Securing Downlink Non-Orthogonal Multiple Access Systems by Trusted Relays

Ahmed Arafa1 Wonjae Shin2,1 Mojtaba Vaezi3 H. Vincent Poor1

1Electrical Engineering Department, Princeton University, USA
2Department of Electronics Engineering, Pusan National University, South Korea
3Electrical and Computer Engineering Department, Villanova University, USA

12/10/2018
Non-Orthogonal Multiple Access (NOMA)

- NOMA techniques offer solutions to spectrum scarcity and congestion problems.

- **Key feature:** efficient utilization of available resources serving multiple users simultaneously over the same resource: frequency, time, code, or space.

- Vulnerable to eavesdropping (wireless communications inherent openness).

- How to provide security guarantees with multiple interfering users?
Security at the Physical Layer

- Traditionally a higher-layer issue: encryption, key distribution.
- Might be insufficient with the increasing computational powers of adversarial nodes/eavesdroppers.

- **Physical layer security** provides security by exploiting the imperfections in the physical communication channel: noise, fading, interference.
- Joint encoding for security and reliability.
Physical Layer Security for NOMA—Related Works

- **SISO** secrecy sum rate maximization: [Zhang - Wang - Yang - Ding '16].

- **Large-scale** security for downlink: [liu - Qin - Elkashlan - Gao - Hanzo '17]; and uplink: [Gomez - Martin-Vega - Lopez-Martinez - Liu - Elkashlan '17].

- NOMA-assisted **multicast-unicast** streaming: [Ding - Zhao - Peng - Poor '17].

- **MIMO** secrecy sum rate: [Tian - Zhang - Zhao - Li - Qin '17].

- One user is **untrusted** with MISO: [Li - Jiang - Zhang - Li - Qin '17]; and MIMO: [Jiang - Li - Zhang - Li - Qin '17].

- Transmit antenna selection: [Lei - Zhang - Park - Xu - Ansari - Pan - Alomair - Alouini '17].

- Secrecy rate maximization with **outage probability** constraints: [He - Liu - Yang - Lau '17].

- ...
BS uses superposition coding to send two messages to the legitimate users:

\[x = \sqrt{\alpha P} s_1 + \sqrt{\bar{\alpha} P} s_2 \]

- **Strong** user decodes both messages using successive interference cancellation.
- **Weak** user decodes its message by treating interference as noise.
- An external **eavesdropper** wiretaps the communication.
Secrecy capacities of this multi-receiver wiretap channel [Ekrem-Ulukus ’11]:

\[r_{s,1} = \left[\log \left(1 + |h_1|^2 \alpha P \right) - \log \left(1 + |h_e|^2 \alpha P \right) \right]^+ \]

\[r_{s,2} = \left[\log \left(1 + \frac{|h_2|^2 \bar{\alpha} P}{1 + |h_2|^2 \bar{\alpha} P} \right) - \log \left(1 + \frac{|h_e|^2 \bar{\alpha} P}{1 + |h_e|^2 \bar{\alpha} P} \right) \right]^+ \]
How can a number of trusted cooperative relays enhance the secrecy rate region?
Channels are complex-valued, fixed, and known. Noise is $\sim \mathcal{CN}(0, 1)$.

K relays, half-duplex, trusted, and cooperative.

Each node is equipped with a single-antenna (SISO).

BS reduces its power to \bar{P}; relays share the remaining $P - \bar{P}$.

Three relaying schemes: cooperative jamming, decode-and-forward and amplify-and-forward.
Relaying Scheme 1: Cooperative Jamming

