Systematic DFT Frames: Principle and Eigenvalues Structure

Mojtaba Vaezi and Fabrice Labeau

McGill University

International Symposium on Information Theory MIT, Cambridge, MA

Thursday, July 5, 2012

Outline

- Introduction
 - Definitions
 - Applications
- Systematic DFT Frames
 - Construction
 - Motivation
 - Performance
- 3 Eigenvalues Structure
 - Extreme eigenvalues
 - Property
- 4 Classification of Systematic Frames
 - Optimality
 - Summary

Frames

Frames

Definition

A spanning family of n vectors $F = \{\mathbf{f}_i\}_{i=1}^n$ in a complex vector space \mathbb{C}^k is called a *frame* if there exist $0 < a \le b$ such that for any $\mathbf{x} \in \mathbb{C}^k$

$$a\|\mathbf{x}\|^2 \le \sum_{i=1}^n |\langle \mathbf{x}, \mathbf{f}_i \rangle|^2 \le b\|\mathbf{x}\|^2, \tag{1}$$

where $\langle \mathbf{x}, \mathbf{f}_i \rangle$ gives the *i*th coefficient for the frame expansion of \mathbf{x} .

- frame boy b, a and b, respectively, ensures that the vectors span the space and the expansion converges
- A frame is tight if a = b
- Any frame contains a basis, in fact frame are generalization of bases.

Real BCH-DFT Codes Encoding

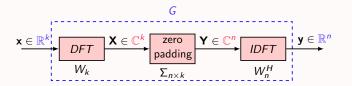


Figure: Real BCH-DFT encoding scheme

$$G = \sqrt{\frac{n}{k}} W_n^H \Sigma W_k, \tag{2}$$

- $\sum_{n \times k}$ inserts n-k consecutive zeros in the transform domain \Longrightarrow BCH code
- DFT is used to convert vector $\mathbf{x} \in \mathbb{R}^k$ to a circularly symmetric $\mathbf{X} \in \mathbb{C}^k$, guaranteeing a real \mathbf{y}
- Removing the DFT block, we obtain complex BCH-DFT codes

Real BCH-DFT Codes

Applications

Connection to Frame Theory

- The generator matrix G is the analysis frame operator; the frame operator is then $G^HG = \frac{n}{k}I_k$
- Complex BCH-DFT codes are harmonic frames
- Real BCH-DFT codes are rotated harmonic frames

Real BCH-DFT Codes

Applications

Connection to Frame Theory

- The generator matrix G is the analysis frame operator; the frame operator is then $G^HG = \frac{n}{k}I_k$
- Complex BCH-DFT codes are harmonic frames
- Real BCH-DFT codes are rotated harmonic frames

Applications

- Resilience to noise and quantization error
- Resilience to erasures and errors (channel coding)
- Distributed lossy source coding (new)

Systematic DFT Frames Construction

Definition

A systematic frame is a frame whose synthesis frame operator includes identity matrix as a subframe, i.e., $G_{sys} = \begin{bmatrix} I_k \\ P_{n-k \times k} \end{bmatrix}$

Systematic DFT Frames Construction

Definition

A systematic frame is a frame whose synthesis frame operator includes identity matrix as a subframe, i.e., $G_{sys} = \begin{bmatrix} I_k \\ P_{n-k \times k} \end{bmatrix}$

Construction:
$$G_{sys} = \begin{bmatrix} G_k \\ \overline{G}_{n-k \times k} \end{bmatrix} G_k^{-1} = G G_k^{-1}$$

Note that

- G_k is invertible as it is a frame $\implies G_{svs}$ exists
- The number of these systematic frames is $\binom{n}{k}$

Systematic DFT Frames Construction

Definition

A systematic frame is a frame whose synthesis frame operator includes identity matrix as a subframe, i.e., $G_{sys} = \begin{bmatrix} I_k \\ P_{n-k \times k} \end{bmatrix}$

Construction:
$$G_{sys} = \begin{bmatrix} G_k \\ \bar{G}_{n-k \times k} \end{bmatrix} G_k^{-1} = G G_k^{-1}$$

Note that

- G_k is invertible as it is a frame $\Longrightarrow G_{svs}$ exists
- The number of these systematic frames is $\binom{n}{k}$

