
Security Aspects of Web–based Unix Programming Environment

Richard Perry
Villanova University

Department of Electrical and Computer Engineering
Villanova, PA 19085

richard.perry@villanova.edu

Abstract

The security aspects of a web–based Unix environment for C, Java, and shell programming are pre-
sented. In contrast to a sandbox with limited functionality, the environment allows full access to the
underlying system, and the user can execute arbitrary Unix commands. System security is provided in
multiple layers involving the process environment, file system, network configuration, resource limits,
and cryptographic tickets. Although implementation details will be presented specifically for a Solaris 9
operating system, the techniques are applicable to any Unix system. The environment is implemented us-
ing an “old–school” combination of C code, Perl, and shell scripts, and is freely available (open source).

1 Introduction

The educational aspects of a web–based Unix environment for C, Java, and shell programming were orig-
inally described in 2004 [8], with only a brief discussion of the security aspects. Since then many new
features have been added, with an associated increase in the complexity of the security mechanisms, includ-
ing use of cryptographic tickets. After a short functional overview of the system from the user perspective,
we will describe all of the security mechanisms used to provide this safe web–based Unix programming
environment. Section 3 will cover the underlying operating system security, then Section 4 will focus on
security mechanisms inside the environment itself. The implementation and security aspects of web–based
interactive I/O will be presented in Section 5.

2 Functional Overview

The environment is oriented towards students taking a C programming course, although Java and shell
script programming are also supported. After “logging in” to a course–specific URL (e.g. using LDAP
authentication) users are presented with their project homepage for that course, as seen in Figure 1 for user
alice and course fc, a freshman C programming course. There are ten project assignment subdirectories, a1
... a10, links to the environment documentation and source code, and a link to download a zip archive of all
of the users files. iPlot is a special subdirectory preinitialized with code to provide an interactive plotting
environment, and in the HTML subdirectory student programs can generate HTML forms to create their own
interactive environments.

If alice selects the link for a2 she is presented with the page shown in Figure 2, listing specific files that
can be edited or created, and all existing files which can be viewed. Each project subdirectory is initialized
with only a Makefile to start with.

Now if alice decides to edit p1.c she proceeds to the main work area of the environment where files can
be edited, saved, compiled, etc. as displayed in Figure 3. Here, files can be uploaded from the users local

1

Figure 1: Project Homepage

Figure 2: Project a2 Subdirectory

computer or copied from an archive of example programs, and there are various options related to compiling,
debugging, plotting, audio, and interactive I/O. Note the args input area: this is used to pass command–line
arguments when running a program, or to execute an arbitary Unix command using the Command button.
This area of the environment will be discussed further in Section 4 in the context of its security.

3 System Security

For most types of Unix systems, after installing the operating system many changes must be made to make
the system more secure. Here we describe the particular changes and other configuration settings made on
a Solaris 9 installation in order to safely allow web–based access. This includes changes to the file system,
process and network configuration, and webserver configuration.

2

Figure 3: Editing a2/p1.c

3.1 File System Security

A complete install of Solaris 9 contains over 100 setuid and/or setgid programs in /usr. Many of these
programs, like admintool, are not intended to be used by regular users, but are setuid root and executable by
anyone. Some of these programs have had ongoing security problems, such as buffer–overflows related to
command–line arguments or environment variables, which could be exploited by a user to obtain elevated
privileges.

To avoid the risk of setuid/setgid program exploits, all such programs have been moved to a separate
/usr/root directory tree, accessible only by users in group root. The only users in group root are system
administrators who have root access anyway. The original programs are replaced by symbolic links in /usr.

Example permissions, owner, group, and file:

drwxr-x--- root root /usr/root
-r-sr-xr-x root bin /usr/root/bin/sparcv9/uptime
lrwxrwxrwx root root /usr/bin/sparcv9/uptime ->

/usr/root/bin/sparcv9/uptime

For web–based users, with no controlling terminal, no display, and no real login (they have unique
uid numbers, but no /etc/passwd entry, see Section 4 for more information) very little functionality is lost
by not having access to any of the setuid/setgid programs. In particular for them, ps does not work, and
pseudo–terminals in general do not work due to /usr/lib/pt chmod being unaccessible.