- Relays transmit a **jamming** signal Jz simultaneously with the BS’s transmission.
- $z \sim \mathcal{CN}(0, 1)$; $J \in \mathbb{C}^K$ is a **beamforming** vector.
- Jamming signal should not affect the legitimate users:

$$[g_1 \quad g_2]^\dagger J_o \triangleq G^\dagger J_o = \begin{bmatrix} 0 & 0 \end{bmatrix}$$
Without relays (direct transmission):

\[
 r_{s,1} = \left[\log \left(1 + |h_1|^2 \alpha P \right) - \log \left(1 + |h_e|^2 \alpha P \right) \right]^+
\]

\[
 r_{s,2} = \left[\log \left(1 + \frac{|h_2|^2 \bar{\alpha} P}{1 + |h_2|^2 \alpha P} \right) - \log \left(1 + \frac{|h_e|^2 \bar{\alpha} P}{1 + |h_e|^2 \alpha P} \right) \right]^+
\]
With cooperative jamming:

\[r_{s,1}^J = \left[\log \left(1 + |h_1|^2 \bar{\alpha} \bar{P} \right) - \log \left(1 + \frac{|h_e|^2 \bar{\alpha} \bar{P}}{1 + |g_e^\dagger J_o|^2} \right) \right]^+ \]

\[r_{s,2}^J = \left[\log \left(1 + \frac{|h_2|^2 \bar{\alpha} \bar{P}}{1 + |h_2|^2 \bar{\alpha} \bar{P}} \right) - \log \left(1 + \frac{|h_e|^2 \bar{\alpha} \bar{P}}{1 + |h_e|^2 \bar{\alpha} \bar{P} + |g_e^\dagger J_o|^2} \right) \right]^+ \]

Best beamforming vector:

\[
\max_{J_o} |g_e^\dagger J_o|^2 \\
\text{s.t. } G^\dagger J_o = [0 \ 0] \\
J_o^\dagger J_o = P - \bar{P}
\]

Unique solution:

\[
\hat{J}_o = \frac{\mathcal{P}^\perp(G) g_e}{\|\mathcal{P}^\perp(G) g_e\|} \sqrt{P - \bar{P}}
\]

\(\mathcal{P}^\perp(\cdot) \) is a projection matrix:

\[
\mathcal{P}^\perp(G) \triangleq I_K - G \left(G^\dagger G \right)^{-1} G^\dagger
\]
With cooperative jamming:

\[
r_{s,1}^J = \left[\log \left(1 + |h_1|^2 \alpha \bar{P} \right) - \log \left(1 + \frac{|h_e|^2 \alpha \bar{P}}{1 + |g_e^\dagger J_o|^2} \right) \right]^+ \\
r_{s,2}^J = \left[\log \left(1 + \frac{|h_2|^2 \bar{\alpha} \bar{P}}{1 + |h_2|^2 \alpha \bar{P}} \right) - \log \left(1 + \frac{|h_e|^2 \bar{\alpha} \bar{P}}{1 + |h_e|^2 \alpha \bar{P} + |g_e^\dagger J_o|^2} \right) \right]^+
\]

Best beamforming vector:

\[
\max_{J_o} \quad |g_e^\dagger J_o|^2 \\
\text{s.t.} \quad G^\dagger J_o = [0 \ 0] \\
J_o^\dagger J_o = P - \bar{P}
\]

Unique solution:

\[
\hat{J}_o = \frac{\mathcal{P}(G) g_e}{\|\mathcal{P}(G) g_e\|} \sqrt{P - \bar{P}}
\]

\(\mathcal{P}(\cdot)\) is a projection matrix:

\[
\mathcal{P}(G) \triangleq I_K - G (G^\dagger G)^{-1} G^\dagger
\]
With cooperative jamming:

\[
\begin{align*}
 r_{s,1}^J &= \left[\log \left(1 + |h_1|^2 \alpha \bar{P} \right) - \log \left(1 + \frac{|h_e|^2 \alpha \bar{P}}{1 + |g^\dagger J_o|^2} \right) \right]^+ \\
 r_{s,2}^J &= \left[\log \left(1 + \frac{|h_2|^2 \alpha \bar{P}}{1 + |h_2|^2 \alpha \bar{P}} \right) - \log \left(1 + \frac{|h_e|^2 \alpha \bar{P}}{1 + |h_e|^2 \alpha \bar{P} + |g^\dagger J_o|^2} \right) \right]^+
\end{align*}
\]