Example: A systematic (6,3) DFT code

$$G_{sys} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{2}{3} & \frac{2}{3} & \frac{-1}{3} \\ 0 & 1 & 0 \\ \frac{-1}{3} & \frac{2}{3} & \frac{2}{3} \\ 0 & 0 & 1 \\ \frac{2}{3} & \frac{-1}{3} & \frac{2}{3} \end{pmatrix}$$

Systematic DFT Frames Motivation

Applications

- Same applications as other DFT frames
- Parity-based distributed source coding

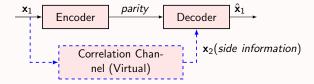
Systematic DFT Frames Motivation

Applications

- Same applications as other DFT frames
- Parity-based distributed source coding

Distributed source coding

 x₁ and x₂ are two separate, correlated signals (view x₂ as corrupted version of x₁)



Encoding: Let \mathbf{x} be the message vector and $\mathbf{y} = G_{\rm sys}\mathbf{x}$ represent the codevector. The variance of \mathbf{y} is then given by

$$\sigma_{y}^{2} = \frac{1}{n} \mathbb{E} \{ \mathbf{y}^{H} \mathbf{y} \} = \frac{1}{n} \mathbb{E} \{ \mathbf{x}^{H} G_{\text{sys}}^{H} G_{\text{sys}} \mathbf{x} \}$$

$$= \frac{1}{n} \sigma_{x}^{2} \operatorname{tr} (G_{\text{sys}}^{H} G_{\text{sys}})$$

$$= \frac{\sigma_{x}^{2}}{k} \operatorname{tr} \left((G_{k} G_{k}^{H})^{-1} \right)$$

$$= \sigma_{x}^{2} \frac{1}{k} \sum_{i=1}^{k} \frac{1}{\lambda_{i}},$$
(3)

in which $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0$ are the eigenvalues of $G_k G_k^H$

Systematic DFT Frames Performance evaluation

$$\hat{\mathbf{y}} = G_{\text{sys}}\mathbf{x} + \mathbf{q},\tag{4}$$

Linear reconstruction:

$$\hat{\mathbf{x}} = G_{\text{sys}}^{\dagger} \hat{\mathbf{y}} = \frac{k}{n} G_k G^H \hat{\mathbf{y}} = \mathbf{x} + \frac{k}{n} G_k G^H \mathbf{q},$$
 (5)

Systematic DFT Frames

Performance evaluation

The received codevector can be modeled by

$$\hat{\mathbf{y}} = G_{SVS}\mathbf{x} + \mathbf{q},\tag{4}$$

Linear reconstruction:

$$\hat{\mathbf{x}} = G_{\text{sys}}^{\dagger} \hat{\mathbf{y}} = \frac{k}{n} G_k G^H \hat{\mathbf{y}} = \mathbf{x} + \frac{k}{n} G_k G^H \mathbf{q}, \tag{5}$$

Reconstruction error:

$$MSE_{q} = \frac{1}{k} \mathbb{E}\{\|\hat{\mathbf{x}} - \mathbf{x}\|^{2}\} = \frac{1}{k} \mathbb{E}\{\|G_{sys}^{\dagger}\mathbf{q}\|^{2}\}$$

$$= \frac{1}{k} \mathbb{E}\{\mathbf{q}^{H}G_{sys}^{\dagger H}G_{sys}^{\dagger}\mathbf{q}\}$$

$$= \frac{1}{n} \sigma_{q}^{2} \operatorname{tr}\left(G_{k}^{H}G_{k}\right) = \frac{k}{n} \sigma_{q}^{2},$$
(6)

Q:

Which one of $\binom{n}{k}$ systematic frames results in the best MSE performance?

Q:

Which one of $\binom{n}{k}$ systematic frames results in the best MSE performance?

Q:

Which one of $\binom{n}{k}$ systematic frames results in the best MSE performance?

minimize
$$\sum_{i=1}^{k} \frac{1}{\lambda_i}$$
s.t.
$$\sum_{i=1}^{k} \lambda_i = k, \ \lambda_i > 0$$
(7)

The constraint comes from the fact (Lemma 1) that all principal diagonal entries of $G_k G_k^H$ are equal to 1.

