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Introduction Motivation

Motivation

1 The interference channel is a central open problem in multi-user
information theory. Understanding the effect of interference is critical
to the understanding of the limitations of communication and
essentially the interactions in any network.

2 An additional requirement - complete secrecy of the interfering
message at the interfered-with receiver. This additional requirement is
relevant to many practical settings, in which our transmission can
both be received by other, unintended receivers, but still we would
like it to remain secure.
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Introduction Motivation

Z-Interference with a Complete Secrecy Constraint

Channel: PY 1,Y 2|X 1,X 2
= PY 1|X 1

PY 2|X 1,X 2
.

Complete Secrecy: lim
n→∞

1

n
I (W1;Y 2)→ 0
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Introduction The Gaussian Regime

The Gaussian Z-Interference with a Complete Secrecy
Constraint
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Introduction The Gaussian Regime

Two Sub-Models Considered

1 The General Model: We place no additional constraints and allow
both encoders to be stochastic.

2 A Deterministic Encoder for the Interfered-With Transmitter: Note
that this transmitter has no secrecy constraint on its own transmitted
message.
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Allowing Stochastic Encoders Model

Allowing Stochastic Encoders
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Allowing Stochastic Encoders Bounding Box

What is the Bounding Box of the Capacity Region?

What is the maximum rate for either W1 or W2 ?

For W2: setting R1 = 0 we trivially comply with the secrecy
constraint. Since there is no interference:

R2 =
1

2
log (1 + snr2)

which is the maximum possible rate.

For W1: X 1 − Y 1 − Y 2 is a Markov chain (for a ∈ [0, 1)) regardless
of the distribution of X 2. Using Wyner’s result for degraded wiretap
channels we have a single-letter expression

R1,max = max
PX1

PX2

{I (X1;Y1)− I (X1;Y2)}

where the maximization is over both distributions, as Y2 depends on
X2 as well.
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Allowing Stochastic Encoders Bounding Box

Maximum R1

Theorem

For any snr1 > 0, snr2 > 0 and any a ∈ [0, 1), R1,max is obtained by
non-Gaussian distributions, meaning

R1,max >
1

2
log(1 + snr1)− 1

2
log

(
1 +

asnr1

1 + snr2

)
.

Proof method:
We apply the perturbation approach of Abbe and Zheng, using Hermite
polynomials:
E. A. Abbe and L. Zheng, “Coding along Hermite polynomials for interference channels,” in
Proc. IEEE Information Theory Workshop, (ITW 2009), pp. 584–588, Taormina, Sicillia, Italy,
11-16 October 2009
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A Deterministic Encoder for the Interfered-With Transmitted Model

A Deterministic Encoder for the Interfered-With
Transmitted
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A Deterministic Encoder for the Interfered-With Transmitted Reduces Capacity Region

Capacity Region Reduces

Theorem

By restricting the encoder of the interfered-with user to a deterministic
encoder we strictly reduce the capacity region.

Method of Proof:
We show that the point

(R1,R2) =

(
1

2
log(1 + snr1)− 1

2
log

(
1 +

asnr1

1 + snr2

)
, 0

)
which we have shown to be included in the capacity region of the general
case, is not included in the capacity region given the deterministic encoder
constraint.
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A Deterministic Encoder for the Interfered-With Transmitted Outer Bound

Sato-Type Outer Bound - Equivalence

Lemma

The Gaussian Z-Interference channel with secrecy constraint and a deterministic
encoder for the message W2, meaning H(X 2|W2) = 0, is equivalent, in the sense
that they have the same capacity region, to the degraded Gaussian interference
channel:

Y
′
1 =
√

snr1X 1 +

√
snr2

a
X 2 +N1

Y
′
2 =
√

snr1X 1 +

√
snr2

a
X 2 +N1 +N ′2

where N1 is as defined above, standard additive Gaussian noise, whereas N ′2 is
additive Gaussian noise of variance 1−a

a .

Method of Proof: Follows the proof of Costa IT’85:
M. H. M. Costa, “On the Gaussian interference channel,” IEEE Transactions on Information

Theory, vol. 31, no. 5, pp. 607–615, September 1985.
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A Deterministic Encoder for the Interfered-With Transmitted Outer Bound

Sato-Type Outer Bound - Using BCC

1 Using the approach of Sato IT’77 the capacity region of the Gaussian degraded
interference channel with a secrecy constraint can be outer bounded by the capacity
region of the Gaussian broadcast channel with confidential messages.