3

3.2 Process and Network Security

Two particular aspects of process security are addressed by the following settings in the /etc/system specifi-
cation file:

set coredefault=0
set maxuprc=40

The first setting prevents core dumps, which can reveal privileged information if a system daemon crashes.
Also, it eliminates the core files which would otherwise be created in every project directory of every student
using the system (assuming that all student programs crash, which is pessimistic but mostly true). Rather
than examining core files, students can reproduce crashes using the Debug or IO/D options, which run their
program under the gdb debugger.

The second setting limits the number of simultaneous processes for users other than root. This prevents
the “fork–bomb” attack as well as other unintentional runaway spawning of processes. The setting should
not be too low, since it limits all non–root processes system–wide, including webserver processes (e.g.
running as userid httpd).

Basic network security of the system starts with disabling inetd or equivalently commenting out all lines
in /etc/inetd.conf. Network access for system administration is then provided using sshd with tcp–wrappers.

3.3 Webserver Security

The Apache httpd–2.0 webserver is used, with mod ssl enabled, running as user httpd and group httpd, and
started with a chroot command to make the environment root directory /home/httpd/. The web programming
system, /vecr/, is contained in the chroot area, but except for the front–end CGI interface it is outside of the
webserver DocumentRoot (/htdocs/). However, to allow browsing of the live environment code [7], parts
other than users files are made accessible using symlinks:

lrwxrwxrwx root root htdocs/vecr/IO -> ../../vecr/IO
lrwxrwxrwx root root htdocs/vecr/audio -> ../../vecr/audio
lrwxrwxrwx root root htdocs/vecr/dist -> ../../vecr/dist
lrwxrwxrwx root root htdocs/vecr/doc -> ../../vecr/doc
lrwxrwxrwx root root htdocs/vecr/images -> ../../vecr/images
lrwxrwxrwx root root htdocs/vecr/local-bin -> ../../vecr/local-bin
lrwxrwxrwx root root htdocs/vecr/proto -> ../../vecr/fc/proto
lrwxrwxrwx root root htdocs/vecr/src -> ../../vecr/src

with the IO and audio links actually being necessary for the applets described in Sections 5 and 4.4 respec-
tively to work.

The front–end CGI interface is invoked whenever the string /prog/ is present in a URL. This is configured
by the following Apache directives:

ScriptAlias /prog/ "/vecr/cgi-bin/"
<Directory /vecr/cgi-bin>
Options None
AllowOverride AuthConfig Limit

</Directory>

which enable use of a .htaccess file to require user authentication, as discussed further in Section 4.
The chroot setup prevents web users from accessing anything outside of the /home/httpd/ directory.

To allow user programs and the webserver itself to run, /usr and /opt are loopback–mounted read–only on
/home/httpd/, and the dev directory there contains the following device files:

4

crw-rw-rw- root root dev/null
crw-r--r-- root root dev/random
crw-rw-rw- root root dev/tcp
crw-rw-rw- root root dev/ticotsord
crw-rw-rw- root root dev/udp
crw-r--r-- root root dev/urandom
crw-rw-rw- root root dev/zero

4 Environment Security

Access to the environment starts with user authentication to run one of the course–specific wrapper CGI
programs. The CGI exec’s a Perl script view.pl which parses the request and passes control to a shell script
view.sh. Then, depending on what actions are to be performed, additional subsidiary programs and scripts
are invoked.

The complete source code is available at [7]. The implementation is an “old–school” [4] combination of
C code, Perl, and shell scripts, and should be easily portable to any Unix system.

4.1 Authentication and Wrapper

The cgi-bin file permissions, link counts, owner, and group appear as follows, configured for three courses:

-rw-r----- 1 root httpd vecr/cgi-bin/.htaccess
---s--x--- 3 root httpd vecr/cgi-bin/ccs
---s--x--- 3 root httpd vecr/cgi-bin/fc
---s--x--- 3 root httpd vecr/cgi-bin/osp

The .htaccess file specifies a combination of LDAP and local password file authentication:

AuthName "Villanova LDAP"
AuthType Basic
AuthLDAPEnabled on
AuthLDAPURL ldap://ldap.villanova.edu/o=villanova.edu?uid?sub
AuthAuthoritative off
AuthUserFile /vecr/private/.htpasswd
AuthGroupFile /dev/null
require valid-user

