Simplified Han-Kobayashi Region for One-Sided and Mixed Gaussian Interference Channels

Mojtaba Vaezi and H. Vincent Poor

Department of Electrical Engineering Princeton University

ICC, Kuala Lumpur, Malaysia Wednesday, May 25, 2016

Two key features of wireless channels:

- Fading well-established theory, such as MIMO
- 2 Interference within or across systems, e.g.
 - within adjacent cells in a cellular system
 - among multiple WiFi networks

Basic Model: Two-User Interference Channel (IC)

What do we know?

Two basic approaches to use the common spectrum:

- Orthogonalization into different bands to avoid interference
- Full sharing of the spectrum but treating interference as noise

The best known achievable region is due to Han-Kobayashi (HK), but

- general HK scheme is quite complex
- basic HK region can be enlarged by time-sharing
- cardinality of the time-sharing parameter is rather high

What do we know?

Two basic approaches to use the common spectrum:

- Orthogonalization into different bands to avoid interference
- Full sharing of the spectrum but treating interference as noise

The best known achievable region is due to Han-Kobayashi (HK), but

- general HK scheme is quite complex
- basic HK region can be enlarged by time-sharing
- cardinality of the time-sharing parameter is rather high

Questions

- Is the HK scheme optimal encoding strategy?
- 2 Are Gaussian inputs optimal for the HK scheme?
- **3** What is the cardinality of the time-sharing parameter?

Outline

- Introduction
 - Background
 - Outline
- 2 Han-Kobayashi Scheme
 - Problem Statement
 - Basic HK
 - Time-sharing
- Main Results
 - One-Sided IC
 - Mixed IC
 - Summary

Channel Model

$$Y_1 = X_1 + \sqrt{a}X_2 + Z_1,$$

 $Y_2 = \sqrt{b}X_1 + X_2 + Z_2,$

average power constraint P_i $\mathbb{E}(\|X_i\|^2) \leq P_i, i = 1, 2.$

- divide each user's message into private and common messages
- decode and cancel part of interference (other user's common message) before decoding own private message

HK Scheme - Key Idea

- divide each user's message into private and common messages
- decode and cancel part of interference (other user's common message) before decoding own private message

HK region without time-sharing $(\mathcal{R}_{ ext{HK}}^{\mathcal{G}_0})$

The region $\mathcal{R}_{HK}^{\mathcal{G}_0}$ for the one-sided IC with b=0 is given by the union of the set of (R_1, R_2) such that

$$R_1 \le \gamma \left(\frac{P_1}{1 + a\beta P_2}\right),$$

$$R_2 \le \gamma(P_2),$$

$$R_1 + R_2 \le \gamma \left(\frac{P_1 + a\bar{\beta}P_2}{1 + a\beta P_2}\right) + \gamma(\beta P_2),$$

where $\beta \in [0, 1]$, $\bar{\beta} = 1 - \beta$, and $\gamma(x) \triangleq \frac{1}{2} \log_2(1 + x)$.

Weak One-Sided IC

Figure: Basic HK region (without time-sharing) for $P_1 = 1$ and $P_2 = 7$.

Time-sharing

Time-sharing: (R_{11}, R_{21}) and (R_{12}, R_{22}) are achievable \Rightarrow $\lambda_1(R_{11}, R_{21}) + \lambda_2(R_{12}, R_{22})$ is achievable, for any $\lambda_1 + \lambda_2 = 1$.

$$\lambda_1$$
 λ_2 (R_{11}, R_{21}) (R_{12}, R_{22})

$$(R_1, R_2) = \lambda_1(R_{11}, R_{21}) + \lambda_2(R_{12}, R_{22})$$

Example

- in λ_1 interference might be treated as noise
- in λ_2 user 2 may transmits alone
- in λ_3 both users may decode both messages
- in λ₄ ...

Cardinality of Time-sharing

Let q be a time-sharing parameter with cardinality of |q|=Q. Then, for $\sum_q \lambda_q = 1$ the following rate pair is achievable:

$$\lambda_1$$
 λ_2 λ_Q (R_{11}, R_{21}) (R_{12}, R_{22}) (R_{1Q}, R_{2Q}) $(R_{1}, R_{2}) = \sum_{q=1}^{Q} \lambda_q(R_{1q}, R_{2q})$

Cardinality of time-sharing

What is the optimum value (minimum) of Q?

- $Q \le 7$ for full IC [Chong et al.'08]
- $Q \le 3$ for one-sided IC [Motahari-Kandani'09]

- Q=2 is optimal for
 - one-sided IC in the weak interference regime
 - full IC in a large part of mixed interference regime

$\mathcal{R}^{\mathcal{G}}_{\scriptscriptstyle{\mathrm{HK}}}$ for One-Sided IC

The border of the HK region $(\mathcal{R}^{\mathcal{G}}_{_{\mathrm{HK}}})$ is characterized by 1

$$\text{maximize } \sum_{q=1}^{3} \lambda_q \big[\mu R_{1q} + R_{2q} \big]$$

subject to

$$\sum_{q=1}^{3} \lambda_{q} = 1, \quad \sum_{q=1}^{3} \lambda_{q} P_{1q} \le P_{1}, \quad \sum_{q=1}^{3} \lambda_{q} P_{2q} \le P_{2},$$

$$0 \le \beta_{q} \le 1, \quad \lambda_{q} \ge 0, \ P_{1q} \ge 0, \ P_{2q} \ge 0, \ \forall \ q \in \{1, 2, 3\}.$$