2 Due to the above equivalence this provides an outer bound to our setting as well.

Theorem

The capacity region of the Gaussian Z-interference channel with a secrecy constraint on the
interfering message and a deterministic encoder at the interfered-with transmitter is contained in
the following region:

(R1,R2) =

(
1

2
log

(
1 + β(snr1 + snr2/a)

1 + βa(snr1 + snr2/a)

)
,

1

2
log

(
1 + a(snr1 + snr2/a)

1 + βa(snr1 + snr2/a)

))
R1 ≤

1

2
log (1 + snr1)−

1

2
log(1 + asnr1)

R2 ≤
1

2
log (1 + snr2)

for some β ∈ [0, 1].
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A Deterministic Encoder for the Interfered-With Transmitted Inner Bounds

Some Inner Bounds

We depict three basic bounds. The first is a simple time-sharing. The second is a
time/frequency division multiplexing scheme:

Lemma (TDM/FDM)

The set of non-negative rate pairs (R1,R2) satisfying

R1 ≤
λ

2
log
(

1 +
snr1

λ

)
− λ

2
log
(

1 +
asnr1

λ

)
,

R2 ≤
λ̄

2
log
(

1 +
snr2

λ̄

)
,

in which 0 ≤ λ ≤ 1 and λ̄ = 1− λ, is achievable for the Gaussian Z-Interference
channel with secrecy constraint and a deterministic encoder.
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A Deterministic Encoder for the Interfered-With Transmitted Inner Bounds

Some Inner Bounds

We can improve the above TDM/FDM bound by allowing the interfered-with
transmitter to split its power over both subbands.

Lemma

The set of non-negative rate pairs (R1,R2) satisfying

R1 ≤
λ

2
log
(

1 +
snr1

λ

)
− λ

2
log
(

1 +
asnr1

λ

)
,

R2 ≤
λ

2
log
(

1 +
snr21

1 + a snr1

λ

)
+
λ̄

2
log
(

1 + snr22

)
,

in which 0 ≤ λ ≤ 1, λ̄ = 1− λ, and λsnr21 + λ̄snr22 = snr2 is achievable for the
Gaussian Z-Interference channel with secrecy constraint and a deterministic
encoder.
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A Deterministic Encoder for the Interfered-With Transmitted Inner Bounds

Inner and Outer Bounds

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
2

R
1

 

 

Inner bound
TDM/FDM
Time−sharing
Outer bound

The Sato-type outer bound (red dash-dot line), the basic time-sharing inner bound (green
dashed), the TDM/FDM inner bound (black dotted) and the improved TDM/FDM inner bound
(blue solid).
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A Deterministic Encoder for the Interfered-With Transmitted Corner Points

Corner Points

We can identify one corner point where the inner and outer bound coincide:

(R1,R2) =

(
1

2
log (1 + snr1)− 1

2
log(1 + asnr1),

1

2
log

(
1 +

snr2

1 + asnr1

))
We also have that:

(R1,R2) =

(
0,

1

2
log(1 + snr2)

)
is a corner point, given a variance constraint on the inputs. This is due to the
result in [Bustin-Poor-Shamai,’15] which shows that the minimum mean-square
error of the interference must be zero to allow reliable communication at the
maximum rate. Thus, no level of secrecy can be obtained!
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Conclusions and Future Work

Conclusions and Future Work

Enhancing the achievability schemes to obtain tighter inner bounds.

Investigating the gap, specifically at the high-SNR regime.

The Discrete Memoryless Channel model: Can the additional secrecy
constraint provide additional insights into the interference channel?
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Conclusions and Future Work

Thank You!
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Abstract

Ronit Bustin?, Mojtaba Vaezi†, Rafael F. Schaefer‡ and H. Vincent Poor†
?Dept. EE. TAU, †Dept. EE, Princeton University, ‡Information Theory and
Applications Group, Technische Universität Berlin

“On the Secrecy Capacity of the Z-Interference Channel”

The two-user Z-interference channel with an additional secrecy constraint is considered. The
two transmitter-receiver pairs wish to reliably transmit their messages; however the transmission
of the first pair both interferes with the transmission of the second pair and is also required to
be completely secure from the second receiver. The focus here is on the capacity region of the
above Z-interference channel in the Gaussian case under the standard power constraints. The
maximum rates of the two users in this setting are described, and although the maximum rate of
the transmission of the first pair has a single-letter expression, due to Wyner’s secrecy capacity
expression, its maximization is non-trivial. The significance of a stochastic encoder for the
second transmitter, encoding a message which is not required to comply with any secrecy
constraints, is noted. It is shown explicitly that constraining this encoder to be deterministic
reduces the capacity region. Finally, a Sato-type outer bound on the capacity region is obtained
under this additional deterministic encoder constraint.
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