Best beamforming vector:

\[
\max_{J_o} \quad |g^\dagger J_o|^2 \\
\text{s.t.} \quad G^\dagger J_o = [0 \quad 0] \\
\quad J_o^\dagger J_o = P - \bar{P}
\]

Unique solution:

\[
\hat{J}_o = \frac{P \perp (G) g_e}{\|P \perp (G) g_e\|} \sqrt{P - \bar{P}}
\]

\(P \perp (\cdot)\) is a projection matrix:

\[
P \perp (G) \triangleq I_K - G \left(G^\dagger G \right)^{-1} G^\dagger
\]
Relaying Scheme 2: Decode-and-Forward

Communication occurs over two phases:

1. **Phase 1**: BS broadcasts the messages to both relays and legitimate users.
2. **Phase 2**: Relays decode, forward toward users via superposition coding, and use a beamforming vector $d \in \mathbb{C}^K$.

In what order should the kth relay decode? *Depends on operating point*...

1. **(1): strong user’s message first**:

 $$ R_{k,1}^{(1)} = \log \left(1 + \frac{|h_{r,k}|^2 \alpha \bar{P}}{1 + |h_{r,k}|^2 \bar{\alpha} \bar{P}} \right) $$

 $$ R_{k,2}^{(1)} = \log \left(1 + |h_{r,k}|^2 \bar{\alpha} \bar{P} \right) $$

2. **(2): weak user’s message first**:

 $$ R_{k,1}^{(2)} = \log \left(1 + |h_{r,k}|^2 \alpha \bar{P} \right) $$

 $$ R_{k,2}^{(2)} = \log \left(1 + \frac{|h_{r,k}|^2 \bar{\alpha} \bar{P}}{1 + |h_{r,k}|^2 \alpha \bar{P}} \right) $$
Relaying Scheme 2: Decode-and-Forward

Communication occurs over two phases:

- **Phase 1**: BS broadcasts the messages to both relays and legitimate users.
- **Phase 2**: Relays decode, forward toward users via superposition coding, and use a beamforming vector $d \in \mathbb{C}^K$.

In what order should the kth relay decode? Depends on operating point...

1. **Strong user's message first**:
 \[
 R_{k,1}^{(1)} = \log \left(1 + \frac{|h_{r,k}|^2 \alpha \bar{P}}{1 + |h_{r,k}|^2 \bar{\alpha} \bar{P}} \right)
 \]
 \[
 R_{k,2}^{(1)} = \log \left(1 + |h_{r,k}|^2 \bar{\alpha} \bar{P} \right)
 \]

2. **Weak user's message first**:
 \[
 R_{k,1}^{(2)} = \log \left(1 + |h_{r,k}|^2 \alpha \bar{P} \right)
 \]
 \[
 R_{k,2}^{(2)} = \log \left(1 + \frac{|h_{r,k}|^2 \bar{\alpha} \bar{P}}{1 + |h_{r,k}|^2 \alpha \bar{P}} \right)
 \]
Relaying Scheme 2: Decode-and-Forward

- Communication occurs over two phases:
 - **Phase 1**: BS broadcasts the messages to both relays and legitimate users.
 - **Phase 2**: Relays decode, forward toward users via superposition coding, and use a beamforming vector $d \in \mathbb{C}^K$.

- In what order should the kth relay decode? *Depends on operating point*...

1. **(1): strong user’s message first:**
 \[
 R_{k,1}^{(1)} = \log \left(1 + \frac{|h_{r,k}|^2 \alpha \bar{P}}{1 + |h_{r,k}|^2 \bar{\alpha} \bar{P}} \right) \\
 R_{k,2}^{(1)} = \log (1 + |h_{r,k}|^2 \bar{\alpha} \bar{P})
 \]

2. **(2): weak user’s message first:**
 \[
 R_{k,1}^{(2)} = \log (1 + |h_{r,k}|^2 \alpha \bar{P}) \\
 R_{k,2}^{(2)} = \log \left(1 + \frac{|h_{r,k}|^2 \bar{\alpha} \bar{P}}{1 + |h_{r,k}|^2 \alpha \bar{P}} \right)
 \]
Relaying Scheme 2: Decode-and-Forward

Communication occurs over two phases:

Phase 1: BS broadcasts the messages to both relays and legitimate users.

