Distributed Lossy Source Coding Using Real-Number Codes

Mojtaba Vaezi and Fabrice Labeau

McGill University

76th Vehicular Technology Conference Québec City, Canada

September 5, 2012

1

M. Vaezi & F. Labeau (McGill) DSC with BCH-DFT Codes

Problem setup

• Distributed *lossy* source coding

A communication system with

- Two separate, correlated signals (X and Y)
- The sources cannot communicate with each other; thus, encoding is done independently or in a distributed manner.
- The receiver, however, can perform joint decoding.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Practical code construction Correlation channel model

• DSC is essentially a channel coding problem (view Y as corrupted version of X)

Practical code construction Linear channel codes

- Lossless DSC

- The channel is usually modeled as a binary symmetric channel (BSC) with a crossover probability *p*
- Capacity-approaching channel codes (for the correlation channel) result in good DSC Examples: Turbo and LDPC codes
- The linear channel code design and its rate depends on the correlation model

Practical code construction Wyner-Ziv coding

What if the source is a continuous-valued sequence? (many practical applications)

- Current approach

• There are source coding loss (or quantization loss) and channel coding loss (or binning loss)

Practical code construction Wyner-Ziv coding in the real field

- Alternative approach

• Similarities and differences

- There are still coding loss and quantization loss
- Coding is before quantization ⇒ error correction in the real field (soft redundancy)
- Advantages
 - Correlation channel model is more realistic
 - Quantization error can be reduced by a factor of coderate (it vanishes if X and Y are completely correlated)
 - Better performance w.r.t. delay and complexity

Real BCH-DFT Codes Encoding

Figure: Real BCH-DFT encoding scheme

$$G = \sqrt{\frac{n}{k}} W_n^H \Sigma W_k$$

- $\Sigma_{n \times k}$ inserts n-k consecutive zeros in the transform domain \implies BCH code
- DFT is used to convert vector x ∈ ℝ^k to a circularly symmetric X ∈ ℂ^k, guaranteeing a real y
- Removing the DFT block, we obtain complex BCH-DFT codes

Lossy DSC Encoding Decoding

Real BCH-DFT codes Encoding

- *H* takes N-K columns of W_N^H corresponding to zeros of Σ
- For every codeword, $s = Hy = HGx \equiv 0$

-Example: The (6,3) DFT code

$$G = \begin{pmatrix} 1 & 0 & 0 \\ \frac{2}{3} & \frac{2}{3} & \frac{-1}{3} \\ 0 & 1 & 0 \\ \frac{-1}{3} & \frac{2}{3} & \frac{2}{3} \\ 0 & 0 & 1 \\ \frac{2}{3} & \frac{-1}{3} & \frac{2}{3} \end{pmatrix}$$

- Reconstruction:

$$x = G^{\dagger}y = (G^{T}G)^{-1}G^{T}y = \frac{K}{N}G^{T}y$$

Real BCH-DFT Codes Channel coding

Figure: Channel coding using real-valued BCH codes

- *H* takes N-K columns of W_N^H corresponding to zeros of Σ
- For every codeword, $s = Hy = HGx \equiv 0$

Real BCH-DFT Codes Channel coding

Figure: Channel coding using real-valued BCH codes

- *H* takes N-K columns of W_N^H corresponding to zeros of Σ
- For every codeword, $s = Hy = HGx \equiv 0$

Without quantization:

 $y^n = x^n + e^n \Rightarrow s_y = s_e$

Real BCH-DFT codes Decoding

- How can we decode?
 - Without quantization error

•
$$y^n = x^n + e^n \Rightarrow s_e = s_y$$

- Decoding algorithms (e.g., the Peterson-Gorenstein-Zierler) for a BCH code, in general, has the following major steps
 - ① Detection (to determine the *number* of errors)
 - **2** Localization (to find the *location* of errors)
 - **3** Calculation (to calculate the *magnitude* of errors)
- With quantization error
 - $y^n = x^n + q^n + e^n \Rightarrow s_e = s_y s_q$
 - Modify the above algorithm
 - Each step becomes an estimation problem
 - Least squares solution largely improves the decoding accuracy

・ロッ ・雪 ・ ・ ヨ ・ ・ ・ ・

Practical code construction Wyner-Ziv coding using DFT codes

Figure: Wyner-Ziv coding using DFT codes: Syndrome approach.