All regular users authenticate using LDAP; the .htpasswd file only contains dummy users for testing.
The wrapper has separate hard links for three courses, ccs, fc, and osp. It is setuid–root, runnable only

by group httpd, and is a C program executable which basically does the following (error checking code
removed for brevity):

char *val, course[1024]; gid_t grouplist[1] = { 0 };

setgroups(1, grouplist); setgid(0); setuid(0);

val = strrchr(argv[0], ’/’); val = val ? val+1 : argv[0];

strcpy(course, "COURSE="); strncat(course, val, 1024-10);

putenv(course); execv("/vecr/local-bin/view.pl", argv);

5

that is, it sets the real, effective, and saved user and group IDs to root (necessary on Solaris, beyond the file
permission effective setuid, to really run as root), creates an environment variable COURSE containing the
file name, then exec’s the view.pl Perl script.

Given the aversion to setuid programs evidenced in Section 3.1, one may question why a setuid–root
program is used here. One reason is that the original environment ran under a webserver which was not
chroot, so the wrapper had to run as root to perform its own chroot call. Since the current system already
runs chroot under the webserver, the remaining two reasons for the setuid–root wrapper are, first, so that the
environment can perform setuid to a unique userid for each user. As discussed further below, a directory
structure is created for each user such that they can not see other users files and can not change permissions
such that other users could see their files. This would not be possible if the environment ran under a single
generic userid. The second reason is to allow root–only access to private data, such as the database of web
userids, the usage log file, and the secret used in the cryptographic token for interactive I/O (Section 5).

The wrapper is derived from a small C program, chroot+setuidgid, which can perform chroot and se-
tuid/gid, as well as redirecting stdout after the setuid, based on either command–line arguments or hard–
coded values set using conditional compilation. The wrapper uses hard–coded values, i.e. from the Makefile:

UID = 0
GID = 0
PROG = /vecr/local-bin/view.pl

wrapper: chroot+setuidgid.c Makefile
$(CC) -o wrapper -s \

-DUID=$(UID) -DGID=$(GID) -DPROG=\"$(PROG)\" \
-DPUTENV_COURSE=1 chroot+setuidgid.c

and is installed setuid–root in the cgi–bin/ directory using course–specific file names, one link for each
course.

Another version of the same program is compiled without hard–coded values, so it will obtain the values
at run–time from the command line:

chroot+setuidgid: chroot+setuidgid.c
$(CC) -o chroot+setuidgid -s -DSTDOUT chroot+setuidgid.c

and is installed as a helper program in the local–bin directory:

---x--x--x root root vecr/local-bin/chroot+setuidgid

This version of the program does not have setuid file permissions since it will be run as root from a descen-
dent process of the setuid wrapper. It is used as described below to create processes running under the user
uid and gid.

4.2 Running as root

The view.pl Perl script invoked as root by the wrapper checks whether the request was “GET” or “POST”,
and safely passes that information as well as any arguments and post data to the view.sh script as seen in this
excerpt:

$prog="/vecr/local-bin/view.sh";

if ($ENV{REQUEST_METHOD} eq "GET")
{

6

@a = ("GET", @ARGV); exec("$prog", @a); exit;
}
else POST
... parsing code omitted, $mode, $args, and $data set here ...
open(EDIT,"| $prog POST");
print EDIT "$mode @ARGV $args\n$data\n";
close(EDIT);

The view.sh script first logs the request, then carefully extracts the username from the REMOTE USER
environment variable provided by the webserver. For LDAP authentication in particular, if AuthAuthorita-
tive is turned on, REMOTE USER will contain the full distinguished name (dn), for example:

uid=alice,ou=a,ou=Students,o=villanova.edu

The username alice is easily extracted from this, but additionally, the username is “sanitized” by removing
any ’/’ and ’.’ characters. This is a necessary precaution because it will be used as a directory name, and it is
conceivable that an attacker with control over the LDAP server would craft a special filename–like username
in an attempt to disrupt the web environment, e.g. “uid=../../../conf/”.

In the web environment, users are assigned unique userid/groupid values starting with 3000, and these
stored in a user list file. The users do not have a real Unix login, and are not listed in any password or group
file, not even in the chroot area. view.sh obtains the userid/grouid value corresponding to the username from
the user list file, or automatically creates a new entry for a first–time user. The users web home directory
and project subdirectories are created if they do not already exist.

