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Channel Model

Background Contribution
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Multiple-input multiple-output
(MIMO) Gaussian wiretap channel
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yr=Hx + w,
Ye = Gx + we

@ w, and w, are i.i.d.
Gaussian noise vectors

o tr(E{xx"}) =tr(Q) < P
(average power constraint)

@ H and G are given
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Channel Model
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(MIMO) Gaussian wiretap channel

Secrecy capacity [Khisti-Wornell'08] [Oggier-Hassibi'08]
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Precoding for the three-nodes wireless system

The Q in precoding

E{ss’} =1, (i.i.d)
x = VAZs

Q2 E{xx"} =VAVT
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@ Precoding matrix V
Rotation model [Zhang-Qi-Vaezi'19]
(arxiv.org/abs/1908.00994)

@ Power allocation matrix
A
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Ane
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Existing Solutions for Q

This problem is still difficult because it is non-convex and existing
solutions are:

@ not effective for all antenna settings

e iterative (time consuming)

XL. Zhang and M. Vaezi (Villanova) DL for MIMO Gaussian Wiretap Channel Globecom'19



Introduction Contribution Simulations Conclusions Background Contribution

Existing Solutions for Q

This problem is still difficult because it is non-convex and existing
solutions are:

@ not effective for all antenna settings

e iterative (time consuming)

Closed-form solution is known only for
@ MISO case (n, = 1) [Khisti-Wornell'10]
@ n: = n, =2 and n. = 1 [Shafiee-Liu-Ulukus'09]

Strictly degraded channel (H”H = GHG) only if P > P,
[Loyka-Charalambous'16][Fakoorian-Swindlehurst'13]

ny = 2 [Vaezi-Shin-Poor'17]
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Existing Solutions for Q

Existing numerical solutions

@ Generalized singular value decomposition (GSVD) based
beamforming [Fakoorian-Swindlehurst'12]

@ Alternative optimization and water-filling (AO-WF)
[Li-Hong-Wai-Liu-Ma-Luo'13]

@ Rotation model [Zhang-Qi-Vaezi'19]

Problems

@ May provide a sub-optimal solution
@ Time cost usually high
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This Talk

i== DNN ==
|
1

_ HG ——] AO-WF ——| Q |

Training process

Why do we use deep neural network (DNN)?

© Fast: finite matrices computation, no iterations
@ Feasible to learn: input/output mapping

© Easy data generation: build data set including random
channels and find corresponding optimal Q
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This Talk

i== DNN ==

| HG ——] AO-WF ——| Q |

Training process

The proposed method
@ Build data set using numerical method (off line)
— high time cost  + close to the global optimal

@ Train the DNN (off line)
— high time cost  + accurate regression

@ Implement the well trained DNN (on the fly)
+ time efficient + close to the global optimal

v
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DNN design (for n; = 3)

DNN design Data set

@ DNN architecture

o Fully-connected neural
networks (FCNN)

e Activation functions

o Residual connections
(short cuts)

Ideas of the design
@ Non-linear: to be able to
learn the mapping
e Simple: small memory

and computation, avoid
over-fitting
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Feature Input, 72 X 1

FCNN, 128 nodes
PReLU PReLU
FCNN, 128 nodes

PReLU PReLU
Add !

FCNN, 128 nodes

PReLU PReLU

¥
FCNN, 128 nodes

PReLU PReLU

Add ]

2
FCNN, 128 nodes

PReLU

— . U
v

FCNN, 64 nodes

Regression Output, 6 X 1

Proposed DNN architecture
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DNN architecture

DNN design Data set

FCNN Activation function Residual connection

Fully-connected
neural network

Parametric Rectified
Linear Unit (PReLU)
[He-Zhang-Ren-Sun’15]

o Additional adaptive
parameters

@ Less computation
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@ Increases complexity

o Converges faster
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DNN input feature design
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DNN input feature design
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Principles of input design

@ The solution is only related to H'H and G” G
@ Nonlinear features can improve the performance of regression,

since the DNN is a basical

y linear system
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DNN output layer

Elements in the output vector (for ny = 3)

| Regression Output, 6 X 1 |

q = [q11, 422, 933, 412, 423, q13]T

qi1 dJi12 qi3
Q"= | g2 g2 @¢3
q13 g23 Q33

Symmetric matrix
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Data set

Data Set construction
For each sample of data set,

@ Generate H and G randomly (Gaussian)

@ Find the optimal Q using AO-WF
or rotation method

@ Record input and output vectors

Table: Details of the data sets.

ng ny  Ne number of samples
TrainingSet-1 3 2 1 2,000,000
TrainingSet-1l | 3 4 3 2,000,000
TrainingSet-11l | Cascade of TrainingSet-I and TrainingSet-/1
TestSet-1 3 2 1 1000
TestSet-11 3 4 3 1000
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Simulation Results

Accuracy of regression

911

W
- - —Estimated
Table: Mean square error (MSE) of

the regression. W

TrainingSet-II1
TestSet-I  TestSet-11
G11 | 0.1313 0.1564
Goo | 0.1234 0.1386
63 | 01219  0.1364 \//\/\//\/\/\/
G1» | 0.1526 0.1351

Go3 | 0.1057 0.1596
g13 | 0.1384 0.1123 ; :

922

933
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923

943

20 25

10 15
Channel Realizations

) Comparison between the DNN

output and the ideal values
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Simulation Results

Achievable secrecy rate

w

Secrecy Rate (bps/s/Hz)
— N

o

DNN

Averaged time cost

AO-WF  GSVD

Table: Average time for one realization.

DNN  AO-WF GSVD

Time Cost (ms)

0.0255 19.49 0.513
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Simulation Results

Promising for the internet of things (loT) devices

\Q ‘o
Limited computational ability and battery life
Require low delay and high speed
Averaged time cost
Table: Average time for one realization.

DNN  AO-WF GSVD
Time Cost (ms) | 0.0255 19.49  0.513
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Conclusions

Summary
@ Problem: secure transmission over Gaussian wiretap channel
@ Solution: DNN-based precoding

@ Advantage: fast and reliable, efficient for loT devices

Future Work
@ Train for arbitrary n, and ne
@ Generalize to complex channel

@ Multi-task precoding realization
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Thank you!
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