
HDXplore: Automated Blackbox Testing of

Brain-Inspired Hyperdimensional Computing

Rahul Thapa, Dongning Ma, Xun Jiao

Villanova University

{rthapa, dma2, xjiao}@villanova.edu

Abstract—Inspired by the way human brain works, the emerg-
ing hyperdimensional computing (HDC) is getting more and
more attention. HDC is an emerging computing scheme based
on the working mechanism of brain that computes with deep
and abstract patterns of neural activity instead of actual num-
bers. Compared with traditional ML algorithms such as DNN,
HDC is more memory-centric, granting it advantages such as
relatively smaller model size, less computation cost, and one-shot
learning, making it a promising candidate in low-cost computing
platforms. However, the robustness of HDC models have not been
systematically studied. In this paper, we systematically expose the
unexpected or incorrect behaviors of HDC models by developing
HDXplore, a blackbox differential testing-based framework. We
leverage multiple HDC models with similar functionality as cross-
referencing oracles to avoid manual checking or labeling the
original input. We also propose different perturbation mecha-
nisms in HDXplore. HDXplore automatically finds thousands
of incorrect corner case behaviors of the HDC model. We propose
two retraining mechanisms and using the corner cases generated
by HDXplore to retrain the HDC model, we can improve the
model accuracy by up to 9%.

I. INTRODUCTION

Recently, inspired by the way human brain works, hyperdi-

mensional computing (HDC), also known as vector-symbolic

architectures, is emerging as a viable alternative to DNNs.

Instead of actual numbers, HDC computes with deep and

abstract patterns of neural activity similar to human brain.

Compared with deep neural networks (DNNs), HDC is more

memory-centric, granting it advantages such as relatively

smaller model size, less computation cost, and one-shot learn-

ing capability [2]. Recently, HDC has demonstrated promising

results in various problem domains including language clas-

sification [12], brain computer interfaces [13], DNA pattern

matching [4], and anomaly detection [18]. However, despite

the growing popularity of HDC, the robustness of HDC models

has yet been systematically studied.

Testing is an inherently important step in enhancing the

robustness of systems or programs. Conventionally, testing a

ML system often requires a large-scaled of manually labeled

datasets and feed them to the ML systems for testing. Then, the

mis-classified samples will be used to retrain or fine-tune the

ML systems to improve the accuracy. Such approach, however,

is hardly feasible and scalable any longer as the ML systems

are scaling significantly to a more sophisticated input space.

The challenges for ML system testing is further exacerbated

by the fact that ML systems are found to be vulnerable to

invisible perturbations to original inputs. That is, ML systems

can be “fooled” and produce wrong predictions [17]. In

… …

Σ

Σ

Σ

Class 0

Class 1

Class 9

Images for Training Assoc. Memory

… …

Encoding

Encoding

Encoding

Class 0

Class 1

Class 9

Image HVImage HVImage HV

Image HVImage HVImage HV

Image HVImage HVImage HV

…

Class ? Encoding Query HV Similarity
Search

Image for Inference

Tr
ai

ni
ng

In
fe

re
nc

e

Class

…pixels

Pixel Encoding
Position
Memory

Value
Memory

X

Pixel Encoding
+

Pixel Encoding

…

…
Image HV

Image
En

co
di

ng

Fig. 1. HDC for image classification with three phases: (1) Encoding, (2)
Training and (3) Inference.

observing such phenomenon, this paper aims to answer the

following important question: How can we automatically and

systematically test HDC systems to detect and fix potential

flaws or undesired behaviors.

The key challenges in automated systematic testing of HDC

systems are twofold: (i) Large-scale manual labeling: As

mentioned, conventional ML testing requires the gathering

of a large set of data samples to be feed into ML systems

that is usually unscalable and infeasible [14], [19]. Google

even used simulation to generate synthetic data [8]. Note that

such manual effort is not only short of scalability but also is

largely randomized, making it unable to cover more than a

tiny fraction of all possible corner cases. (ii) Lack of mathe-

matical architecture: Unlike ML methods such as DNNs with

a well-defined mathematical formulation, HDC largely relies

on random project-based encoding (as explained later) [12],

adding difficulty to efficiently acquire adequate information

to guide the testing process. As a result, difference-inducing

images generation techniques used in DNNs cannot be applied

here since they rely on a set of well-defined mathematical

optimization problems [3].

