
Session T3H

View/Edit/Compile/Run
Web-based Programming Environment

Richard Perry1

Abstract— A web-based environment has been developed for
students to perform C, Java, and shell programming. The
environment runs on a Unix server, uses password authentication,
and provides each student with separate project subdirectories
that can not be seen by other students. Options are available
to view files, edit source code, compile, run, run in debug
mode, run with output plotted and displayed as a GIF image,
display C preprocessor output, display generated assembly code,
display optimized assembly code, and insert compiler error
messages as comments into the source code. The environment
is implemented using a combination of C code, perl, and shell
scripts, and is freely available (open source). The source code of
the environment itself can be used as examples in an advanced
Unix/C programming or security course. The environment has
been used successfully in both sophomore and senior-level C
programming courses, a graduate Unix/C programming course
(C and shell programming), and a senior/graduate computer
communications security course (Java programming).

Index Terms— Unix, open source, programming, web-based.

I. I NTRODUCTION

For ECE and CSC computer programming assignments, stu-
dents at Villanova have access to a variety of systems including
Unix and Microsoft workstations in departmental and college
laboratories, as well as their own personal computers. But the
programming environments available on these systems vary
widely – some may not have Java installed, or may have
an unsuitable old version; some only have professional C++
development tools with complex interfaces that overwhelm
beginners and do not enforce strict ANSI C compliance; and
the Microsoft systems generally do not have the Unix shells
and other tools (e.g. Cygwin [1]) installed.

To alleviate this problem, the View/Edit/Compile/Run
(VECR) environment [2] was created to provide an easy-to-
use interface to a set of standard programming tools, with
consistent options. For example, for C programming, the GNU
GCC compiler [3] is used with options–ansi –pedantic –
Wall to enforce strict ANSI C compliance and enable all
warnings. This helps students to learn standard C and avoid
use of system-specific functions or inappropriate constructs
from C++.

Students are encouraged to use whatever programming en-
vironment is most convenient for them for initial development
of programs, then upload to VECR for testing and turning
in. However most students have reported that they do all
development directly in VECR, after having used it and found

1Richard Perry, Villanova University, Department of Electrical and Com-
puter Engineering, richard.perry@villanova.edu

it to be both convenient and consistent, providing the same
interface for C, Java, and Bourne shell programming.

In the next section, this paper will provide a tour of the
VECR environment, with screen shots and descriptions of the
available options. Section III will then describe the courses and
projects which have successfully used the environment. Details
of the implementation are provided in Section IV, followed by
conclusions and ideas for future work.

II. VECR TOUR

Fig. 1
VECR HOME PAGE FOR STUDENT FRODO

Figure 1 shows the VECR home page for studentfrodo.
There is a choice of 10 available projects,a1, ..., a10, as
well as a link to download all of the project files in zip
format. There is also a link to the VECR documentation
and source code; all of the source code and files within the
running VECR system (except for student project files) are
readable by anyone, and students are encouraged to explore
the system. The Logout link simply allows reauthentication
using a dummylogout UserID which clears the browser–
cached authentication information.

The VECR home page for course instructorrperry shown
in Figure 2 is similar, but also allows the instructor to set their
effective UserID to any student from a drop-down list. After
setting the UserID, an instructor can access the associated
student project files without having to know the student

0-7803-8552-7/04/$20.00c© 2004 IEEE October 20–23, 2004, Savannah, GA
34th ASEE/IEEE Frontiers in Education Conference

T3H-1

Session T3H

Fig. 2
VECR HOME PAGE FOR INSTRUCTOR RPERRY

password. This is useful for helping students in debugging
their programs and for grading finished projects.

Fig. 3
VECR A1 PROJECTPAGE

Figure 3 shows ana1 project page; there is a choice of four
C, four Java, and four sh programs to edit. At the bottom of
the page is a directory listing with links to view any files in
the project directory. In this example, the Makefile and data
file p2.in were provided by the instructor; p1.c and p1.c.OLD
are the current and previous versions of the student work on
that program, and p1 is the associated executable.

