On the Number of Users Served in MIMO-NOMA Cellular Networks

2016.09.21

Wonjae Shin

ECE, Seoul National University
EE, Princeton University

Joint work with Mojtaba Vaezi (Princeton), Jungwoo Lee (SNU), H.Vincent Poor (Princeton)
What is **NOMA** (Non-Orthogonal Multiple Access)?

- **Key Concept for NOMA (Two User Case)**
 - 2 users can be served by BS at the same freq., but with *different power levels*
 - Superimposed mixture containing two messages for the two users (UE1 and UE2)
 - The message to the UE2 is allocated more transmission power
 - UE2 can detect its message directly (TIN)
 - UE1 needs to first detect UE2’s information and then to subtract this information from its observation before decoding its own message (SIC)

Source: Saito’13

*TIN: Treating Interference as Noise
SIC: Successive Interference cancellation*
Why (Power-Domain) NOMA?

Theoretical Promise (spectral efficiency and user fairness)
- The BW allocated to a user with very poor channel condition may not be used efficiently
 - For low-rate users, e.g., sensors, the use of OMA may give more than what they need
- NOMA can support more users than the number of resource blocks
 - NOMA offers wider BW to both users

Processors Evolution for Interference Cancellation
- Moore’s law: x100 processing power every 10 year (e.g. NAICS in 3GPP Rel. 12)

In the Literature
- Extension to MIMO-NOMA [Ding-Ada-Poor'16], [Ding-Schober-Poor'16]
- Cooperative NOMA [Ding-Peng-Poor'16], Clustering [Ding-Fan-Poor’16], Power Allocation etc.

How Does The *Inter-cell Interference* Impact Performance?

MIMO: Multiple-Input Multiple-Output
Related Work

- **NOMA w/o Inter-Cell Coordination**
 - Inter-cell interference (ICI) is a big issue in multi-cell networks
 - ICI reduces the cell-edge users QoS and deteriorates users fairness

- **NOMA-Joint Transmission (JT) [Choi’15]**
 - Coordinated Superposition Coding (CSC) with Distributed Alamouti Code
 - Data Sharing through backhaul link (an excessive backhaul overhead)

NOMA-Coordinated Beamforming Has NOT Been Studied Yet!
System Model

- **Multi-cell MIMO Cellular System**
 - \(L\)-cell network \((L \geq 2)\) scenario
 - Each cell consists of \(K\)-cluster
 - \# of BS ant: \(M\), \# of UE ant: \(N\)

- **CSI (Channel State Information)**
 - Full CSI at BS

- **Inter-Cell Interference Pattern**
 - Center users (free of interference)

- **Our Contributions**
 - New NOMA-CB to mitigate inter-cell as well as Intra/inter-cluster interferences
 - How many users can be served simultaneously with NOMA-CB under given \# of BS and UE antennas \((M \& N)\)?
Simple Extension \((L=2, K=2)\)

- **Simple Extension of MIMO-NOMA** [Ding-Ada-Poor’16]
 - ICI Zero-forcing condition at BS 1 \((N=2)\):
 \[
 y_A^{[1]} \perp \begin{bmatrix} G_2^{[2,1]} \\ G_4^{[2,1]} \end{bmatrix}
 \]
 - By considering this,
 - **MIMO-NOMA**
 - # of Bs ant: \(M \geq 2 + 4 = 6\)
 - ICI zero-forcing
 - Tx ant. should be greater than \(K + (L - 1)K^2\)

Can We Reduce # of Tx Ant. to Support 2K User Per Cell in L-cell Network?
Example of NOMA-CB \((L=2, K=2, M=3, N=2)\)

- **Phase 1**: Interfering Channel Alignment
 - At Cell-Edges UE,
 \[\tau^{[2]} = G^{[1,2]^\dagger}_2 w_2 = G^{[1,2]^\dagger}_4 w_4 \]
 matrix form
 \[\begin{bmatrix}
 I & -G^{[1,2]^\dagger}_2 \\
 I & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 \tau^{[2]} \\
 w_2 \\
 w_4 \\
 \end{bmatrix} = 0 \]
 \[A: 2M \times (M + 2N) \]
 - Due to channel randomness, \(\exists \tau^{[1]} \) and \(\tau^{[2]} \)