Phase 2: Relays decode, forward toward users via superposition coding, and use a beamforming vector $d \in \mathbb{C}^K$.

In what order should the kth relay decode? *Depends on operating point*...

1. **Strong user’s message first:**
 \[
 R_{k,1}^{(1)} = \log \left(1 + \frac{|h_{r,k}|^2 \alpha \bar{P}}{1 + |h_{r,k}|^2 \alpha \bar{P}} \right)
 \]
 \[
 R_{k,2}^{(1)} = \log \left(1 + |h_{r,k}|^2 \alpha \bar{P} \right)
 \]

2. **Weak user’s message first:**
 \[
 R_{k,1}^{(2)} = \log \left(1 + |h_{r,k}|^2 \alpha \bar{P} \right)
 \]
 \[
 R_{k,2}^{(2)} = \log \left(1 + \frac{|h_{r,k}|^2 \alpha \bar{P}}{1 + |h_{r,k}|^2 \alpha \bar{P}} \right)
 \]
Relaying Scheme 2: Decode-and-Forward

Communication occurs over two phases:

- **Phase 1**: BS broadcasts the messages to both relays and legitimate users.
- **Phase 2**: Relays decode, forward toward users via superposition coding, and use a beamforming vector $d \in \mathbb{C}^K$.

In what order should the kth relay decode? *Depends on operating point*...

- (1): strong user’s message first:

 $R_{k,1}^{(1)} = \log \left(1 + \frac{|h_{r,k}|^2 \alpha \bar{P}}{1 + |h_{r,k}|^2 \bar{\alpha} \bar{P}} \right)$

 $R_{k,2}^{(1)} = \log \left(1 + |h_{r,k}|^2 \bar{\alpha} \bar{P} \right)$

- (2): weak user’s message first:

 $R_{k,1}^{(2)} = \log \left(1 + |h_{r,k}|^2 \alpha \bar{P} \right)$

 $R_{k,2}^{(2)} = \log \left(1 + \frac{|h_{r,k}|^2 \bar{\alpha} \bar{P}}{1 + |h_{r,k}|^2 \alpha \bar{P}} \right)$
Communication occurs over two phases:

- **Phase 1**: BS broadcasts the messages to both relays and legitimate users.
- **Phase 2**: Relays decode, forward toward users via superposition coding, and use a beamforming vector $d \in \mathbb{C}^K$.

Eavesdropper overhears communication in both phases.

Eliminate eavesdropping benefit in **Phase 2**:

$$g_e^\dagger d_o = 0$$
Relaying Scheme 2: Decode-and-Forward

Communication occurs over two phases:

- **Phase 1**: BS broadcasts the messages to both relays and legitimate users.
- **Phase 2**: Relays decode, forward toward users via superposition coding, and use a beamforming vector $d \in \mathbb{C}^K$.

- Eavesdropper overhears communication in both phases.

- Eliminate eavesdropping benefit in **Phase 2**:
 \[g_e^\dagger d_o = 0 \]
Without relays (direct transmission):

\[r_{s,1} = \left[\log \left(1 + |h_1|^2 \alpha P \right) - \log \left(1 + |h_e|^2 \alpha P \right) \right]^+ \]

\[r_{s,2} = \left[\log \left(1 + \frac{|h_2|^2 \bar{\alpha} P}{1 + |h_2|^2 \alpha P} \right) - \log \left(1 + \frac{|h_e|^2 \bar{\alpha} P}{1 + |h_e|^2 \alpha P} \right) \right]^+ \]
Relaying Scheme 2: Decode-and-Forward—Achievable Secrecy Rates