To address such challenges, we introduce HDXplore, a

highly-automated testing framework for HDC based on differ-

ential testing. Differential testing, also known as differential

fuzzing, is a popular software testing technique that attempts

to detect bugs, by providing the same input to different imple-

mentations of the same application, and observing differences

in their execution [1]. We assume a blackbox testing scenario

as we assume we have no knowledge of the internal HDC

architecture. We make the following contributions:

• We develop HDXplore, the first blackbox testing frame-

work that can automatically expose the incorrect behav-

iors of HDC classifiers in a highly-automated and scalable

way without manual labeling.

• We develop two modes for HDXplore — the original

mode and the perturbation mode. In the original mode,

we construct multiple HDC classifiers and then use

HDXplore to cross-reference each other to identify dif-

ferential behaviors. In the perturbation mode, we perturb

images and use differential testing to automatically find

incorrect behaviors.

• Experimental results on MNIST dataset show that

HDXplore can efficiently find a large number of

incorrect corner cases in HDC classifiers. Using the

HDXplore-generated corner cases, we develop two re-

training methods, static retraining and dynamic retraining.

The retraining methods can improve the HDC classifier

accuracy by up to 9%.

II. RELATED WORK

Rahimi et al. used HDC on hand gesture recognition and

achieves 97.8% accuracy on average , which surpassed the

support vector machine by 8.1% [11]. HDC was also used for

language classification with an accuracy at 97% [12]. Manabat

et al., applied HDC to character recognition and conducted

performance analysis [9]. For optimization of HDC process-

ing, HDC-IM [6] proposed in-memory computing techniques

for HDC scenarios based on Resistive Random-Access Mem-

ory (RRAM). There are also optimizations on HDC targeted

at different computing platforms such as the FPGA [15] and

the 3D IC [20].

Recently, the emerging adversarial attacks on deep learn-

ing systems [3], [10] have demonstrated that even the most

advanced DNNs can be fooled by applying invisible perturba-

tions. Most of adversarial images are generated by leveraging

the mathematical properties of DNNs. For example, a fast

gradient sign method was developed with required gradient

computed efficiently using back-propagation [3]. The gradient

of the posterior probability for a specific class (e.g., softmax

output) was computed with respect to the input image using

back-propagation, which was then used to increase a chosen

unit’s activation to obtain adversarial images [10]. However,

these methods cannot be applied to HDC because HDC is not

built upon solving a mathematical optimization problem to find

hyperparameters. Further, usually the testing of DNNs and

HDC models assumes a greybox or even whitebox scenario

where the testers have the knowledge of internal model stru-

cure [7], [3], [10]. The closest study to our work is HDTest [7]

but it assumes a whitebox testing scenario. In contrast, this

paper presents the first blackbox testing framework for HDC

models.

III. HDC FOR IMAGE CLASSIFICATION

We develop an HDC classifier for image classification as

our testing target. There are three key phases in HDC models:

Encoding, Training and Inference as illustrated in Fig. 1.

A. Encoding

The encoding phase is to use HDC arithmetic to encode

an image into a hypervector (HV) called “Image HV”. HV

is the fundamental building block of HDC. They are high-

dimensional, holographic, and (pseudo-)random with indepen-

dent and identically distributed (i.i.d.) components. In HDC,

HV supports three types of arithmetic operation for encoding:

(element-wise) addition, (element-wise) multiplication and

permutation (cyclic shifting). Multiplication and permutation

will produce HVs that are orthogonal to the original operand

HVs while addition will preserve 50% of each original operand

HVs [11].

As shown in Fig. 1(1), in order to encode one image into

its representing HV, there are three steps. The first step is

to decompose and flat the image into an array of pixels. The

indices of the pixels in the array reflect the position of the pixel

in the original image while the values of the pixels reflect the

greyscale level of each pixel. For the MNIST dataset we use

in this paper, since the image size is 28 × 28 and the pixel

range is 0 to 255 in greyscale, we flat a single image into an

array with 784 elements with values ranging from 0 to 255.

