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Problem setup

Distributed lossy source coding

Encoder 2-Y -MY

Decoder

-

-

(Ŷ ,DY )

(X̂ ,DX )
Encoder 1-X -MX

A communication system with

Two separate, correlated signals (X and Y )

The sources cannot communicate with each other; thus,
encoding is done independently or in a distributed manner.

The receiver, however, can perform joint decoding.
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Practical code construction
Correlation channel model

DSC is essentially a channel coding problem (view Y as
corrupted version of X )

Encoder

Correlation Chan-
nel (Virtual)

Decoder

Y (side information)

X syndrome X̂

Channel Decoder

s = xHT

X Y X̂
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Practical code construction
Linear channel codes

- Lossless DSC

The channel is usually modeled as a binary symmetric channel
(BSC) with a crossover probability p

Capacity-approaching channel codes (for the correlation
channel) result in good DSC
Examples: Turbo and LDPC codes

The linear channel code design and its rate depends on the
correlation model
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Practical code construction
Wyner-Ziv coding

What if the source is a continuous-valued sequence? (many
practical applications)
- Current approach

Quantizer
Slepian-Wolf

Encoder
Slepian-Wolf

Decoder
Reconstruction

X X̂

Y Y

Wyner − Ziv encoder Wyner − Ziv decoder

There are source coding loss (or quantization loss) and
channel coding loss (or binning loss)
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Practical code construction
Wyner-Ziv coding in the real field

- Alternative approach

Slepian-Wolf
Encoder

Q Q−1 Slepian-Wolf
Decoder

X X̂

Y

Encoder Decoder

Similarities and differences
There are still coding loss and quantization loss
Coding is before quantization ⇒ error correction in the real
field (soft redundancy)

Advantages
1 Correlation channel model is more realistic
2 Quantization error can be reduced by a factor of coderate (it

vanishes if X and Y are completely correlated)
3 Better performance w.r.t. delay and complexity
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Real BCH-DFT Codes
Encoding

DFT
zero

padding IDFT

Wk Σn×k W H
n

x ∈ Rk X ∈ Ck Y ∈ Cn y ∈ Rn

G

Figure: Real BCH-DFT encoding scheme

G =

√
n

k
WH

n ΣWk

Σn×k inserts n-k consecutive zeros in the transform domain
=⇒ BCH code

DFT is used to convert vector x ∈ Rk to a circularly
symmetric X ∈ Ck , guaranteeing a real y

Removing the DFT block, we obtain complex BCH-DFT codes
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Real BCH-DFT codes
Encoding

H takes N-K columns of WH
N corresponding to zeros of Σ

For every codeword, s = Hy = HGx ≡ 0

-Example: The (6,3) DFT code

G =



1 0 0
2
3

2
3

−1
3

0 1 0
−1
3

2
3

2
3

0 0 1
2
3

−1
3

2
3


- Reconstruction:

x = G †y = (GTG )−1GT y =
K

N
GT y
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Real BCH-DFT Codes
Channel coding

Impulsive 

noise channel
Decoder

k
u

n
x

n
y n

x̂

kn
s



H

G

Figure: Channel coding using real-valued BCH codes

H takes N-K columns of WH
N corresponding to zeros of Σ

For every codeword, s = Hy = HGx ≡ 0

Without quantization:

yn = xn + en ⇒ sy = se
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Real BCH-DFT Codes
Channel coding
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Figure: Channel coding using real-valued BCH codes

H takes N-K columns of WH
N corresponding to zeros of Σ

For every codeword, s = Hy = HGx ≡ 0

Without quantization:

yn = xn + en ⇒ sy = se
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Real BCH-DFT codes
Decoding

- How can we decode?

1 Without quantization error

yn = xn + en ⇒ se = sy
Decoding algorithms (e.g., the Peterson-Gorenstein-Zierler) for
a BCH code, in general, has the following major steps

1 Detection (to determine the number of errors)
2 Localization (to find the location of errors)
3 Calculation (to calculate the magnitude of errors)

2 With quantization error

yn = xn + qn + en ⇒ se = sy − sq
Modify the above algorithm
Each step becomes an estimation problem
Least squares solution largely improves the decoding accuracy
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Practical code construction
Wyner-Ziv coding using DFT codes

Encoder

x

n

sx

n−k
ŝx
n−k

x̂
n

y

n

H Q Decoder

Correlation
Channel

Figure: Wyner-Ziv coding using DFT codes: Syndrome approach.

y = x + e ⇒ se = sy − sx

Syndrome samples are complex numbers (sx = Hx)

Q:

Can we do better?
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Practical code construction
Wyner-Ziv coding using DFT codes

Encoder
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Syndrome samples are complex numbers (sx = Hx)
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Can we do better?
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Practical code construction
Wyner-Ziv coding using DFT codes

Encoder

x

k

p

n−k
p̂

n−k
x̂

k

y

k

Gsys Q Decoder

Correlation
Channel

Figure: Wyner-Ziv coding using DFT codes: Parity approach.