- With decode-and-forward:

\[
\begin{align*}
 r_{s,1}^{DF} &= \frac{1}{2} \left[r_1^{DF} - \log \left(1 + |h_e|^2 \alpha \bar{P} \right) \right]^+ \\
 r_{s,2}^{DF} &= \frac{1}{2} \left[r_2^{DF} - \log \left(1 + \frac{|h_e|^2 \alpha \bar{P}}{1 + |h_e|^2 \alpha \bar{P}} \right) \right]^+ \\
\end{align*}
\]

where

\[
\begin{align*}
 r_1^{DF} &= \min \left\{ \log \left(1 + |h_1|^2 \alpha \bar{P} \right) + \log \left(1 + |g_1^\dagger d_o|^2 \alpha (P - \bar{P}) \right), \min_{1 \leq k \leq K} R_{k,1}^{(i)} \right\} \\
 r_2^{DF} &= \min \left\{ \log \left(1 + \frac{|h_2|^2 \alpha \bar{P}}{1 + |h_2|^2 \alpha \bar{P}} \right) + \log \left(1 + \frac{|g_2^\dagger d_o|^2 \alpha (P - \bar{P})}{1 + |g_2^\dagger d_o|^2 \alpha (P - \bar{P})} \right), \min_{1 \leq k \leq K} R_{k,2}^{(i)} \right\} \\
\end{align*}
\]

- Secrecy rates depend on decoding order \((i), i = 1, 2\), at the relays.

- Extra \(\frac{1}{2}\) terms are due to sending same information over two phases.
Relaying Scheme 2: Decode-and-Forward—Achievable Secrecy Rates

With decode-and-forward:

\[
\begin{align*}
 r_{s,1}^{DF} &= \frac{1}{2} \left[r_1^{DF} - \log \left(1 + |h_e|^2 \bar{\alpha} \bar{P} \right) \right]^+ \\
 r_{s,2}^{DF} &= \frac{1}{2} \left[r_2^{DF} - \log \left(1 + \frac{|h_e|^2 \bar{\alpha} \bar{P}}{1 + |h_e|^2 \alpha \bar{P}} \right) \right]^+
\end{align*}
\]

where

\[
\begin{align*}
 r_1^{DF} &= \min \left\{ \log \left(1 + |h_1|^2 \alpha \bar{P} \right) + \log \left(1 + |g_1^\dagger d_o|^2 \alpha (P - \bar{P}) \right), \min_{1 \leq k \leq K} R_{k,1}^{(i)} \right\} \\
 r_2^{DF} &= \min \left\{ \log \left(1 + \frac{|h_2|^2 \bar{\alpha} \bar{P}}{1 + |h_2|^2 \alpha \bar{P}} \right) + \log \left(1 + \frac{|g_2^\dagger d_o|^2 \bar{\alpha} (P - \bar{P})}{1 + |g_2^\dagger d_o|^2 \alpha (P - \bar{P})} \right), \min_{1 \leq k \leq K} R_{k,2}^{(i)} \right\}
\end{align*}
\]

- Fix \(0 \leq \beta \leq 1\).
- Proposed beamforming vector:

\[
\begin{align*}
 \max_{d_o} \quad & \beta \left| g_1^\dagger d_o \right|^2 + (1 - \beta) \left| g_2^\dagger d_o \right|^2 \\
 \text{s.t.} \quad & g_e^\dagger d_o = 0 \\
 & d_o^\dagger d_o = 1
\end{align*}
\]

- Unique solution:

\[
\begin{align*}
 \hat{d}_o &= \frac{\mathcal{P}^\perp(g_e) \hat{u}_d}{\|\mathcal{P}^\perp(g_e) \hat{u}_d\|} \\
 \hat{u}_d &= \text{leading eigenvector of } \mathcal{P}^\perp(g_e) \left(\beta g_1 g_1^\dagger + (1 - \beta) g_2 g_2^\dagger \right) \mathcal{P}^\perp(g_e)
\end{align*}
\]
Relaying Scheme 2: Decode-and-Forward—Achievable Secrecy Rates