The second step is to construct HVs representing each

pixel from the index and value information provided by the

image array. We randomly generate two memories of HVs:

the position HV memory and the value HV memory based on

the size and pixel value range of the image. The position HV

memory accommodates 28×28 = 784 HVs, each representing

a pixel’s position in the original image. The value HV memory

accommodates 255 HVs, each representing a pixel’s greyscale

value. For each pixel from the image array, we look up the

position HV and value HV from the two memories and use

multiplication operation to combine them in order to encode

the pixel into its representing HV. For example, if the pixel’s

index is 128 and the greyscale value is 192, its representing

HV is obtained by: PixelHV = PositionMem[128] ⊛
V alueMem[192].

The third step is to establish the HV representing the entire

image. After encoding all the 784 pixels into pixel HVs, the

final image HV is established by summing up the pixel HVs.

So far, we encode one image into a representing image HV

that is ready for HDC training and testing as one sample.

B. Training

The training phase is to iteratively incorporate the in-

formation contained in each image in the training set into

the associative memory (AM) with corresponding label. AM

stores a group of HVs, each representing a class. In other

words, training is the process of building the AM by adding

up all the training images’ HVs belong to one class together.

In the beginning, we initialize every class HV inside the AM

with zero. Note that the dimension of the class HVs inside the

AM is consistent with the image HVs. Therefore we can add

every image HV into the corresponding class HV according

to the label, to train the AM.

C. Inference

The inference phase is to evaluate the trained AM using

the unseen inference dataset. First, every image for inference

is encoded into its representing (query) image HV, using

the identical encoding mechanism and generated position and

value memory in the training phase. Then we calculate the

similarity between the query HV and every class HV inside

the AM. In HDXplore , similarity is measured using cosine

similarity in Eq. 1:

Sim = CoSim(qHV,AM [i]) =
qHV ·AM [i]

||qHV ||||AM [i]||
(1)

where qHV refers to the query image HV and AM [i] refers

to the i-th class HV inside AM. The class with the maximum

similarity with the query image HV subsequently becomes the

prediction result of this image. We then compare the true label

with the prediction for this image to determine if the prediction

is correct. We iterate all the images in the inference test to

evaluate the accuracy of the HDC classifier.

IV. HDXPLORE FRAMEWORK

t 1

...

Val idat i on Dataset
HDC Cassi f i er s

Under Test

t2
t 3

Classi f i er 1

Classi f i er 2

Classi f i er n

... Apply
Per tur bat i on

Discr epant
Inputs

Non
Discr epant

Inputs

Gener ated
Discr epant

Inputs

n-epochs

...

t 2
t 3

Di f fer ence
Inducing Inputs

t1Update
Associat ive

Mem or y

Stat i c or
Dynam ic?

Classi f i er 1

Classi f i er 2

Classi f i er n

...

Ret r ained
Classi f i er s

Stat i c r et r ain ing

Test for
Discr epancies

Dynam ic r et r ain ing

...

t 2
t 3

Di f fer ence
Inducing Inputs

t1

n-epochs

Ident i f yi ng Di f fer ent i al
Behavior s

Ret r ain ing HDC
Classi f i er s

Fig. 2. Overview of HDXplore with two phases: phase 1 use differential
testing to identify difference-inducing inputs, and phase 2 use difference-
inducing inputs to retrain the HDC classifiers.

In this section, we describe HDXplore framework for

systematically testing HDCs to locate erroneous corner case

behaviors on the image classification task. The main compo-

nents of HDXplore are shown in Fig. 2. HDXplore takes

N trained classifiers as well as validation dataset. The MNIST

dataset is divided into training, validation, and testing set.

We split the 60,000 MNIST training dataset into training and

validation set. We do this because for a testing problem, it is

natural to assume that we are given already-trained classifiers.

HDC1

1

HDC2

1

(a) Same prediction

HDC1

2

HDC2

1

(b) Difference Inducing pre-
diction

Fig. 3. The first image is predicted as ”1” by both HDC classifiers. The
second image is predicted differently by two classifiers, hence a difference
inducing is found.

Hence, we use the training dataset to train the initial HDC clas-

sifiers first. Then, we use validation dataset for HDXplore.