Figure 4 shows the result of selectingp1.c from the a1
project page. Here the student program source code is in an
editable textarea window at the bottom of the page. At the top
are links for the various actions which can be performed:

• preproc - display C preprocessor output
• asm- display generated assembly code
• asmopt- display optimized assembly code
• cerr - insert compiler error messages as comments into

the source code
• reload - reload the current page
• Compile- compile C or Java program
• Run - run C, Java, or sh executable

Fig. 4
VECR A1/P1.C EDIT PAGE

• Debug- run C program using gdb, or sh script using -x
• Plot - pipe program output into plotting program
• args - specify program command-line arguments
• Command- execute args input directly as command
• Update- save edit changes
• Upload - not shown in the figure, at the very bottom of

the page, upload local source file

Fig. 5
VECR A1/P1.C COMPILE

The program shown in Figure 4 contains a syntax error; it is
missing a semicolon after the printf() statement. Attempting
to compile produces the error messages shown in Figure 5.
By selecting thecerr option, the error messages are inserted
as comments into the source code as shown in Figure 6.
This can be very helpful for debugging larger programs,
and is implemented simply by redirecting standard output
and standard error from make into the Unixerror utility:
make ... 2 > & 1 | error

After fixing the syntax error, saving the changes, and
recompiling, selectingRun from Figure 4 produces the output
shown in Figure 7. It shows the command-line used to run the
program, as well as the program exit status (i.e. return value

0-7803-8552-7/04/$20.00c© 2004 IEEE October 20–23, 2004, Savannah, GA
34th ASEE/IEEE Frontiers in Education Conference

T3H-2

Session T3H

Fig. 6
VECR A1/P1.C CERR

Fig. 7
VECR A1/P1.C OUTPUT

from main() in C).

Fig. 8
VECR A1/P1.C PLOT

For programs producing one or two columns of output data
suitable for plotting,Plot may be selected instead ofRun. As
seen in Figure 8Plot will run the program with output piped
into a plotting program and the result will be displayed as
a GIF image. The plot program is just a simple shell script
which uses gnuplot [4] and netpbm [5]:

(echo "set term pbm\nset output\n\
plot ’-’ notitle with linespoints"; cat) |

/usr/local/bin/gnuplot |
/usr/local/netpbm/bin/ppmtogif

III. C OURSES ANDPROJECTS

Starting over a year ago, the VECR environment grew out
of an initial web-based setup which allowed students to create
one Bourne shell script for a project in a graduate-level Unix/C
programming course. The project was to dynamically generate
HTML web pages listing system directories and files, with

links back to the same script to traverse the file system and
view files. Providing an environment where the student shell
script was run by a web server made the project much more
interesting that other course projects where programs or shell
scripts were developed for a simple interactive Unix command-
line environment.

VECR was then expanded to include ten course projects,
with four C, four Java, and four Bourne shell scripts in each
project. The defaultContent-Typefor program output is now
text/plain, but that can be changed totext/html for specific
course projects to enable dynamic HTML programming as in
the initial environment.

The VECR environment has since been used successfully
in both sophomore and senior-level C programming courses,
a graduate Unix/C programming course (C and shell pro-
gramming), and a senior/graduate computer communications
security course (Java programming).

A. Introductory C Programming

For the C programming courses, the first and several subse-
quent course projects took advantage of the VECR plotting ca-
pability to enable very simple C programs to produce graphics
output, thus making the projects more interesting for students.
For example, one initial course project involved a noisy sine-
wave data file given to the students and automatically available
in the VECR environment. The first part of the assignment was
to just read the data as floating-point numbers using scanf()
and output using printf(); subsequent parts involved computing
3-point or N-point moving averages of the data, and estimating
the period of the sine wave. By using the VECRPlot option
to run their program, students could visually see the results of
smoothing the noisy input data.

Another motivating project (in February) was to write a C
program using various functions frommath.hto produce a plot
which looks like a Valentine’s day heart. And for a Monte-
Carlo simulation project, one aspect involved using an array
of counters, which represented a probability density function
when plotted.

B. Advanced C Programming

In more advanced C programming projects, VECR provided
students with header files and code for functions such as dy-
namic matrix allocation, matrix singular value decomposition,
and network I/O. The student projects then involved writing
code to use the provided functions to develop their application.
Checking code which may have worked on the students own
system or other systems at Villanova, but which failed to
compile or run properly in the VECR environment, invariably
revealed errors in their code, such as OS portability and data
endianness issues.

C. Java Programming

VECR was also used for Java programming projects in se-
nior elective and graduate computer communications security
courses. These courses covered the theory and practice of com-
puter privacy, authentication, and encryption, with hands–on

0-7803-8552-7/04/$20.00c© 2004 IEEE October 20–23, 2004, Savannah, GA
34th ASEE/IEEE Frontiers in Education Conference

T3H-3

Session T3H

projects at every level. VECR provided the students with the
current Java development environment, together with the Java
security extension packages and other packages developed by
the instructor. Of particular interest in these courses was the
security of the VECR environment itself, and students were
encouraged to explore the system and examine the source code
for potential security flaws. The instructor, as developer of
VECR, worked hard to stay one step ahead of the students in
that regard.

IV. VECR IMPLEMENTATION

The VECR environment is implemented using a combina-
tion of C code, perl, and shell scripts, and is freely available
[2] (open source). The source code of the environment itself
can be used as examples in an advanced Unix/C programming
or security course.