- With decode-and-forward:

\[
\begin{align*}
 r_{s,1}^{DF} &= \frac{1}{2} \left[r_1^{DF} - \log \left(1 + |h_e|^2 \alpha \bar{P} \right) \right]^+ \\
 r_{s,2}^{DF} &= \frac{1}{2} \left[r_2^{DF} - \log \left(1 + \frac{|h_e|^2 \bar{\alpha} \bar{P}}{1 + |h_e|^2 \alpha \bar{P}} \right) \right]^+
\end{align*}
\]

where

\[
\begin{align*}
 r_1^{DF} &= \min \left\{ \log (1 + |h_1|^2 \alpha \bar{P}) + \log \left(1 + |g_1^\dagger d_o|^2 \alpha (P - \bar{P}) \right), \min_{1 \leq k \leq K} R_{k,1}^{(i)} \right\} \\
 r_2^{DF} &= \min \left\{ \log \left(1 + \frac{|h_2|^2 \bar{\alpha} \bar{P}}{1 + |h_2|^2 \alpha \bar{P}} \right) + \log \left(1 + \frac{|g_2^\dagger d_o|^2 \bar{\alpha} (P - \bar{P})}{1 + |g_2^\dagger d_o|^2 \alpha (P - \bar{P})} \right), \min_{1 \leq k \leq K} R_{k,2}^{(i)} \right\}
\end{align*}
\]

- Fix \(0 \leq \beta \leq 1\).

- Proposed beamforming vector:

\[
\begin{align*}
 \max_{d_o} & \quad \beta |g_1^\dagger d_o|^2 + (1 - \beta) |g_2^\dagger d_o|^2 \\
\text{s.t.} & \quad g_e^\dagger d_o = 0 \\
& \quad d_o^\dagger d_o = 1
\end{align*}
\]

- Unique solution:

\[
\hat{d}_o = \frac{\mathcal{P}^\perp(g_e) \hat{u}_d}{\|\mathcal{P}^\perp(g_e) \hat{u}_d\|}
\]

- \(\hat{u}_d\): leading eigenvector of

\[
\mathcal{P}^\perp(g_e) \left(\beta g_1 g_1^\dagger + (1 - \beta) g_2 g_2^\dagger \right) \mathcal{P}^\perp(g_e)
\]
Communication also occurs over two phases:

- **Phase 1**: BS broadcasts the messages to both relays and legitimate users.
- **Phase 2**: Relays multiply their received signal y_r by a beamforming vector $a \in \mathbb{C}^K$ and forward to users.

Eavesdropper overhears communication in both phases.

Eliminate eavesdropping benefit in **Phase 2**:

$$g_e \mathop{\dagger} \text{diag}(h_r) a_o = 0$$
Communication also occurs over two phases:

- **Phase 1**: BS broadcasts the messages to both relays and legitimate users.
- **Phase 2**: Relays multiply their received signal y_r by a beamforming vector $a \in \mathbb{C}^K$ and forward to users.

Eavesdropper overhears communication in both phases.

Eliminate eavesdropping benefit in **Phase 2**:

$$g_e^\dagger \text{diag}(h_r) a_o = 0$$
Communication also occurs over two phases:

- **Phase 1**: BS broadcasts the messages to both relays and legitimate users.
- **Phase 2**: Relays multiply their received signal y_r by a beamforming vector $a \in \mathbb{C}^K$ and forward to users.

Eavesdropper overhears communication in both phases.

Eliminate eavesdropping benefit in **Phase 2**:

$$g_e^\dagger \text{diag}(h_r) a_o = 0$$
Relaying Scheme 3: Amplify-and-Forward—Achievable Secrecy Rates

Without relays (direct transmission):

\[r_{s,1} = \left[\log \left(1 + |h_1|^2 \alpha P \right) - \log \left(1 + |h_e|^2 \alpha P \right) \right]^+ \]

\[r_{s,2} = \left[\log \left(1 + \frac{|h_2|^2 \bar{\alpha} P}{1 + |h_2|^2 \alpha P} \right) - \log \left(1 + \frac{|h_e|^2 \bar{\alpha} P}{1 + |h_e|^2 \alpha P} \right) \right]^+ \]
Relaying Scheme 3: Amplify-and-Forward—Achievable Secrecy Rates