- $y = x + e \Rightarrow s_e = s_y s_x$
- Syndrome samples are complex numbers ($s_x = Hx$)

Practical code construction Wyner-Ziv coding using DFT codes

Figure: Wyner-Ziv coding using DFT codes: Syndrome approach.

•
$$y = x + e \Rightarrow s_e = s_y - s_x$$

• Syndrome samples are complex numbers ($s_x = Hx$)

Q:			
Can we do better?			
			900
M. Vaezi & F. Labeau (McGill)	DSC with BCH-DFT Codes	13	

Practical code construction Wyner-Ziv coding using DFT codes

Figure: Wyner-Ziv coding using DFT codes: Parity approach.

$$G_{sys} = \begin{bmatrix} G_1 \\ G_2 \end{bmatrix} G_1^{-1} = GG_1^{-1} \Longrightarrow HG_{sys} = 0$$

Thus, $W_n G_{sys}$ also has n - k consecutive zeroes at the same positions; i.e., G_{sys} is the generator matrix of the same BCH code.

Practical code construction Comparison

Compression ratio given an (n, k) code

• Syndrome approach:
$$\eta_s = \frac{n}{2(n-k)}$$

• Parity approach:
$$\eta_p = \frac{k}{n-k}$$

 $\eta_{
m p}/\eta_{
m s}=2k/n=2R_{c}>1$ \Rightarrow Parity approach is more efficient

直 ト イヨ ト イヨト

Practical code construction Comparison

Compression ratio given an (n, k) code

- Syndrome approach: $\eta_s = \frac{n}{2(n-k)}$
- Parity approach: $\eta_p = \frac{k}{n-k}$

 $\eta_{\it P}/\eta_{\it s}=2k/n=2R_c>1$ \Rightarrow Parity approach is more efficient

Given the same compression)

Which codes result in $\eta = \frac{n}{n-k}$?

- Syndrome approach: $(n, \frac{n+k}{2})$
- Parity approach: (2n k, n)

Thus, for a given compression ratio the parity approach implies a code with smaller rate

・ロッ ・雪 ・ ・ ヨ ・

Wyner-Ziv using real-number codes MSE for reconstructed signal

Figure: Reconstruction error for Wyner-Ziv coding using a (7,5) DFT code: Syndrome and parity approaches.

Wyner-Ziv using real-number codes Probability of error localization

Figure: Relative frequency of correct localization of correlation channel error in the syndrome and parity approaches, using a (7,5) DFT code.

Wyner-Ziv using DFT codes Summary

- DFT codes could be better than binary codes for lossy DSC
- Delay and complexity is much less compared to Turbo and LDPC codes
- Parity approach is more efficient than syndrome approach
- Error localization is crucial in the performance of compression

Thank you for your attention

• • = • • = •

Real BCH-DFT codes

The Peterson-Gorenstein-Zierler (PGZ) algorithm

- Compute vector of syndrome samples
- Find coefficients Λ₁,..., Λ_ν of error-locating polynomial Λ(x) = Π^ν_{i=1}(1 − xX_i) whose roots are the inverse of error locations
- Find the zeros X₁⁻¹,..., X_ν⁻¹ of Λ(x); the errors are then in locations i₁,..., i_ν where X₁ = α^{i₁},..., X_ν = α^{i_ν} and α = e^{-j^{2π}/N}
- Finally, determine error magnitudes by solving a set of linear equations whose constants coefficients are powers of X_i.