The implementation is designed to be secure. It runs in a
chroot environment, with most actions performed under the
student userid with run-time limits on resources such as CPU
and real-time usage (the Unixchrootenvironment sets the root
of the file system to a subdirectory from which one can not
escape, thus preventing access to the rest of the file system).

A. System Environment

The VECR system at Villanova is a Sun Ultra-5 workstation
(ftp.ece.villanova.edu) running Solaris 7, and has handled
courses with up to 50 students. The Apache web server [6] is
used, running under useridnobody, and is not itself running
chroot. The following Apache configuration directive:

ScriptAlias /prog/ /home/chroot/cgi-bin/

redirects requests forhttp://ftp.ece.villanova.edu/prog/viewto
the executable file/home/chroot/cgi-bin/viewwhich is the main
interface to VECR. Theview executable is setuid-root, with
permissions:

---s--x--- root nobody ... view

and is responsible for performing chroot to/home/chrootand
then running the next phase of VECR processing (view.pl,
discussed below in Section IV-D).

The following abbreviateddf -k output shows the file
systems which are loopback mounted (readonly for /usr and
/opt) on /home/chroot:

Fsys kbytes capacity Mounted on
/usr 1015542 71% /home/chroot/usr
/opt 3410878 85% /home/chroot/opt
/proc 0 0% /home/chroot/proc

This allows access from within VECR to the standard Unix
utility programs in /usr/bin and optional software such as
gcc, gdb, java, etc. in/opt/bin. Access to /proc is not strictly
required, but without that some commands likeps and who
will not work.

B. Authentication

Users access the VECR web interface using password au-
thentication, as specified in the/home/chroot/cgi-bin/.htaccess
file:

AuthName "Villanova LDAP"
AuthType Basic
LDAPAuth On
LDAPSSLDisable
LDAPServer "ldap://ldap.villanova.edu:389/"
AuthAuthoritative off
AuthUserFile /home/chroot/private/.htpasswd
AuthGroupFile /dev/null
LDAP or .htpasswd user
require valid-user

Villanova uses University-wide LDAP authentication, so
users do not need to have separate accounts set up for web
access. However, there is sometimes a need for access by users
not associated with Villanova who are not listed in the LDAP
server, and by dummy accounts for testing. Thus, the.htaccess
file specifies a fallback to a local.htpasswdfile where non-
LDAP users can be listed (e.g. the dummyfrodo account used
in the examples of Section II).

Each user accessing VECR is dynamically assigned a
userid/groupid starting with 3000. These userid’s do not exist
in the system/etc/passwdfile, that is they are not real lo-
gin accounts. The authenticatedREMOTEUSERenvironment
variable is looked up in the chroot/local-lib/id.list flat database
file, and if not found, the next sequential userid/groupid is
assigned.

C. Project Directories

For each user, a directory is created in the chroothome/
directory, owned by root with readonly access for the users’
group. Subdirectories for each project are created owned by
the user, for example:

drwxr-x--- root 3004 home/frodo
drwx------ 3004 3004 home/frodo/a1
drwx------ 3004 3004 home/frodo/a2
drwx------ 3004 3004 home/frodo/a3
...

The file permissions ensure that each user only has access
to their own project directories. Furthermore, a user can not
change the permissions of their top-level home directory to
allow access by other users, since that directory is owned by
root.

Each project subdirectory can be automatically initialized
with files provided by the instructor, e.g. a Makefile, generic
input data files, specific per-student data files, auxiliary source
files, etc. Common initial files reside in subdirectories of a
proto directory, one for each project, for example:

-rw-r--r-- root root proto/a1/Makefile
-rw-r--r-- root root proto/a1/p2.in

0-7803-8552-7/04/$20.00c© 2004 IEEE October 20–23, 2004, Savannah, GA
34th ASEE/IEEE Frontiers in Education Conference

T3H-4

Session T3H

Student project directories are initialized with symbolic
links to theproto files, for examplehome/frodo2/a1/Makefile
is a symlink to../../../proto/a1/Makefile

Specific per-student data files can be created by adding
code to theview.shscript (discussed below in Section IV-D).
For example, in one course a2/p3.in was initialized with an
encrypted random fortune for each student:

create a2/p3.in if necessary
f="$dir/a2/p3.in"
if [! -r "$f"]; then

cd /src/sdes-cbc || exit 1
/usr/local/bin/fortune |

/usr/local/jdk/bin/java CBCEncrypt \
"$user" > "$f"

chown "${uid}:${uid}" "$f"
chmod 400 "$f"

fi

The code above contains a security flaw; there is a race
condition between the time the file is determined to not
exist and the time it is created from the encrypted fortune
output. Between those two times a student process could have
created the file as a symbolic link to any existing file in the
chroot environment, which would then be overwritten by the
encrypted fortune output. Code such as the above is more
safely implemented running as the student userid instead of
as root.