HDXplore uses validation set to generate new corner cases

that cause the N HDC classifiers to behave inconsistently, i.e.,

the HDC classifiers are producing different predictions. We

refer to such cases as difference-inducing inputs. The identified

difference-inducing inputs will then be used to retrain the

classifier to improve accuracy and robustness. The remaining

10,000 completely unseen testing dataset is preserved for the

ultimate evaluation of the performance of HDC classifier after

going through HDXplore.

We use Fig. 3 as an example to show how HDXplore gen-

erates test inputs. Consider that we have two HDCs to test,

both of which perform similar tasks, i.e. classifying digits

from 1-9. They are trained on the same dataset but inde-

pendently with different randomly generated HDC parameters,

e.g., position and value HVs. Therefore, although the HDCs

uses the same encoding, training and testing scheme, they

have slightly different classification rules. Assume we have

an image which both HDCs identify as a “1”, as shown

in Fig. 3 (a), HDXplore tries to find differential behaviors

by perturbing the input which will lead to different HDC

classification outputs, e.g., one HDC classifier classifies it as

a “1” while the other classifiers as a “2”, as shown in Fig. 3

(b).

Identifying Difference-Inducing Inputs (Line 3 - 17): Al-

gorithm 1 shows the algorithm of HDXplore for identifying

difference-inducing images and using those inputs to retrain

the HDC classifiers. The first objective of the algorithm is to

identify inputs that can induce inconsistent behaviors in the

HDCs, i.e., different HDC classifiers will classify the same

input into different classes. Suppose we have n HDC classifiers

Hk∈1..n : x → y, where Hk is the function modeled by the

k−th HDC classifier. x represents the input and y represents

the output class probability vectors. If an arbitrary x gets

classified to a different class by at least one HDC classifiers,

then such input is flagged as difference-inducing input xd,

and subsequently separated from the set of original images.

By the end of this process, what remains is a set of images of

which the classification is consistent across all HDC classifiers.

Algorithm 1 HDXplore

Input inputs ← validation dataset; classifiers ← multiple HDCs
under test; seeds ← random seeds for HVs; perturbations ←
predefined perturbation functions; epochs ← number of epochs
for retraining

Output retrained classifiers, difference-inducing images C

1: /* main procedure */
2: gen test ← empty set
3: /* finds images that all classifiers disagree and agree on respec-

tively */
4: dis images, non dis images ← discrepancies(classifiers, inputs)
5: for image ∈ non dis images do
6: /* randomly picks one of the classifiers */
7: m ← random(classifiers)
8: for perturb ∈ perturbations do
9: /* applies the perturbation function to the image */

10: n image = perturb(image)
11: if m.predict(n image) 6= (classifiers-m).predict(n image)

then
12: /* classifiers predict n image differently */
13: gen test.add(n image)
14: end if
15: end for
16: end for
17: dis images.add(gen test)
18: /* retrains the classifier for given epochs */
19: for epoch ∈ epochs do
20: for image ∈ dis images do
21: for seed ∈ seeds do
22: /* finds true and wrong label for given image */
23: y wrong← get wrong label(image, classifiers[seed])
24: y true ← get true label(image)
25: /* gets HV for the given image */
26: hv ← projection(image, seed)
27: /* subtracts the HV from wrong label and adds to

correct label */
28: classifiers[seed][y wrong] -← hv
29: classifiers[seed][y true] +← hv
30: end for
31: end for
32: dis images, non dis images ← discrepancies(classifiers,

dis images)
33: end for
34: return classifiers, gen test

Next, the goal of HDXplore is to perturb an image x from

this set into x ′, trying to make its classification across all

the n HDC classifiers inconsistent. For perturbing x, we use

four predefined perturbation functions (as detailed later). The

resulting difference-inducing images x ′ are combined with

the initial difference-inducing images in the validation set xd,

to form a complete set of difference-inducing images.

Retraining HDC Classifiers (Line 18 -31): After generat-

ing the difference-inducing images, the second objective of

HDXplore algorithm is to use these images to retrain the

HDC classifiers to improve its robustness and generalizability.

Note that in this retraining process, we would need to label

the difference-inducing images, which is significantly fewer

than labeling the original images. We develop two retraining

methods: static retraining and dynamic retraining.