- **Phase 2**: Zero-forcing BF Design
 - \(\nu_A \perp [\tau^{[1]} H^{[1]^\dagger}_4 w_4] \)
 - \(\nu_B \perp [\tau^{[1]} H^{[1]^\dagger}_2 w_2] \)
Example of NOMA-CB (L=2, K=2, M=3, N=2)

- **Phase 3: Inter-Cluster Interference**
 - At Cell-Center UE,
 \[w_1 \perp H_1^{[1]} v_B, \quad w_3 \perp H_3^{[1]} v_A \]
 - \(\exists w_1, w_2 \) due to \(N \geq K \)

- **Through Phase 1-3,**
 - NOMA-CB decomposes 2-cell MIMO-NOMA into 2K pairs of SISO-NOMA

- **Phase 4: Intra-Cluster Interference**
 - At user \(k \) at cell 1,
 \[w_k^\dagger y_k = \tilde{h}_k \left(\sqrt{\lambda_2^{[\frac{k}{2}]} s_2^{[\frac{k}{2}]} - 1} + \sqrt{\lambda_2^{[\frac{k}{2}]} s_2^{[\frac{k}{2}]} - 1} \right) \]
 where \(\tilde{h}_k = w_k^\dagger H_k^{[1]} v_A, \quad k \in \{1, 2\} \)
 \(\tilde{h}_k = w_k^\dagger H_k^{[1]} v_B, \quad k \in \{3, 4\} \)
Main Result 1 *(Feasibility conditions)*

Lemma 1: For an L-cell MIMO network, to simultaneously support K clusters per cell we must have

\[M \geq K + \Delta \quad \text{and} \quad N \geq \max \left\{ \frac{(L-1)K - \Delta}{K} M + \varepsilon, K \right\} \]

where \(\Delta \) is an arbitrary between 1 and \(\min \{(L - 1)K, M - 1\} \) and \(\varepsilon \) is an arbitrary small positive number, i.e., \(0 < \varepsilon \ll 1 \).

Sketch of proof:

- In order to confine all \(Q = (L - 1)K \) interfering channels of each BS within \(\Delta \)-dimentional signal space, we must have

\[
\text{span} \left[\begin{bmatrix} \tau_1^{[\ell]} & \tau_2^{[\ell]} & \cdots & \tau_{\Delta}^{[\ell]} \end{bmatrix} \right] \\
= \text{span} \left\{ \begin{bmatrix} G_2^{[1,\ell]} & G_2^{[2,\ell]} & \cdots & G_2^{[L,\ell]} \end{bmatrix} \right\} \\
\text{where} \quad G_2^{[\ell',\ell]} = [G_2^{[\ell',\ell]}]_{1 \times \Delta} \begin{bmatrix} w_{2,1}^{[\ell']} & \cdots & G_2^{[\ell',\ell]}_{2,K} w_{2,K}^{[\ell']} \end{bmatrix}
\]
Main Result I *(Feasibility conditions)*

- **Sketch of proof:**
 - Considering all cells in the network, we can unify a system matrix equation.
 - The size of the unified matrix in general is $L(L - 1)KM \times (LM\Delta + LKN)$.
 - Since all the channel matrices are completely random, the unified matrix has full rank a.s.
 - Thus, to guarantee the existence of null space of the matrix (inter-cell interference),
 \[
 N > \frac{(L - 1)K - \Delta}{K} M
 \]
 - On the other hand, $N \geq K$ in order to cancel inter-cluster interference at cell-center user.
 - To ensure zero inter-cell and inter-cluster interference at cell-edge users, $M \geq K + \Delta$

\[
\begin{align*}
\mathbf{v}_{1}^{[1]} & \perp \begin{bmatrix} \tau_{1}^{[1]} & \ldots & \tau_{1}^{[\Delta]} \end{bmatrix} \\
\mathbf{w}_{2}^{[1]} & \mathbf{H}_{2}^{[1]} & \mathbf{w}_{2}^{[1]} & \mathbf{H}_{2}^{[1]} & \mathbf{w}_{2}^{[1]} & \mathbf{H}_{2}^{[1]} & \cdots & \mathbf{w}_{2}^{[1]} & \mathbf{H}_{2}^{[1]}
\end{align*}
\]

