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Frames

Definition

A spanning family of n vectors F = {f i}ni=1 in a complex vector
space Ck is called a frame if there exist 0 < a ≤ b such that for
any x ∈ Ck

a‖x‖2 ≤
n∑

i=1

|〈x, f i 〉|2 ≤ b‖x‖2, (1)

where 〈x, f i 〉 gives the ith coefficient for the frame expansion of x.

frame bounds, a and b, respectively, ensures that the vectors
span the space and the expansion converges

A frame is tight if a = b

Any frame contains a basis, in fact frame are generalization of
bases.
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Real BCH-DFT Codes
Encoding

DFT
zero

padding IDFT

Wk Σn×k WH
n

x ∈ Rk X ∈ Ck Y ∈ Cn y ∈ Rn

G

Figure: Real BCH-DFT encoding scheme

G =

√
n

k
WH

n ΣWk , (2)

Σn×k inserts n-k consecutive zeros in the transform domain
=⇒ BCH code
DFT is used to convert vector x ∈ Rk to a circularly
symmetric X ∈ Ck , guaranteeing a real y
Removing the DFT block, we obtain complex BCH-DFT codes
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Real BCH-DFT Codes
Applications

Connection to Frame Theory

The generator matrix G is the analysis frame operator;
the frame operator is then GHG = n

k Ik

Complex BCH-DFT codes are harmonic frames

Real BCH-DFT codes are rotated harmonic frames

Applications

Resilience to noise and quantization error

Resilience to erasures and errors (channel coding)

Distributed lossy source coding (new)
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Systematic DFT Frames
Construction

Definition

A systematic frame is a frame whose synthesis frame operator

includes identity matrix as a subframe, i.e., Gsys =

[
Ik

Pn−k×k

]

Construction: Gsys =

[
Gk

Ḡn−k×k

]
G−1
k = GG−1

k

Note that

Gk is invertible as it is a frame =⇒ Gsys exists
The number of these systematic frames is

(n
k

)
Example: A systematic (6,3) DFT code

Gsys =


1 0 0
2
3

2
3

−1
3

0 1 0
−1
3

2
3

2
3

0 0 1
2
3

−1
3

2
3
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Systematic DFT Frames
Motivation

Applications

Same applications as other DFT frames

Parity-based distributed source coding

Distributed source coding

x1 and x2 are two separate, correlated signals (view x2 as
corrupted version of x1)

Encoder

Correlation Chan-
nel (Virtual)

Decoder

x2(side information)

x1 parity x̂1
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Systematic DFT Frames
Optimality condition

Encoding: Let x be the message vector and y = Gsysx represent
the codevector. The variance of y is then given by

σ2
y =

1

n
E{yHy} =

1

n
E{xHGH

sysGsysx}

=
1

n
σ2
x tr (GH

sysGsys)

=
σ2
x

k
tr
(

(GkG
H
k )−1

)
= σ2

x

1

k

k∑
i=1

1

λi
,

(3)

in which λ1 ≥ λ2 ≥ · · · ≥ λk > 0 are the eigenvalues of GkG
H
k
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Systematic DFT Frames
Performance evaluation

The received codevector can be modeled by

ŷ = Gsysx + q, (4)

Linear reconstruction:

x̂ = G †sysŷ =
k

n
GkG

H ŷ = x +
k

n
GkG

Hq, (5)

Reconstruction error:

MSEq =
1

k
E{‖x̂− x‖2} =

1

k
E{‖G †sysq‖2}

=
1

k
E{qHG †HsysG †sysq}

=
1

n
σ2
q tr

(
GH
k Gk

)
=

k

n
σ2
q,

(6)
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H ŷ = x +
k

n
GkG

Hq, (5)

Reconstruction error:

MSEq =
1

k
E{‖x̂− x‖2} =

1

k
E{‖G †sysq‖2}

=
1

k
E{qHG †HsysG †sysq}

=
1

n
σ2
q tr

(
GH
k Gk

)
=

k

n
σ2
q,

(6)

9 / 22



Introduction Systematic frames Eigenvalues Classification Construction Motivation Performance

Systematic DFT Frames
Optimality condition

Q:

Which one of
(n
k

)
systematic frames results in the best MSE

performance?

minimize
λi

k∑
i=1

1

λi

s.t.
k∑

i=1

λi = k , λi > 0

(7)

The constraint comes from the fact (Lemma 1) that all principal
diagonal entries of GkG

H
k are equal to 1.

Optimal solution: By using Lagrangian method, the optimal
eigenvalues are λi = 1 =⇒ tight frames are the optimal solution
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Eigenvalues Structure
Bounds on the extreme eigenvalues

Theorem

For any Gk , a square submatrix of G in (2) in which n 6= Mk, the
smallest (largest) eigenvalue of GkG

H
k is strictly upper (lower)

bounded by 1.

Proof.