For static retraining, we use the same set of difference-

inducing images obtained in the first epoch to iteratively retrain

the HDC classifier for multiple epoches. By retraining, we

mean that we update the HVs in the associative memory

for every subsequent epoch because the HVs are the final

trained parameters of HDC classifiers. The retraining process

is as follows: For each difference-inducing image, its image

HV is subtracted from the wrong class HV in the associate

memory and added to the correct class HV in the associative

memory. The static retraining, however, always use the same

set of difference-inducing images to update the HVs. This does

not consider the fact that, during retraining, the difference-

inducing images may change for HDC classifiers.

Hence, we propose dynamic retraining, where we will

update the difference-inducing images in every epoch. That

is, we use the HDXplore to generate a new set of difference-

inducing images in every retraining epoch and use them to

update the HVs in the associate memory. The update process

is still by subtracting image HVs from the wrong class HV

and adding image HV to the correct class HV.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We use MNIST [5] dataset and evaluate HDXplore on

a group of three HDCs. The MNIST dataset is divided into

3 sets: the training, validation, and testing set. Originally,

MNIST has 60,000 training images and 10,000 testing images.

We split the training set, i.e., 60,000 images, into a training set

(e.g., 30,000 images) and a validation set (e.g., the remaining

30,000 images). As a testing problem, we assume classifiers

are pre-trained. Thus, we train three classifiers using only the

training set (e.g, 30,000 images) and use HDXplore only on

the validation set (e.g., the remaining 30,000 images). Finally,

the HDXplore generated retrained classifier will be evaluated

using the completely unseen 10,000 images in the test set.

We have explored 5 different split ratios between training

and validation datasets. However, we only present the results

for the best performing split, i.e. 50%. By 50% (X%) split,

we mean 50% (X%) of entire training datasets are used as

validation dataset.

We apply four perturbations to the images to create

difference-inducing images: skew, noise, brightness, and elas-

tic transform. To skew an image, we randomly initialize a

distribution with an off-center mean and non-zero standard

deviation and distort all pixels by that amount. Similarly, to

add noise to the image, we randomly choose 100 points in

the images and overwrite the pixel value to 0. We change the

brightness by simply decreasing the pixel values by a given

factor. Finally, for elastic transform, we replicate the elastic

deformation of images as described in [16].

B. Difference-Inducing Images

For initially training HDC classifiers, 3 different random

seeds (30, 40, and 50) are used to generate random base HVs.

The individual images are then encoded using the base HVs

and are added to the corresponding HVs in the associative

memory. All 3 HDC classifiers achieve ∼81% accuracy.

HDXplore is able to find 966 difference-inducing images in

(a) Original Image

(b) Generated (adversarial) images

Fig. 4. Sample adversarial images produced by HDXplore.

the validation set initially. After perturbation, HDXplore gen-

erated additional around 4000 difference-inducing images.

On average, HDXplore generates 3-4 difference-inducing

images per sec on the MNIST dataset for all splits. We run

HDXplore algorithm for 40 epochs for all our experiments

and on each epoch, we evaluate the classification accuracy and

number of difference-inducing images using 10,000 unseen

testing images. Fig. 4 presents several generated examples of

adversarial images.

C. Static Vs. Dynamic Retraining

Through our dynamic retraining method, we see an overall

increase in accuracy from 81% up to 90% over the course

of 40 epochs as shown in Fig. 5 (a). For static retraining in

Fig. 5 (b), even though the accuracy seems to increase in the

beginning few epochs, the accuracy eventually starts dropping

continuously and significantly for all settings.

This is consistent with the number of difference-inducing

images as shown in Fig. 5. With dynamic retraining, there is an

overall decrease in the number of difference-inducing images,

decreasing from 296 to 153 for “no perturbation” and from 296

to 104 for “perturbation”. With static retraining, however, we

see that the number of difference-inducing images is strictly

increasing in all settings.

Comparing the accuracy and discrepancy curves, we see

that for dynamic retraining, the decrease in the number of

difference-inducing images is simultaneously followed by an

increase in the accuracy. For static retraining, however, the

trend is not as clear, as we can see that the accuracy in-

creases in the beginning few epochs even when the difference-

inducing images were increasing. Overall, the dynamic re-

training method seems to be increasing the accuracy of HDC

classifiers while simultaneously decreasing the number of

difference-inducing images, making the classifiers both accu-

rate and robust.