The following example showing permissions, owner, group, and file name illustrates that alice has
userid/groupid 3025, she has read–only access in her top–level home directory, and write access in the
project subdirectories:

drwxr-x--- root 3025 vecr/fc/home/alice
drwx------ 3025 3025 vecr/fc/home/alice/a1

Since alice is not the owner of home/alice/, she can not change permissions to allow other users to see her
files. Similarly, she can not see other users files.

All further actions in the environment, such as compiling or executing Unix commands, are run under
the users userid/groupid, with resource limitations as described next.

4.3 Running as the user

To execute a command as the user, view.sh, running as root, first uses the shell ulimit command to restrict
resources, then invokes the chroot+setuidgid to set the userid/groupid and run a special RUN program which
will be described below:

RUN="/vecr/local-bin/run"
SETUIDGID="/vecr/local-bin/chroot+setuidgid"
RUNSH="/vecr/local-bin/run.sh"
#
ulimit -c 0 # maximum core file size (in 512-byte blocks)
ulimit -d 8192 # maximum size of data segment or heap (in kbytes)
ulimit -f 1024 # maximum file size (in 512-byte blocks)
ulimit -n 64 # maximum file descriptor plus 1
ulimit -s 8192 # maximum size of stack segment (in kbytes)

7

ulimit -t 10 # maximum CPU time (in seconds)
ulimit -v 65536 # maximum size of virtual memory (in kbytes)
#
exec "$SETUIDGID" --setuidgid "$uid" "$uid" \
"$RUN" "$RUNSH" "$mode" "$top/$fname" "$sub" "$file" "$args"

Shell variables set up prior to running the command contain the userid, mode (what to do, e.g. run, debug,
plot, audio, command, etc.), home directory, subdirectory, file, and arguments.

run.sh, running as the user, checks the mode argument to determine what to do, and for executing a Unix
command (Command button in Figure 3) simply does:

eval $args

which enables use of shell wildcards, pipelines, I/O redirection, etc. in the user command.
The RUN program, executed as the user by chroot+setuidgid, is a C program executable which: forks

run.sh as a child process; sets an alarm for 30 seconds real–time; then waits for the child process to finish.
If the time–limit is reached, it kills all processes running as the user (including itself); otherwise it simply
reports the exit status of the child process. The combination of cpu–time and real–time limits prevents
potential problems with runaway or stuck processes overloading the system.

4.4 Audio Security

For audio projects, students are generally given an input data file containing raw audio samples at 8000
Hz. corrupted by noise or interference. They create a program to filter the data using signal processing
techniques to reduce the corruption, and then play their program output using the audio option (speaker icon
in Figure 3). The audio option first converts the program output to a temporary file in 8-bit ulaw format,
then plays that file in a loop using a Java applet. An example is shown in Figure 4.

The ulaw conversion has to store all of the data in memory in order to find the maximum value for use
in scaling its output, so there is a potential problem with memory usage growing indefinitely if the user
program has unlimited output. Although memory usage is limited by the ulimit shown in Section 4.3, a
smaller limit seems more appropriate here, so a limit of 1 million samples (about 2 minutes of audio) is
imposed by the conversion program.

For compatibility with older browsers and old versions of Java, the applet uses the simple getAudioClip()
method to download the audio file. This does not support user authentication with the webserver, but even
if it did we would avoid that because it would force the user to reenter their userid/password every time the
applet is run. In Section 5 a similar applet authentication problem is encountered, and it is solved using
a cryptographic ticket. To do the same for audio would be overkill since here the user is only accessing a
temporary data file, not their whole web environment.

Therefore, the audio file is created in a /tmp/ directory which is publically accessible through the web-
server, and is writable to all web users. To avoid file name collisions, the temporary audio file names are
created by concatenating the username, course name, project subdirectory and program name, and current
process id, for example /tmp/alice-fc-a2-p1.sh-19141.audio. This presents some risk to the users, from other
users, since one could manually create such files to try to cause a collision and subsequent denial–of–service.

A more significant risk caused by the writable public directory is that if the webserver configuration for
/tmp/ allows following symlinks, then users could create links to anything in the entire chroot area. Any files
readable by user/group httpd could then be made publically available, for example the cgi-bin/.htaccess file
shown in Section 4.1, and other files outside the webserver DocumentRoot not intended for public access.
However, this risk is eliminated by the webserver configuration settings Options None and AllowOverride
None for the /tmp/ directory.

