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Real BCH-DFT Codes
Encoding

DFT
zero

padding IDFT

Wk Σn×k WH
n

x ∈ Rk X ∈ Ck Y ∈ Cn y ∈ Rn

G

Figure: An (n, k) real BCH-DFT encoding scheme

G consists of k columns from the IDFT matrix of order n

The remaining n − k columns of the IDFT matrix form H

Σn×k inserts d = n − k consecutive zeros in the transform
domain =⇒ BCH code

H̄ (the extended parity check matrix) is defined such that
[HT | H̄T ] = Wn
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Lossy DSC
Practical code construction: Binary codes

Problem: Distributed Source Coding (DSC) of continuous-valued
sources

- Common approach

Quantizer
Slepian-Wolf

Encoder
Slepian-Wolf

Decoder
Reconstruction

X X̂

Y Y

Wyner − Ziv encoder Wyner − Ziv decoder

Binary codes (e.g., LDPC or Turbo codes) for Slepian-Wolf
coding

There are quantization loss and binning loss
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Lossy DSC
Practical code construction: Real field codes

- Alternative approach

Slepian-Wolf
Encoder

Q Q−1 Slepian-Wolf
Decoder

X X̂

Y

Encoder Decoder

Similarities and differences

There are still coding and quantization losses
Coding is before quantization ⇒ error correction in the real
field (soft redundancy)

Advantages
1 Correlation channel model is more realistic
2 Quantization error can be reduced by a factor of code rate

(it vanishes if X and Y are completely correlated)
3 Better performance w.r.t. delay and complexity
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Lossy DSC
Practical code construction
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Figure: Wyner-Ziv coding using DFT codes: Syndrome approach.

Suitable for delay-sensitive networks

Highly vulnerable to variations in the correlation channel

Motivation for this works
-To make rate-adaptive DSC based on DFT codes
-To improve the decoding algorithm
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Error Correction in DFT Codes

Decoding algorithms for a BCH-DFT code:
1 Detection (to determine the number of errors; ν ≤ t = b n−k2 c)
2 Localization (to find the location of errors; i1, . . . , iν)
3 Estimation (to calculate the magnitude of errors; ei1 , . . . , eiν )

s = Hr = H(c + e) = He,

sm =
1√
n

ν∑
p=1

eipX
α−1+m
p , m = 1, . . . , d = n − k,

and Xp = e
j2π
n ip , p = 1, . . . , ν.

St =


s1 s2 . . . st
s2 s3 . . . st+1

...
...

. . .
...

st st+1 . . . s2t−1


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Error Correction in DFT Codes
Coding-Theoretic Approach

1 Detection (ν =?)
ν = µ iff Sµ is nonsingular but Sµ+1 is singular

2 Localization (Xi =?)
Define error-locator polynomial as

Λ(x) =
ν∏

i=1

(1− xXi ) = Λ0 + Λ1x + . . .+ Λνx
ν

Find Λ1, . . . ,Λν by solving Sν [Λν . . .Λ1]T = − [sν+1 . . . s2ν ]T

Evaluate Λ(ω−i ), i = 1 . . .N, ω = e j
2π
N , to find the roots

3 Estimation (Yi =?)
Determine error magnitudes by solving the set of following
linear equations

s1

s2

...
s2t

 =


X1 . . . Xν
X 2

1 . . . X 2
ν

...
. . .

...
X 2t

1 . . . X 2t
ν




Y1

Y2

...
Y2ν


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Error Correction in DFT Codes
Subspace-Based Approach

Form the error-locator matrix of order m as

Vm =


1 1 . . . 1
X1 X2 . . . Xν
...

...
. . .

...
Xm−1

1 Xm−1
2 . . . Xm−1

ν

 .
Define the syndrome matrix (for m = dd/2e) by

Sm = VmDV
T
d−m+1

=


s1 s2 . . . sd−m+1

s2 s3 . . . sd−m+2

...
...

. . .
...

sm sm+1 . . . sd

 .
where D is a diagonal matrix of size ν with nonzero diagonal
elements dp = 1√

n
eipX

α
p , p = 1, . . . , ν.
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Error Correction in DFT Codes
Subspace-Based Approach

Eigen-decompose the covariance matrix Rm = SmS
H
m

Rm = [Ue Un]

[
∆e 0
0 ∆n

]
[Ue Un]H ,

-∆e and ∆n contain the ν largest and m − ν smallest eigenvalues
-Ue and Un contain the eigenvectors corresponding to ∆e and ∆n

The columns in Ue span the channel-error subspace spanned by Vm

thus, UH
e Un = 0⇒ V H

mUn = 0

Let v = [1, x , x2, . . . , xm−1]T where x is a complex variable, then

F (x) ,
m−ν∑
j=1

vHun,j =
m−ν∑
j=1

m−1∑
i=0

fjix
i .