One needs to optimize 11 variables at the same time.

$$\frac{1}{\mu R_{1q} + R_{2q}} = \mu \gamma \left(\frac{P_{1q}}{1 + a\beta_q P_{2q}}\right) + \gamma \left(\frac{a\bar{\beta}_q P_{2q}}{1 + P_{1q} + a\beta_q P_{2q}}\right) + \gamma (\beta_q P_{2q})$$

Sketch of Proof

- **1** $\mu R_{1q} + R_{2q}$ is strictly increasing with P_{1q} $\Longrightarrow \sum_{g=1}^{3} \lambda_g P_{1g} = P_1$
- non-interfering user need not split its power $\Longrightarrow P_{12} = P_{13} = 0, P_{11} = \frac{P_1}{\lambda}$
- **3** now, it can be check that $\beta_2 = \beta_3 = 1$ are optimal for a < 1 $\implies \lambda_2 R_{22} + \lambda_3 R_{23} = \lambda_2 \gamma(P_{22}) + \lambda_3 \gamma(P_{23})$
- power splitting is not required in a single-user channel $\implies \lambda_3 = 0$ (optimal solution needs two subbands only)
- **5** assuming P_{21} is used in subband λ_1 , the leftover power must be used in subband λ_2 to maximize $\lambda_2 \gamma(P_{22})$. $\implies \sum_{a=1}^{2} \lambda_a P_{2a} = P_2$, or $P_{22} = \frac{P_2 - \lambda_1 P_{21}}{1 \lambda_1}$.

We need to optimize only 3 variables, namely, $\lambda_1, \beta_1, P_{21}$.

Simplified HK Inner Bound

Theorem $\, 1 \,$

The set of non-negative (R_1, R_2) satisfying

$$R_1 \le \lambda_1 R_{11},$$

 $R_2 \le \lambda_1 R_{21} + \lambda_2 R_{22},$

in which

$$R_{11} \leq \gamma \left(\frac{\frac{P_1}{\lambda_1}}{1 + a\beta_1 P_{21}}\right),$$

$$R_{21} \leq \gamma \left(\frac{a\bar{\beta}_1 P_{21}}{1 + \frac{P_1}{\lambda_1} + a\beta_1 P_{21}}\right) + \gamma (\beta_1 P_{21}),$$

$$R_{22} \leq \gamma (P_{22}),$$

is achievable for the one-sided Gaussian interference channel where $\lambda_1 + \lambda_2 = 1$, $\lambda_1 P_{21} + \lambda_2 P_{22} = P_2$, $0 \le \beta_1 \le 1$, and $\bar{\beta}_1 = 1 - \beta_1$.

Simplified HK - Intuitions

To achieve a rate pair (R_1, R_2) on the border of $\mathcal{R}^{\mathcal{G}}_{HK}$

- Time-sharing in two dimensions
 - both users transmit for λ_1 fraction of channel uses
 - only non-interfered-with user transmits during λ_2

$$\lambda_1$$
 λ_2
user1 & user2 | user2
 (R_{11}, R_{21}) $(0, R_{22})$

i.i.d inputs are not optimal, in general

$$Cov(X_1) = \begin{bmatrix} \frac{n}{n_1} P_1 \mathbf{I}_{n_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \text{ and } Cov(X_2) = \begin{bmatrix} P_{21} \mathbf{I}_{n_1} & \mathbf{0} \\ \mathbf{0} & P_{22} \mathbf{I}_{n_2} \end{bmatrix}$$
 where $n_1 = \lambda_1 n$, $n_2 = \lambda_2 n$, and n is code (block) length.

- **1** $\lambda_2 = 0$ (NO time-sharing) \Longrightarrow basic HK region ($\mathcal{R}_{HK}^{\mathcal{G}0}$)
- 2 $P_{21} = 0 \Longrightarrow TDM/FDM$ region

$$R_1 \le \lambda_1 \gamma \left(\frac{P_1}{\lambda_1}\right),$$

$$R_2 \le \lambda_2 \gamma \left(\frac{P_2}{\lambda_2}\right),$$

$\mathcal{R}_{\scriptscriptstyle \mathrm{HK}}^{\mathcal{G}}$ for Mixed IC

For full IC

- we do not have an optimization problem similar to the one-sided IC case ($\mu R_1 + R_2$ is not known)
- $\mathcal{R}_{\scriptscriptstyle \mathrm{HK}}^{\mathcal{G}}$ is daunting as it needs time-sharing in 7 dimensions

However, we can use the same optimization problem to achieve the HK border for a large part of mixed interference regime

- The $\mathcal{R}_{HK}^{\mathcal{G}_0}$ is the same for a < 1, $b \ge \frac{1+P_2}{1+aP_0}$ and a < 1, b = 0
- This immediately reduces Q to 2 (formerly it was 7)
- The complexity of the HK region thus reduces significantly, in the above case

Summary

- With Gaussian inputs time-sharing in two dimensions is enough to achieve the border of HK region a<1 and b=0 or $b\geq \frac{1+P_2}{1+aP_2}$
 - use basic HK for λ_1 fraction of channel uses
 - ullet single-user transmission for λ_2 fraction of channel uses
- This is the best known inner bound with Gaussian inputs; it is not however known whether
 - Gaussian inputs are optimal for the HK region
 - the HK region is optimal for the Gaussian IC
- The cardinality of time-sharing parameter is still 7 for the weak and part of mixed interference regimes

Thank you!