Error correction for BCH code The Peterson-Gorenstein-Zierler (PGZ) algorithm

- Suppose there are $\nu \leq t$ errors in locations i_1, \ldots, i_{ν} with magnitudes $e_{i_1}, \ldots, e_{i_{\nu}}$
- Then r(x) = c(x) + e(x) where $e(x) = e_{i_1}x^{i_1} + \ldots + e_{i_\nu}x^{i_\nu}$ is the error polynomial
- The partial syndromes are defined as $s_j = r(\alpha^j) = c(\alpha^j) + e(\alpha^j) = e(\alpha^j) = e_{i_1}\alpha^{i_1j} + \ldots + e_{i_\nu}\alpha^{i_\nu j}$. -change of variables
 - error locators: $X_1 = \alpha^{i_1}, \dots, X_{\nu} = \alpha^{i_{\nu}}$ • error magnitudes: $Y_1 = e_{i_1}, \dots, Y_{\nu} = e_{i_{\nu}}$
- Syndrome equations (2t equations with 2ν unknowns)

$$s_1 = Y_1 X_1 + \ldots + Y_{\nu} X_{\nu}$$

 $s_2 = Y_1 X_1^2 + \ldots + Y_{\nu} X_{\nu}^2$

$$s_{2t} = Y_1 X_1^{2t} + \ldots + Y_\nu X_\nu^{2t}$$

Error correction techniques in real-field BCH-DFT decoding

Then the PGZ algorithm has the following steps **Oteration** $(\nu = ?)$

$$\mathbf{S}_{t} = \begin{bmatrix} s_{1} & s_{2} & \dots & s_{t} \\ s_{2} & s_{3} & \dots & s_{t+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_{t} & s_{t+1} & \dots & s_{2t-1} \end{bmatrix}$$

 $\nu=\mu$ iff \mathbf{S}_{ν} is nonsingular for $\nu=\mu$ but is singular for $\nu>\mu$ $\mathbf{S}_{\mu}=\textit{V}_{\mu}\textit{D}\textit{V}_{\mu}^{T}$

$$V_{\mu} = \begin{bmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ X_{1}^{\mu-1} & \dots & X_{\mu}^{\mu-1} \end{bmatrix}, D = \begin{bmatrix} Y_{1}X_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & Y_{\mu}X_{\mu} \end{bmatrix}$$

Error correction techniques in real-field BCH-DFT decoding

1 Localization $(X_i = ?)$

• Define error-locator polynomial as

$$\Lambda(x)=\prod_{i=1}^{
u}(1-xX_i)=\Lambda_0+\Lambda_1x+\ldots+\Lambda_
u x^
u$$

The roots of $\Lambda(x)$, i.e. $X_1^{-1}, \ldots, X_{\nu}^{-1}$, give the reciprocals of of error locators.

- Find $\Lambda_1, \dots, \Lambda_{\nu}$ by solving $S_{\nu} [\Lambda_{\nu} \Lambda_{\nu-1} \dots \Lambda_1]^T = -[s_{\nu+1} s_{\nu+2} \dots s_{2\nu}]^T$
- Determine the roots of $\Lambda(x)$ evaluating $\Lambda(\alpha^i), i = 1...N$, where $\alpha = e^{-j\frac{2\pi}{N}}$ for BCH-DFT codes

Error correction techniques in real-field BCH-DFT decoding

1 Estimation $(Y_i = ?)$

Finally, determine error magnitudes by solving a set of linear equations whose constants coefficients are powers of X_i

$$\begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{2t} \end{bmatrix} = \begin{bmatrix} X_1 & \dots & X_{\nu} \\ X_1^2 & \dots & X_{\nu}^2 \\ \vdots & \ddots & \vdots \\ X_1^{2t} & \dots & X_{\nu}^{2t} \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_{2\nu} \end{bmatrix}$$
(1)

DSC using real error-correcting codes Syndrome approach,6-bit quantization

Figure: Wyner-Ziv coding using a (7,5) DFT code