Gsys =

[
G1

G2

]
G−1

1 = GG−1
1 =⇒ HGsys = 0

Thus, WnGsys also has n − k consecutive zeroes at the same
positions; i.e., Gsys is the generator matrix of the same BCH code.
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Practical code construction
Comparison

Compression ratio given an (n, k) code

Syndrome approach: ηs = n
2(n−k)

Parity approach: ηp = k
n−k

ηp/ηs = 2k/n = 2Rc > 1⇒Parity approach is more efficient

Given the same compression)

Which codes result in η = n
n−k ?

Syndrome approach: (n, n+k
2 )

Parity approach: (2n − k, n)

Thus, for a given compression ratio the parity approach implies a
code with smaller rate
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Practical code construction
Comparison

Compression ratio given an (n, k) code

Syndrome approach: ηs = n
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Given the same compression)
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Syndrome approach: (n, n+k
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Parity approach: (2n − k, n)

Thus, for a given compression ratio the parity approach implies a
code with smaller rate
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Wyner-Ziv using real-number codes
MSE for reconstructed signal
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Quantization error
Syndrome approach
Parity approach

Figure: Reconstruction error for Wyner-Ziv coding using a (7, 5) DFT
code: Syndrome and parity approaches.
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Wyner-Ziv using real-number codes
Probability of error localization
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Figure: Relative frequency of correct localization of correlation channel
error in the syndrome and parity approaches, using a (7, 5) DFT code.
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Wyner-Ziv using DFT codes
Summary

DFT codes could be better than binary codes for lossy DSC

Delay and complexity is much less compared to Turbo and
LDPC codes

Parity approach is more efficient than syndrome approach

Error localization is crucial in the performance of compression
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Thank you for your attention
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Real BCH-DFT codes
Decoding

The Peterson-Gorenstein-Zierler (PGZ) algorithm

1 Compute vector of syndrome samples

2 Determine the number of errors ν by constructing a syndrome
matrix and finding its rank

3 Find coefficients Λ1, . . . ,Λν of error-locating polynomial
Λ(x) =

∏ν
i=1(1− xXi ) whose roots are the inverse of error

locations

4 Find the zeros X−1
1 , . . . ,X−1

ν of Λ(x); the errors are then in
locations i1, . . . , iν where X1 = αi1 , . . . ,Xν = αiν and

α = e−j
2π
N

5 Finally, determine error magnitudes by solving a set of linear
equations whose constants coefficients are powers of Xi .
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Error correction for BCH code
The Peterson-Gorenstein-Zierler (PGZ) algorithm

Suppose there are ν ≤ t errors in locations i1, . . . , iν with
magnitudes ei1 , . . . , eiν
Then r(x) = c(x) + e(x) where e(x) = ei1x

i1 + . . .+ eiνx
iν is

the error polynomial
The partial syndromes are defined as
sj = r(αj) = c(αj) + e(αj) = e(αj) = ei1α

i1j + . . .+ eiνα
iν j .

-change of variables
1 error locators: X1 = αi1 , . . . ,Xν = αiν

2 error magnitudes: Y1 = ei1 , . . . ,Yν = eiν
Syndrome equations (2t equations with 2ν unknowns)

s1 = Y1X1 + . . .+ YνXν

s2 = Y1X
2
1 + . . .+ YνX

2
ν

...

s2t = Y1X
2t
1 + . . .+ YνX

2t
ν
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Error correction techniques in real-field
BCH-DFT decoding

Then the PGZ algorithm has the following steps
1 Detection (ν =?)

St =


s1 s2 . . . st
s2 s3 . . . st+1
...

...
. . .

...
st st+1 . . . s2t−1


ν = µ iff Sν is nonsingular for ν = µ but is singular for ν > µ
Sµ = VµDV

T
µ

Vµ =

 1 . . . 1
...

. . .
...

Xµ−1
1 . . . Xµ−1

µ

 ,D =

 Y1X1 . . . 0
...

. . .
...

0 . . . YµXµ


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Error correction techniques in real-field
BCH-DFT decoding

1 Localization (Xi =?)

Define error-locator polynomial as

Λ(x) =
ν∏

i=1

(1− xXi ) = Λ0 + Λ1x + . . .+ Λνx
ν

The roots of Λ(x), i.e. X−1
1 , . . . ,X−1

ν , give the reciprocals of
of error locators.
Find Λ1, . . . ,Λν by solving
Sν [Λν Λν−1 . . .Λ1]T = − [sν+1 sν+2 . . . s2ν ]T

Determine the roots of Λ(x) evaluating Λ(αi ), i = 1 . . .N,

where α = e−j 2π
N for BCH-DFT codes
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Error correction techniques in real-field
BCH-DFT decoding

1 Estimation (Yi =?)
Finally, determine error magnitudes by solving a set of linear
equations whose constants coefficients are powers of Xi

s1

s2
...
s2t

 =


X1 . . . Xν

X 2
1 . . . X 2

ν
...

. . .
...

X 2t
1 . . . X 2t

ν




Y1

Y2
...
Y2ν

 (1)
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DSC using real error-correcting codes
Syndrome approach,6-bit quantization
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10
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channel error to quantization noise (dB)

M
S

E

syndrome approach, (5,7) DFT code, quantizer([6  5])

 

 

Quantization Error

0 error

1 error (# of errors is known)

1 error

Figure: Wyner-Ziv coding using a (7,5) DFT code
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