl) = |51|2 EZ;O W%

The decision is based on t — 1 samples, i.e., $; to §;_1

51
% 21
Li: = . = eig( L1 le ¢ Z |s,

’

fan

(2t — 1)

1 AIVIV

S2t-1

New decision rule is more reliable than the existing one as it is
based on several samples.
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The PGZ Algorithm

Error Localization

Error-locator polynomial is defined as

A(x) = H(l —xXi) =No+Nix+ ...+ Ax"
i=1

o The roots of A(x), i.e. X;*,...,X; L, give the reciprocals of
of error locators.

@ The coefficients of A(x), are found by solving end
silhy + sjpiNv—1 + -+ Sip_1AL = —Sj10,

forj=1....2t—v,v<t.
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The PGZ Algorithm
Error Localization
To find [Aq, ... ,/\,,]T we can solve

3 3 .. 3 Ay 541
% B ... & Av—1 Sut2
; : - @
S Sut1 - S A S
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The PGZ Algorithm

Error Localization

Detection Localization

To find [Aq, ..., /\,,]T we can solve

5% ... & Ay 3,41
§2 §3 §V+1 Au—l §u+2
: - : ‘ )
S Sut1 - S A S
SV

For v < t, the result will be more accurate by finding the least squares solution for

S1 §2 coo §u §V+1

S2 S3 s Sv+1 A Sy+2

o Au—l

- . . . = — o . 2
Sv Su+1 cee Sov—1 . Sov ( )
. A

Sot—v  St—v+1 ... St St
LIJ t

e
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The PGZ Algorithm

Error Localization

LS for error localization

@ The accuracy of the LS estimation depends on the number of

equations per unknowns which is mT*”

@ It improves when the number of errors (unknowns) decreases
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The PGZ Algorithm

Error Localization

LS for error localization

@ The accuracy of the LS estimation depends on the number of
equations per unknowns which is mT*”

@ It improves when the number of errors (unknowns) decreases

<

LS for error calculation

@ The LS is also use to improve the last step of decoding

@ The accuracy of estimation, however, depends on the code
rate, i.e., ”;k = % -1

@ The lower the code-rate, the more accurate the error
estimation
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Performance Analysis

Linear Reconstruction

Erasure only [Goyal et al, 2001] and [Rath and Guillemot, 2004]

@ BCH-DFT codes are tight frames

@ The mean squared reconstruction error is minimized by tight

frames and is equal to MSE, = %0(27
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Performance Analysis

Linear Reconstruction

Erasure only [Goyal et al, 2001] and [Rath and Guillemot, 2004]
@ BCH-DFT codes are tight frames

@ The mean squared reconstruction error is minimized by tight
frames and is equal to MSE, = X072

n"q

Erasure and Error

y

I
9]

x+1,  n=q+e

>>

k
= GTy:x—i-;GTn

1 . 1 k
MSEqse = 7E{IR — x|} = E{I =G}

=35, ®
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Performance Analysis

Linear Reconstruction

Using BCH-DFT codes, without error correction but merely using
linear reconstruction, MSEq . < a?, is possible

MSEq+e < 0'3 for

02 _nn—k n2t
2 S =X
og kv k
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Performance Analysis

Linear Reconstruction

Using BCH-DFT codes, without error correction but merely using
linear reconstruction, MSEq . < a?, is possible

MSEqe < o3 for

Q
o N

QN

A the worst case where v = n, reconstruction error is less than
quantization error as long as

1
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Performance Analysis
MSE for 6-bit quantization
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Figure: The LS estimation versus existing approach with perfect error
localization for different error patterns in a (17,9) DFT code.
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Performance Analysis
MSE for 6-bit quantization
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Figure: The MSE performance of a (36,9) DFT code (t = 13) with
perfect error localization.
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Performance Analysis
MSE for 6-bit quantization
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.
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Figure: The LS decoding (detection, localization, and estimation) and
existing approach for a (17,9) DFT code.
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Thank you!
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