Q:

Which one of $\binom{n}{k}$ systematic frames results in the best MSE performance?

minimize
$$\sum_{i=1}^{k} \frac{1}{\lambda_i}$$
s.t.
$$\sum_{i=1}^{k} \lambda_i = k, \ \lambda_i > 0$$
(7)

The constraint comes from the fact (Lemma 1) that all principal diagonal entries of $G_k G_k^H$ are equal to 1.

Optimal solution: By using Lagrangian method, the optimal eigenvalues are $\lambda_i=1$ \Longrightarrow tight frames are the optimal solution

Bounds on the extreme eigenvalues

Theorem

For any G_k , a square submatrix of G in (2) in which $n \neq Mk$, the smallest (largest) eigenvalue of $G_kG_k^H$ is strictly upper (lower) bounded by 1.

Proof.

Using Weyl inequalities we can show that for $n \neq Mk$

$$\lambda_k(G_k^HG_k) \leq \frac{rac{n}{k}-1}{\left\lfloor rac{n}{k}
ight
floor} < 1,$$

then, since $\sum_{i=1}^{k} \lambda_i = k$, we conclude $\lambda_1(G_k^H G_k) > 1$.

Existence of tight frames

Then, due to the fact that for a tight frame with frame operator $F^H F$, $\lambda_{\min}(F^H F) = \lambda_{\max}(F^H F)$ we conclude

Corollary

For $n \neq Mk$, where M is a positive integer, tight systematic DFT frames do not exist.

 Note that systematic DFT frames are not necessarily tight for n = Mk

Existence of tight frames

Then, due to the fact that for a tight frame with frame operator $F^H F$, $\lambda_{\min}(F^H F) = \lambda_{\max}(F^H F)$ we conclude

Corollary

For $n \neq Mk$, where M is a positive integer, tight systematic DFT frames do not exist.

 Note that systematic DFT frames are not necessarily tight for n = Mk

Q:

What other condition(s) must be met in order to have tight systematic frames?

Theorem

Let $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$ be the eigenvalues of a nonsingular $k \times k$ matrix A, then we have

$$\left(\sum_{i=1}^{k} \frac{1}{\lambda_i}\right) \cdot \left(\prod_{i=1}^{k} \lambda_i\right) = c,\tag{8}$$

where the constant c is a function of $tr(A), ..., tr(A^{k-1})$.

$\mathsf{Theorem}$

Let $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$ be the eigenvalues of a nonsingular $k \times k$ matrix A, then we have

$$\left(\sum_{i=1}^{k} \frac{1}{\lambda_i}\right) \cdot \left(\prod_{i=1}^{k} \lambda_i\right) = c, \tag{8}$$

where the constant c is a function of $\operatorname{tr}(A), \ldots, \operatorname{tr}(A^{k-1})$.

In light of the above theorem, we can see that

$$\underset{\lambda_i}{\operatorname{argmin}} \sum_{i=1}^k \frac{1}{\lambda_i} = \underset{\lambda_i}{\operatorname{argmax}} \prod_{i=1}^k \lambda_i. \tag{9}$$

maximize
$$\prod_{i=1}^{k} \lambda_{i}$$
 s.t.
$$\sum_{i=1}^{k} \lambda_{i} = k, \ \lambda_{i} > 0.$$

maximize
$$\prod_{i=1}^{k} \lambda_{i}$$
 s.t.
$$\sum_{i=1}^{k} \lambda_{i} = k, \ \lambda_{i} > 0.$$

Classification of Systematic Frames

Alternative optimality condition

maximize
$$\prod_{i=1}^{k} \lambda_{i}$$
s.t.
$$\sum_{i=1}^{k} \lambda_{i} = k, \ \lambda_{i} > 0.$$
 (10)

But
$$\prod_{i=1}^k \lambda_i = \det(G_k G_k^H)$$
; therefore,

- The "best" submatrix (G_k) is the one with the largest determinant (possibly 1)
- The "worst" submatrix is the one with smallest determinant.