8

Figure 4: Audio Applet

Another problem with temporary directories and files in general is accumulation of old files and resulting
loss of disk space. This is currently handled in the web environment using a cron job to remove old files:

2 * * * * /opt/bin/gfind /home/httpd/htdocs/tmp -type f -amin +59 -delete

5 Interactive I/O Security

Interactive programs are run using the IO or IO/D (run under gdb debugger) buttons shown in Figure 3. An
example is shown in Figure 5 using a program which prompts to read numbers and displays the number and
its reciprocal. The top area shows diagnostic messages regarding the applet and network connection. The
middle area shows program input and output; the contents of this area can be saved to a file using the Save
button. The user enters input in the bottom area above the buttons.

It should be noted that although interactive I/O is limited to running user programs and scripts, the user
can create a one–line shell script like this:

exec ksh

and run it interactively to obtain an interactive shell. This is allowed intentionally, and does not present any
additional risk to the system since the user is already capable of executing arbitrary Unix commands using
the Command button.

9

Figure 5: I/O Applet

The execution of interactive I/O starts with an applet, which connects to a web proxy. The proxy for-
wards the connection to a Java server, which spawns a client thread for each connection.

5.1 I/O Applet and Ticket

In the web page generated to display the I/O window, the applet is passed parameters containing the userid,
current time, a cryptographic ticket, the project subdirectory path, the program name to run, and the program

10

command–line arguments, if any.
The cryptographic ticket is a message authentication code based on a hash (HMAC, RFC 2104 [5]). It

is generated using javax.crypto.Mac() with algorithm HmacSHA256, which uses SHA256 [6] as the hash
function. HMAC operates by combining data with a secret as input to a hash or “one–way” function. Given
the hash output, one can not determine the inputs. However given the original data and secret, one can
regenerate the hash output and compare it with the value sent with the data.

For the I/O applet ticket, the secret is 64 bytes from /dev/random stored in a file readable only by root:

-rw------- root root vecr/IO/bin/secret.dat

This file can be changed to a new secret at any time, and although that would invalidate any I/O tickets
currently in use, the user can just click the IO button again to obtain a new valid ticket, as must be done
when tickets expire anyway.

The ticket itself is a 256–bit HMAC created using the secret, the current time, the username, and userid.
It is passed to the applet as a 64–byte hex string parameter. Since the user was already known to be authen-
ticated at the time the IO option was initiated, the ticket allows that authentication to propagate from the
applet to the server without having the user resend their userid and password.

5.2 I/O Proxy

Rather than open another port on the perimeter firewall, the webserver is used as a proxy to forward requests
to the Java I/O server as diagramed in Figure 6. The Apache configuration directives for the proxy are:

ProxyRequests On
ProxyTimeout 300
AllowCONNECT 7
<Proxy *>
Order Deny,Allow
Deny from all

</Proxy>
<Proxy localhost:7>
Order Allow,Deny
Allow from all

</Proxy>

Once the proxy connection is established, the web server is transparent and simply forwards data, in-
cluding authentication data, back and forth between the remote user and the server on localhost port 7.

5.3 I/O Server and Authentication

The I/O server is a Java process started at system boot–time using a chroot command to make its root
directory the same as the webserver. It runs as root, and listens for connections on localhost port 7. The
applet uses the webserver proxy to connect to it by sending the string “CONNECT localhost:7”.

When it receives a connection, the I/O server creates a client thread to communicate with the applet. The
applet then sends its authentication data parameters (username, userid, and ticket creation time), and ticket.
It also sends its other parameters (project subdirectory path, program name to run, program arguments),
but these are not used in the authentication. The client thread creates an HMAC using the authentication
data and the same secret described above in Section 5.1. If this HMAC does not match the ticket, then the
authentication fails and the client throws a SecurityException which is logged before it drops the connection
and exits. If the HMAC does match, then the client thread is assured that the username and userid presented

11

80 7

input, buttons

output

diag

Proxy ServerApplet

Figure 6: I/O Web Proxy

by the applet are valid, so it proceeds to compare the ticket timestamp with the current time. If the ticket
is older than 10 minutes, the client throws a SecurityException and exits. Otherwise it proceeds to create a
subprocess to execute the user program.