F (x) is sum of m − ν polynomials {fji}m−νj=1 of order m − 1.



Introduction Error Correction Extended Subspace Simulation Coding-Theoretic Subspace-Based

Error Correction in DFT Codes
Subspace-Based Approach
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Figure: Subspace method: graphical representation

Subspace vs. coding-theoretic method

There are m − ν = d d2 e − ν polynomials rather than just one, and they
have higher degrees of freedom
⇒ Subspace method performs better than the coding-theoretic approach
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Extended Subspace Decoding
Motivation

Main idea:

Increasing the dimension of the estimated noise subspace ⇒ the
number of polynomials with linearly independent coefficients
and/or their degree grow.

Construction:
The extended syndrome matrix S ′m is defined for d ′ > d , and
similar to Sm it is decomposable as

S ′m = VmDV
T
d ′−m+1.

To form S ′m we need d ′ syndrome samples while we only have d
samples.

s ′m =
1√
n

ν∑
p=1

eipX
α−1+m
p , m = 1, . . . , d ′,
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Extended Subspace Decoding
Extended Syndrome

s ′m =

{
sm, 1 ≤ m ≤ d ,
s̄m−d , d < m ≤ d ′,

where s̄ = H̄e, is the extended syndrome of error.
Recal: H̄ consists of those k columns of the IDFT matrix of order
n not used in H (used in G ).

Q:

How can we compute s̄?

Let us try
H̄r = H̄c + H̄e 6= H̄e

So to have H̄r = s̄, either H̄c must vanish or we should remove it.
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Extended Subspace Decoding
Extended Syndrome

H̄c = 0 could happen in the special case of rate 1
2 codes when

all error indices are even

In general, we need to find a way to remove H̄c

We exploit the gain from the extended subspace decoding by
transmitting extra samples ⇒ Rate-adaptive DFT codes

Applications

1 Rate-adaptive DSC (syndrome & parity approaches)

2 Rate-adaptive channel coding

3 Rate-adaptive distributed joint source-channel coding



Introduction Error Correction Extended Subspace Simulation Algorithm Application

Extended Subspace Decoding
Extended Syndrome

H̄c = 0 could happen in the special case of rate 1
2 codes when

all error indices are even

In general, we need to find a way to remove H̄c

We exploit the gain from the extended subspace decoding by
transmitting extra samples ⇒ Rate-adaptive DFT codes

Applications

1 Rate-adaptive DSC (syndrome & parity approaches)

2 Rate-adaptive channel coding

3 Rate-adaptive distributed joint source-channel coding



Introduction Error Correction Extended Subspace Simulation Algorithm Application

Extended Subspace Decoding
Extended Syndrome

H̄c = 0 could happen in the special case of rate 1
2 codes when

all error indices are even

In general, we need to find a way to remove H̄c

We exploit the gain from the extended subspace decoding by
transmitting extra samples ⇒ Rate-adaptive DFT codes

Applications

1 Rate-adaptive DSC (syndrome & parity approaches)

2 Rate-adaptive channel coding

3 Rate-adaptive distributed joint source-channel coding



Introduction Error Correction Extended Subspace Simulation Algorithm Application

Rate-Adaptive DSC
Syndrome Approach

Encoder
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Figure: The Wyner-Ziv coding using DFT codes: Syndrome approach.

Rate Adaptation:
1 Decoder: Request for extra syndrome samples

2 Encoder: Transmit s̄x = H̄x sample by sample

3 Decoder: Compute s̄y = H̄y = s̄x + s̄e and s̄e = s̄y − s̄x
4 Decoder: Use the extended subspace decoding
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Rate-Adaptive DSC
Parity Approach
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Figure: The Wyner-Ziv coding using DFT codes: Parity approach.

Rate Adaptation:
1 Parity Puncturing: Performance is poor

2 Syndrome Augmentation: Very similar to the syndrome-based
DSC
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Numerical results
Syndrome-based DSC
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Figure: Rate-adaptation using a (10,5) DFT code and extended subspace
method. The the code rate is increased from 0.5 to 0.9 by a step of 0.1.
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Numerical results
Syndrome-based DSC
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Figure: Rate-adaptation for a (17,9) DFT code based on 4 additional
syndrome samples.
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Conclusions

Summary: The extended subspace algorithm of DFT codes

Improves decoding at the expense of increasing the code-rate

Is suitable for rate-adaptive DSC

Makes possible to correct more than t = bn−k2 c errors

The gain comes from diminishing the effect of quantization error
by averaging several error localization polynomials.

Generalization:

To further improve the subspace decoding without increasing
the code rate.
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Thank you!
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