Let $\mathcal{I}_{r_k} = \{i_{r_1}, i_{r_2}, \dots, i_{r_k}\}$ be those rows of G used to build G_k , then

$$\det(G_k G_k^H) = \det(V_k V_k^H) = \frac{1}{k^k} \prod_{\substack{1 \le p < q \le n \\ p, q \in \mathcal{I}_{r_k}}} |e^{i\theta_p} - e^{i\theta_q}|^2$$

$$= \frac{1}{k^k} \prod_{\substack{1 \le p < q \le n \\ p, q \in \mathcal{I}_{r_k}}} 4\sin^2 \frac{\pi}{n} (q - p). \tag{11}$$

Classification of Systematic Frames Best frames

Let $\mathcal{I}_{r_k} = \{i_{r_1}, i_{r_2}, \dots, i_{r_k}\}$ be those rows of G used to build G_k , then

$$\det(G_{k}G_{k}^{H}) = \det(V_{k}V_{k}^{H}) = \frac{1}{k^{k}} \prod_{\substack{1 \leq p < q \leq n \\ p, q \in \mathcal{I}_{r_{k}}}} |e^{i\theta_{p}} - e^{i\theta_{q}}|^{2}$$

$$= \frac{1}{k^{k}} \prod_{\substack{1 \leq p < q \leq n \\ p, q \in \mathcal{I}_{r_{k}}}} 4 \sin^{2} \frac{\pi}{n} (q - p). \tag{11}$$

When n = Mk and G_k consists of every Mth row of G, we get

$$\det(V_k V_k^H) = \frac{2^{k(k-1)}}{k^k} \prod_{r=1}^{k-1} \left(\sin^2 \frac{\pi}{n} Mr \right)^{k-r}$$

$$= \frac{2^{k(k-1)}}{k^k} \prod_{r=1}^{k-1} \left(\sin^2 \frac{\pi}{k} r \right)^{k-r} = 1.$$
(12)

Classification of Systematic Frames Summary of results

Conclusion: The MSE performance of a systematic frame depends on the position of data (parity) samples in the codevector, and

- Best performance
 ⇔ evenly spaced data samples
- Worst performance
 ⇔ consecutive data (parity) samples
- Integer oversampling (n = Mk) and equally spaced data samples ⇔ tight systematic frames
- Circular shift and/or reversal of the systematic rows of a systematic frame, does not affect the performance

Classification of Systematic Frames Numerical example

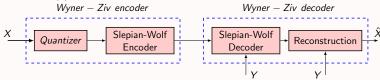
Table: Eigenvalues structure for two systematic DFT frames with different codeword patterns. A "×" and "-" represent data (systematic) and parity samples.

Code	Codeword patern	λ_{min}	λ_{max}	$\sum_{i=1}^{k} 1/\lambda_i$	$\prod_{i=1}^k \lambda_i$
	рассти				
(6,3)	×××	0.0572	1.9428	19	0.1111
	$\times \times - \times$	0.2546	1.7454	5.5	0.4444
	$\times \times \times -$	0.2546	1.7454	5.5	0.4444
	$\times - \times - \times -$	1	1	3	1
(7,5)	$\times \times \times \times \times$	0.0396	1.4	28.70	0.0827
	$\times \times \times \times - \times -$	0.1506	1.4	10.32	0.2684
	$\times \times - \times \times - \times$	0.3110	1.4	7.40	0.4173
	$\times - \times \times \times - \times$	0.3110	1.4	7.40	0.4173

Lossy DSC with SI at the decoder (Wyner-Ziv coding)

What if the source is a continuous-valued sequence? (many practical applications)

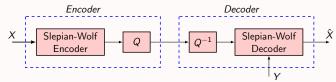
- Current approach



 There are source coding loss (or quantization loss) and channel coding loss (or binning loss)

Wyner-Ziv coding in the real field

- Alternative approach



- Similarities and differences
 - There are still coding loss and quantization loss
 - Coding is before quantization ⇒ error correction in the real field (soft redundancy)
- Advantages
 - Correlation channel model is more realistic
 - Quantization error can be reduced by a factor of coderate (it vanishes if X and Y are completely correlated)
 - Better performance w.r.t. delay and complexity

Wyner-Ziv coding in the real field

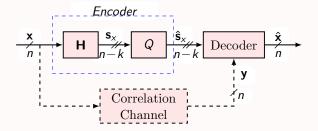


Figure: The Wyner-Ziv coding using DFT codes: Syndrome approach.

Wyner-Ziv coding in the real field

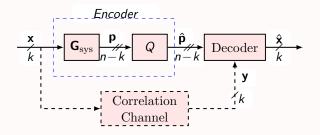


Figure: The Wyner-Ziv coding using DFT codes: Parity approach.