With amplify-and-forward:

\[
\begin{align*}
 r_{s,1}^{AF} &= \frac{1}{2} \left[\log \left(1 + |h_1|^2 \alpha \bar{P} + \frac{a_o^\dagger G_{1,r} a_o}{1 + a_o^\dagger G_1 a_o} \alpha \bar{P} \right) - \log \left(1 + |h_e|^2 \alpha \bar{P} \right) \right]^+ \\
 r_{s,2}^{AF} &= \frac{1}{2} \left[\log \left(1 + \frac{|h_2|^2 \alpha \bar{P}}{1 + |h_2|^2 \alpha \bar{P}} + \frac{a_o^\dagger G_{2,r} a_o \alpha \bar{P}}{1 + a_o^\dagger G_2 a_o + a_o^\dagger G_{2,r} a_o \alpha \bar{P}} \right) - \log \left(1 + \frac{|h_e|^2 (1 - \alpha) \bar{P}}{1 + |h_e|^2 \alpha \bar{P}} \right) \right]^+ \\
\end{align*}
\]

where

\[
G_{j,r} \triangleq \text{diag}(h_r^*) g_j g_j^\dagger \text{diag}(h_r), \quad j = 1, 2
\]
\[
G_j \triangleq \text{diag}(g_j^*) \text{diag}(g_j), \quad j = 1, 2
\]

Extra \(\frac{1}{2} \) terms are due to sending same information over two phases.
Best beamforming vector for jth user:

$$a_o^{(j)} = \sqrt{\frac{P - \bar{P}}{u_a^{(j)T} F A F u_a^{(j)}}} F u_a^{(j)}$$

where

$$F \triangleq \mathcal{P}^\perp (\text{diag}(h_r) g_e)$$

$$A \triangleq (\text{diag}(h_r^*) \text{diag}(h_r) \bar{P} + I_K)$$

$u_a^{(1)}$: leading generalized eigenvector of

$$\left(FG_{1,r} F , F \left(\frac{1}{P - \bar{P}} A + G_1 \right) F \right)$$

$u_a^{(2)}$: leading generalized eigenvector of

$$\left(FG_{2,r} F , F \left(\frac{1}{P - \bar{P}} A + G_2 + G_{2,r} \alpha \bar{P} \right) F \right)$$

Fix $0 \leq \beta \leq 1$. Proposed beamforming vector:

$$\hat{a}_o = \beta a_o^{(1)} + (1 - \beta) a_o^{(2)}$$
Characterize the boundary of the secrecy rate region \((n \in \{J, DF, AF\})\):

\[
\max_{\alpha, \bar{P}} \mu r_{s,1}^n + (1 - \mu) r_{s,2}^n
\]

s.t. \(0 \leq \bar{P} \leq P\), \(0 \leq \alpha \leq 1\)

- \(K = 5\) relays.

- Pick \(\beta = \mu\) for decode-and-forward and amplify-and-forward beamforming vectors.

- Channel gain between two nodes: \(h = \sqrt{1/l^\gamma} e^{i\theta}\)
 - \(l\): distance between the two nodes.
 - \(\gamma\): path loss exponent.
 - \(\theta\): uniform random variable on \([0, 2\pi]\).
Dashed lines are when eavesdropper is in between BS and legitimate users; solid lines are when it is beyond them.
Dashed lines are when eavesdropper is in between BS and legitimate users; solid lines are when it is beyond them.
Dashed lines are when eavesdropper is in between BS and legitimate users; solid lines are when it is beyond them.
Considered the *relaying* benefits on physical layer security of a two-user SISO downlink NOMA with an external eavesdropper.

Take-away message: best relaying scheme depends on relative locations.

Extensions:
- Full-duplex relays.
- Eavesdropper’s channel is unknown.
- MIMO scenarios.
- Untrusted relays (presented at *Asilomar ’18*).
- ...