One may question why the authentication data and ticket do not include the subdirectory, program,
and arguments. This is because there is no need to check or limit the commands or programs that users
execute; that is already restricted by the file system security and chroot environment. A clever user could
change the applet parameters, as long as none of the authentication values are changed, which would cause
authentication failure. The server only needs assurance of the validity of the username and userid – the
username simply for logging activity, and the userid to perform setuid/setgid as described next.

5.4 I/O Run Subprocess

After authentication succeeds, the I/O client creates a subprocess to execute Run, a C program executable
which combines aspects of RUN, chroot+setuidgid, and ulimit from Section 4.3. It also spawns a Copy
thread to copy output from the user program to the applet, while itself handling copying input from the
applet to the user program as seen in Figure 7.

Before invoking the user program, Run sets its userid and groupid to that of the user, then it changes
directory to the subdirectory specified in the applet parameter, and then it forks. In the child process of the
fork, it uses setrlimit() calls to restrict resources similar to the ulimit shell command described in Section
4.3. An excerpt, with error checking code removed for brevity:

struct rlimit rl;

rl.rlim_cur = rl.rlim_max = 0; setrlimit(RLIMIT_CORE, &rl);

rl.rlim_cur = rl.rlim_max = 10; setrlimit(RLIMIT_CPU, &rl);

The child process then exec’s the user program.
The parent process sets an alarm for 120 seconds, then waits for the child to exit. If the child exits

within the time limit, the exit status is reported. Otherwise the parent kills all processes running as the user
(including itself).

The applet communicates with the I/O client using a simple protocol to indicate whether data is being
sent or the user selected one of the EOF (send end–of–file), Stop, or Save buttons (see Figure 5). Save creates
a subprocess which runs a C program executable similar to Run above, which sets the userid, groupid, and

12

Applet

Run

(user)

Copy

Client

BufferedOutputStream

BufferedInputStream

BufferedInputStream

BufferedOutputStream
(root)

(user)

(root)

DataInputStream

DataOutputStream

(root)

Server

prog args...

Figure 7: I/O Server, Client, and Run Processes

default directory, then copies the contents of the applet output window (sent from the applet with the Save
command) to a file.

6 Conclusion

The programming environment described here had its origin in a much simpler form created several years
ago to support a single course assignment. It enabled editing and running a single shell script generating
HTML to implement an interactive directory/file browser. Security of the system was of utmost priority from
the beginning, since users had access to execute arbitrary Unix commands. By using a chroot environment,
eliminating access to potentially insecure commands (Section 3.1), using a setuid–root wrapper (Section
4.1), and limiting resources (Section 4.3), users were prevented from accidently – or maliciously – disrupting
the system. Evolving from that simple beginning to its current complexity, with audio, interactive I/O,
applets and a Java server, security of the system has continued to be the core requirement in implementing
any new features.

The oldest and most widely used web–based application today may be web–mail. Word processing
and spreadsheet applications have recently been incarnated in web–based form as “Google Docs & Spread-
sheets” [3]. To the author’s knowledge, web–based programming environments similar to the one presented
here do not exist, although the commercial product CodeLab [2], formerly WebToTeach [1], deserves men-
tion even though it is instructor–oriented and designed mainly for testing and homework–checking. Al-
though the programming environment described here may be unique, the security aspects are applicable to
any web–based application environment.

13

References

[1] David Arnow. The WebToTeach Project. http://www.sci.brooklyn.cuny.edu/˜arnow/WebToTeach/.

[2] Turing’s Craft. CodeLab. http://www.turingscraft.com/.

[3] Goggle. Google Docs & Spreadsheets. http://www.google.com/.

[4] Stephen B. Jenkins. Musings of an “old–school” programmer. Communications of the ACM, 49(5):124–
126, May 2006.

[5] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication.
ftp://ftp.isi.edu/in-notes/rfc2104.txt.

[6] NIST. FIPS 180-2: Secure Hash Standard (SHS). http://csrc.nist.gov/publications/fips/.

[7] R. Perry. VECR documentation and source code. http://ftp.ece.villanova.edu/vecr/doc/.

[8] R. Perry. View/edit/compile/run web-based programming environment. In Frontiers in Education Con-
ference, pages T3H 1–6, October 20–23, 2004.

14