Inter-cell \hspace{5cm} *Inter-cluster*
Main Result II (Analysis of # of users)

Theorem 1: The maximum number of users supported by the proposed NOMA-CB scheme in an L-cell MIMO network with M transmit antennas at each BS and N receive antennas at each UE is given by

$$2 \min \{ \max \{ M - \lfloor \delta^* \rfloor, \lfloor f(\lfloor \delta^* \rfloor) \rfloor - \epsilon, g(1) \}, N \}$$

where $\delta^* = \frac{(L-1)M^2-MN}{LM-N}$, $f(x) = \frac{N-(L-2)x+\sqrt{[N-(L-2)x]^2+4(L-1)x^2}}{2(L-1)}$, $g(x) = \min\{M-x, |f(x) - \epsilon|\}$

Sketch of Proof: From the 3 conditions,

$$\frac{NK}{(L-1)K-\Delta} > M > K + \Delta$$

which results in

$$K < \frac{N-(L-2)\Delta+\sqrt{[N-(L-2)\Delta]^2-4(L-1)\Delta^2}}{2(L-1)} \triangleq f(x)$$
Main Result II (Analysis of # of users)

Sketch of Proof:

- The number of clusters per cell is bounded as
 \[K \leq \min\{M - \Delta, f(\Delta) - \epsilon, N\} \]

- Since \(\Delta \) and \(K \) must be integers, we formulate the following optimization problem:
 \[
 \max_{\Delta} 2K = 2\max_{\Delta} \min\{M - \Delta, |f(\Delta) - \epsilon|, N\} \\
 \text{s.t.} \quad L, M, K \geq 2 \\
 \Delta \in \{1, 2, \ldots, \min\{(L - 1)K, M - 1\}\}
 \]

- Note that \(M - \Delta \) is linearly decreasing with \(\Delta \) and \(f(\Delta) \) is a strictly convex, i.e.,
 \[
 \frac{\partial^2 f(\Delta)}{\partial \Delta^2} > 0
 \]
Main Result II (Analysis of # of users)

Sketch of Proof:

- Note that \(M - \Delta \) is linearly decreasing with \(\Delta \) and \(f(\Delta) \) is a strictly convex.

- By considering integer constraint,

\[
K^* = \min \left\{ \max \left\{ g(\lfloor \Delta' \rfloor), g(\lfloor \Delta' \rfloor), g(1) \right\}, N \right\}
\]
\[
= \min \left\{ \max \left\{ M - \lfloor \delta^* \rfloor, [f(\lfloor \delta^* \rfloor) - \epsilon], g(1) \right\}, N \right\}
\]

where \(g(x) = \min \left\{ M - x, [f(x) - \epsilon] \right\} \)
Numerical Results

- **Special Case** \((L = 2, M = K + 1, N = K)\)
 - What is maximum \# of users?
 \[
 2 \min \left\{ \max \left\{ M - \left\lfloor \delta^* \right\rfloor, \left\lfloor f(\delta^*) \right\rfloor - \epsilon, g(1) \right\}, N \right\}
 = 2 \min \left\{ \max \left\{ K + 1, \frac{K}{2} \right\}, K \right\} = 2K
 \]
 - (Per-Cell) System Throughput
 \[
 R = \sum_{k=1}^{K} [R_{2k-1}(1 - P_{2k-1}) + R_{2k}(1 - P_{2k})]
 \]
 - Users are randomly distributed
 - Compare with existing schemes
 - OMA: \((K+1)/2\) users
 - SA-NOMA [Ding-Schober-Poor'16], MIMO-NOMA [Ding-Ada-Poor'16] : \(K\) users

Proposed Scheme Achieves **Better Throughput** than Existing Works (Larger \# of Users)
Summary

- We introduced multi-cell NOMA techniques, called NOMA-CB, which does not rely on data sharing among BSs (Less Backhaul Overhead)
- We completely analyzed the number of supported users with NOMA-CB scheme, which shows that the significant gains over existing schemes

Future Work

- NOMA-CB with imperfect CSIT (Delayed/Limited Feedback)