There is a drop in the accuracy (from ∼86% to ∼82%) and

spike in the number of difference-inducing images (from ∼500

to ∼2000) for dynamic retraining with perturbation from 5 to

11 epochs. For dynamic retraining, this means that the HDC

classifiers get to retrain on a higher number of difference-

inducing images while updating the difference-inducing set

on each epoch. However, for static retraining, the same large

number of initial difference-inducing images are used to retrain

the classifiers over and over again. Therefore, the difference-

inducing images get compounded on each epoch without

getting a chance to improve upon them, eventually resulting in

a drop in accuracy. Even for dynamic retraining, we noticed a

drastic drop in accuracy while applying perturbation from 4 to

11 epochs. This happened because the number of difference-

inducing images kept on increasing from the very beginning.

Therefore, even if the classifier’s performance improved in

the beginning epochs, it dropped drastically as the number of

difference-inducing images significantly increased. However,

because dynamic retraining updates the number of difference-

inducing images on each epoch, the classifiers eventually start

learning from all these difference-inducing images resulting

in a drop in the number of difference-inducing images and a

significant increase in the accuracy.

D. Perturbation Vs. Non-Perturbation

Applying perturbation results in an overall greater increase

in accuracy in less number of epochs than without perturbation

in dynamic retraining. We see that the highest accuracy im-

provement (from 81% to 90%) is seen when the perturbation

is applied. However, for static retraining, the case is slightly

different, where for the same split, applying perturbation

results in a significant and rapid decrease in overall accu-

racy than without perturbation. The reason can be seen in

discrepancy bar in Fig. 5 (b). Applying perturbation increases

the number of difference-inducing images in the validation

set significantly. Even though the accuracy of the classifiers

seems to improve in the beginning epochs, as the number

of difference-inducing images starts increasing rapidly, the

accuracy of the classifiers starts to drop simultaneously with

the number of difference-inducing images in the validation

dataset. Comparing the accuracy and discrepancy plot in Fig. 5

(b), we notice that higher the difference-inducing images in the

validation dataset, the sooner and faster the accuracy drops for

static retraining.

Retraining the classifiers dynamically using all the

difference-inducing images found after applying perturbation

also increases the robustness of the classifiers. To quantify the

robustness, we used same as well as slightly different pertur-

bations that we used in retraining our HDC classifiers in all the

images from testing dataset that all classifiers initially agreed

on. We then compared the number of difference-inducing

images that our framework was able to produce. We found

∼1200 difference-inducing images in the the baseline classi-

fiers, i.e. the classifier without any retraining. Similarly, we

found ∼800 difference-inducing images in the classifiers that

was retrained but without any perturbed images. However, we

found ∼600 difference inducing images for our dynamically

retrained classifiers with perturbed images found through our

framework. Based on this metric, our framework made HDC

classifiers about 50% more robust than our baseline model

and 25% more robust than the dynamically retrained model

without the perturbed images found through our framework.

0 4 8 12 16 20 24 28 32 36
Epochs

0

250

500

750

1000

1250

1500

1750

2000
Di

sc
re

pa
nc

ie
s

no_perturb
perturb

30

40

50

60

70

80

90

100

Te
st

in
g

Ac
cu

ra
cy

 (%
)

no_perturb
perturb

(a) Dynamic Retraining

0 4 8 12 16 20 24 28 32 36
Epochs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Di
sc

re
pa

nc
ie

s

no_perturb
perturb

30

40

50

60

70

80

90

100

Te
st

in
g

Ac
cu

ra
cy

 (%
)

no_perturb
perturb

(b) Static Retraining

Fig. 5. Accuracy and number of discrepancies of HDXplore retrained classifiers on unseen 10000 MNIST images for each epoch of retraining process. We
conducted 4 different experiments with the combination of 2 different parameters. (1) Static vs. Dynamic; (2) Perturbation vs. No-perturbation.