Using Weyl inequalities we can show that for n 6= Mk

λk(GH
k Gk) ≤

n
k − 1

b nk c
< 1,

then, since
∑k

i=1 λi = k, we conclude λ1(GH
k Gk) > 1.
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Eigenvalues Structure
Existence of tight frames

Then, due to the fact that for a tight frame with frame operator
FHF , λmin(FHF ) = λmax(FHF ) we conclude

Corollary

For n 6= Mk, where M is a positive integer, tight systematic DFT
frames do not exist.

Note that systematic DFT frames are not necessarily tight for
n = Mk

Q:

What other condition(s) must be met in order to have tight
systematic frames?
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Eigenvalues Structure

Theorem

Let {λ1, λ2, . . . , λk} be the eigenvalues of a nonsingular k × k
matrix A, then we have

( k∑
i=1

1

λi

)
.
( k∏

i=1

λi

)
= c , (8)

where the constant c is a function of tr(A), . . . , tr(Ak−1) .

In light of the above theorem, we can see that

argmin
λi

k∑
i=1

1

λi
= argmax

λi

k∏
i=1

λi . (9)
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Classification of Systematic Frames
Alternative optimality condition

maximize
λi

k∏
i=1

λi

s.t.
k∑

i=1

λi = k , λi > 0.

(10)

But
∏k

i=1 λi = det(GkG
H
k ); therefore,

The “best” submatrix (Gk) is the one with the largest
determinant (possibly 1)

The “worst” submatrix is the one with smallest determinant.
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Classification of Systematic Frames
Best frames

Let Irk = {ir1 , ir2 , . . . , irk} be those rows of G used to build Gk ,
then

det(GkG
H
k ) = det(VkV

H
k ) =

1

kk

∏
1≤p<q≤n
p,q∈Irk

|e iθp − e iθq |2

=
1

kk

∏
1≤p<q≤n
p,q∈Irk

4 sin2 π

n
(q − p).

(11)

When n = Mk and Gk consists of every Mth row of G , we get

det(VkV
H
k ) =

2k(k−1)

kk

k−1∏
r=1

(
sin2 π

n
Mr
)k−r

=
2k(k−1)

kk

k−1∏
r=1

(
sin2 π

k
r
)k−r

= 1.

(12)
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Classification of Systematic Frames
Summary of results

Conclusion: The MSE performance of a systematic frame depends
on the position of data (parity) samples in the codevector, and

Best performance ⇔ evenly spaced data samples

Worst performance ⇔ consecutive data (parity) samples

Integer oversampling (n = Mk) and equally spaced data
samples ⇔ tight systematic frames

Circular shift and/or reversal of the systematic rows of a
systematic frame, does not affect the performance
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Classification of Systematic Frames
Numerical example

Table: Eigenvalues structure for two systematic DFT frames with
different codeword patterns. A “×” and “−” represent data (systematic)
and parity samples.

Code Codeword λmin λmax
∑k

i=1 1/λi
∏k

i=1 λi
patern

×××−−− 0.0572 1.9428 19 0.1111

(6, 3)
××−×−− 0.2546 1.7454 5.5 0.4444

××−−×− 0.2546 1.7454 5.5 0.4444

×−×−×− 1 1 3 1

×××××−− 0.0396 1.4 28.70 0.0827

(7, 5)
××××−×− 0.1506 1.4 10.32 0.2684

××−××−× 0.3110 1.4 7.40 0.4173

×−×××−× 0.3110 1.4 7.40 0.4173
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Thank you!
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Practical code construction
Lossy DSC with SI at the decoder (Wyner-Ziv coding)

What if the source is a continuous-valued sequence? (many
practical applications)
- Current approach

Quantizer
Slepian-Wolf

Encoder
Slepian-Wolf

Decoder
Reconstruction

X X̂

Y Y

Wyner − Ziv encoder Wyner − Ziv decoder

There are source coding loss (or quantization loss) and
channel coding loss (or binning loss)
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Practical code construction
Wyner-Ziv coding in the real field

- Alternative approach

Slepian-Wolf
Encoder

Q Q−1 Slepian-Wolf
Decoder

X X̂

Y

Encoder Decoder

Similarities and differences
There are still coding loss and quantization loss
Coding is before quantization ⇒ error correction in the real
field (soft redundancy)

Advantages
1 Correlation channel model is more realistic
2 Quantization error can be reduced by a factor of coderate (it

vanishes if X and Y are completely correlated)
3 Better performance w.r.t. delay and complexity
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Practical code construction
Wyner-Ziv coding in the real field

Encoder

x

n

sx

n−k
ŝx
n−k

x̂
n

y

n

H Q Decoder

Correlation
Channel

Figure: The Wyner-Ziv coding using DFT codes: Syndrome approach.
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Practical code construction
Wyner-Ziv coding in the real field

Encoder

x

k

p

n−k
p̂

n−k
x̂

k

y

k

Gsys Q Decoder

Correlation
Channel

Figure: The Wyner-Ziv coding using DFT codes: Parity approach.
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