D. Running as root

As noted in Section IV-A, entry to VECR starts with the
setuid-root executableview, which performs thechroot() sys-
tem call.view also sets the real and saved userid and groupid
to root, which is necessary for Solaris to run subsequently
invoked scripts as root. Running as root is dangerous since
root has access to all aspects of the system and can even break
out of the chroot environment. The parts of VECR which run
as root should not contain flaws which may allow creation
or overwriting of arbitrary files or execution of arbitrary user
input.

Running as root is necessary in order to create the student
project directories with proper owner and group, and to change
the running userid and groupid to that of the student for actions
such as compiling and running programs. Overall this is more
secure than running everything under a common userid such
asnobodywhich would lead to less separation of student file
ownership and less process control.

view runs the next step of VECR, theview.pl Perl script,
which decodes data sent by POST requests, such as updating
a project source file.view.pl then invokes theview.shBourne
shell script, which is the main part of VECR.view.shhandles
creating new accounts and project directories and files. Based
on whether it was invoked using GET or POST, and depending
on supplied arguments, it generates the appropriate HTML
web pages on the fly as needed. There are no static HTML
pages in VECR, other than the documentation. All HTML
content is generated dynamically.

E. Running as student userid

For actions to be run as the user, such as compiling or
running programs,view.shnot only sets the userid and groupid
to that of the student, but also runs the request using an
executable namedrun which limits the run-time to 30 seconds
real-time, to prevent runaway processes. If the 30 seconds run-
time is exceeded, all processes owned by the student are killed.
run also checks the exit status of its child process and will
display a descriptive message if the process was terminated
by a signal, e.g. ”SIGSEGV - segmentation violation”.

The shell ulimit command is also used to restrict the
resources used by the student process, placing limits on
maximum core file size (0), maximum size of the data segment
or heap (8192 KB), maximum file size (512 KB), maximum
number of file descriptors (64), maximum size of the stack
segment (8192 KB), and maximum CPU time (10 seconds).
Furthermore,/etc/systemsets a system-wide limit on number
of processes per userid, which preventsfork bombs from
disrupting the system (afork bombis code such aswhile(1)
fork();).

The student process spawned byview.shuses a separate
script, run.sh, to set appropriate compile options and/or per-
form the requested action. Note that by selecting the Com-
mand button shown in Figure 4 the student can execute an
arbitrary Unix command. Since the student can create and
execute arbitrary C, Java, or sh programs, there would be
little security gained by attempting to restrict what commands
can be executed. In fact,run.sh uses the sheval command
on purpose to execute commands as well as run the student
programs, which enables use of pipelining and I/O redirection.
For example, to run the compiled p1.c program with input
from file p1.in and output piped to the input of compiled
program p2.c, the student would use the following args in
the p1.c edit page:

< p1.in | p2

V. CONCLUSION AND FUTURE WORK

The VECR environment currently satisfies the needs of
several courses for programming in C, Java, and sh, and it
continues to evolve every semester that it is used. New features
will be added as the need arises, and security of the system
will always be a priority in design.

One current limitation when creating new accounts is that no
locking mechanism is used to prevent conflicting simultaneous
updating of the userid database files. This has not been a
problem so far, but would be if used in an environment where
many new users access the system simultaneously.

Another limitation is that interactive programs are not
supported; program input must come from data files or the
output of other programs, the user can not interactively type
input. This limitation will be removed in the future by having
an Interactiveselection in addition to theRunandPlot options
for running programs. For interactive programs I/O will be
managed by a Java process running on the server with a
network connection to a Java applet running on the client
system.

0-7803-8552-7/04/$20.00c© 2004 IEEE October 20–23, 2004, Savannah, GA
34th ASEE/IEEE Frontiers in Education Conference

T3H-5

Session T3H

REFERENCES

[1] “Cygwin – Unix tools for Windows.” http://cygwin.com/.
[2] “VECR documentation and source code.” http://ftp.ece.villanova.edu/

perry/VECR/.
[3] “GNU compiler collection.” http://gcc.gnu.org/.
[4] “Gnuplot – graphics plotting.” http://www.gnuplot.info/.
[5] “Netpbm – graphics library.” http://netpbm.sourceforge.net/.
[6] “Apache HTTP server.” http://httpd.apache.org/.

0-7803-8552-7/04/$20.00c© 2004 IEEE October 20–23, 2004, Savannah, GA
34th ASEE/IEEE Frontiers in Education Conference

T3H-6