E. Exploration on Varying Split Ratios

We additionally experimented with various split ratios in

addition to 50%. We found a general trend that seems to apply

for most of the splits. For split ratio smaller than 50%, we

noticed that the accuracy generally increases and number of

discrepancies generally decreases for dynamic retraining. For

static retraining, the case is reverse, consistent with the results

from 50% split. However, the case is a little bit different when

you split the data too high above 50% (say 60%). In this case,

even for dynamic retraining, with or without perturbation, the

accuracy decreases and the discrepancy increases significantly.

Unlike with 50% split, where the classifier eventually starts

learning from all the discrepancies after a certain number of

epochs, with splits significantly higher that 50%, the classifier

never recovers.

VI. CONCLUSION

This paper presents HDXplore, a highly-automated and

scalable blackbox testing approach for HDC models. Based

on differential testing, HDXplore iteratively mutates inputs

to generate difference-inducing images to expose incorrect

behaviors of HDC models. We develop multiple modes in

HDXplore, and evaluate HDXplore on MNIST dataset.

Experimental results show that HDXplore is able to gen-

erate difference-inducing images efficiently with and without

perturbations. We use the HDXplore-generated inputs to

retrain HDC classifiers under static and dynamic retraining,

which can further improve the accuracy and robustness of

HDC classifiers. While HDC performance still expects more

advancements both in theoretical and implementation aspects,

this paper aims to shed light on the robustness aspects of this

emerging technique.

REFERENCES

[1] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao.
Coverage-directed differential testing of jvm implementations. In PLDI,
2016.

[2] Lulu Ge et al. Classification using hyperdimensional computing: A
review. IEEE Circuits and Systems Magazine, 2020.

[3] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[4] Yeseong Kim et al. Geniehd: efficient dna pattern matching accelerator
using hyperdimensional computing. In DATE, 2020.

[5] Yann LeCun. The mnist database of handwritten digits. http://yann.

lecun. com/exdb/mnist/, 1998.
[6] Jialong Liu et al. Hdc-im: Hyperdimensional computing in-memory

architecture based on rram. In ICECS, 2019.
[7] Dongning Ma, Jianmin Guo, Yu Jiang, and Xun Jiao. Hdtest: Differential

fuzz testing of brain-inspired hyperdimensional computing. In Design

Automation Conference (DAC), 2021.
[8] Alexis C Madrigal. Inside waymo’s secret world for training self-driving

cars. The Atlantic, 2017.
[9] Alec Xavier Manabat et al. Performance analysis of hyperdimensional

computing for character recognition. In ISMAC, 2019.
[10] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are

easily fooled: High confidence predictions for unrecognizable images.
In Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015.
[11] Abbas Rahimi et al. Hyperdimensional biosignal processing: A case

study for emg-based hand gesture recognition. In ICRC, 2016.
[12] Abbas Rahimi et al. A robust and energy-efficient classifier using brain-

inspired hyperdimensional computing. In ISLPED, 2016.
[13] Abbas Rahimi et al. Hyperdimensional computing for blind and one-

shot classification of eeg error-related potentials. Mobile Networks and

Applications, 2017.
[14] Olga Russakovsky et al. Imagenet large scale visual recognition

challenge. IJCV, 2015.
[15] Manuel Schmuck et al. Hardware optimizations of dense binary hy-

perdimensional computing: Rematerialization of hypervectors, binarized
bundling, and combinational associative memory. JETC, 2019.

[16] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices
for convolutional neural networks applied to visual document analysis.
In Icdar, volume 3, 2003.

[17] Christian Szegedy et al. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013.
[18] Ruixuan Wang, Fanxin Kong, Hasshi Sudler, and Xun Jiao. Hdad:

Hyperdimensional computing-based anomaly detection for automotive
sensor attacks. In IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2021.
[19] Song Wang et al. Exploring causes and effects of automated vehicle

disengagement using statistical modeling and classification tree based
on field test data. Accident Analysis & Prevention, 2019.

[20] Tony F Wu, Haitong Li, Ping-Chen Huang, Abbas Rahimi, Jan M
Rabaey, H-S Philip Wong, Max M Shulaker, and Subhasish Mitra. Brain-
inspired computing exploiting carbon nanotube fets and resistive ram:
Hyperdimensional computing case study. In 2018 IEEE International

Solid-State Circuits Conference-(ISSCC), pages 492–494. IEEE, 2018.

