ECE 3770: Communication Systems

Mojtaba Vaezi www.ece.villanova.edu/~mvaezi

Lecture 1 Introduction

• Course Information

• History of Communication

• Communication Process and OSI Model

Contents

Course Information

• History of Communication

• Communication Process and OSI Model

Course Logistics

Instructors

Instructor: Mojtaba Vaezi E-mail: mvaezi@villanova.edu Office: Tolentine 433A Office Hours: TR from 11:15 am-12:30 pm, or by appointment

Teaching Assistant: TBD (xxx@villanova.edu) Office Hours: xx from x am-x pm

• Time and Location

	Time	Location
Lectures	TR from 10:00 am to 11:15 am	Tolentine 309
Labs	T from 04:30 pm to 06:10pm	Tolentine 215

Objectives

This course provides broad knowledge of how communication systems work from a system engineering point of view and how to apply it to real-world problems.

Course Objectives

- Introduce the basic building blocks of communication systems
- Introduce communication channel and discuss how signals are shaped for transmission and reception over channel
- Develop and compare the performance of analog and digital modulation/demodulation schemes
- Introduce sampling, quantization and pulse code modulation
- Introduce and analyze the noise effect in communication systems

References

Textbook

Simon Haykin and Michael Moher, *Communication Systems*, 5th Edition, John Wiley & Sons, 2009. (ISBN: 978-0-471-69790-9)

References

- B. P. Lathi and Zhi Ding, Modern Digital and Analog Communication Systems, 4th Edition, Oxford University Press. (ISBN 978-0-19-533145-5)
- Proakis and Salehi, *Fundamentals of Communication Systems*, (2nd Edition) Pearson, 2013.

Outline

• Part I: Introduction/Math Foundational (Chapters 1 & 2)

- An overview of early and current communication systems/history
- Review of frequency domain analysis of signals and systems
- Review of signal classification and operations

• Part II: Analog Communications (Chapters 3, 4 & 6)

- Amplitude modulation schemes
- Angle (frequency and phase) modulation schemes
- Frequency and time division multiplexing

• Part III: Digital Communications (Chapters 7 & 8)

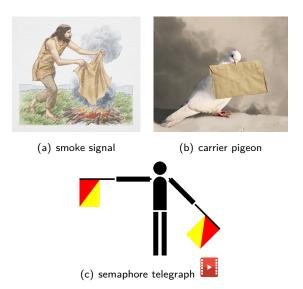
- Sampling theorem and the basis for digital communications
- Quantization, PCM, and line coding
- Digital transmission, matched filter decoding, and bit error rate

Assessment

ltem	Weight	Remarks
Homework	16%	8 homework; each due in 1 week
Practicums	24%	A total of 8 practicum assignments
Test 1	15%	AM Modulation, Tuesday, Feb. 27, 2024
Test 2	15%	FM Modulation, Thursday, Mar. 28, 2024
Final	20%	8:30 am - 11:00 am, May 9, 2024
Participation	10%	Attendance, participation, and Kahoot quizzes

Homework Policy

- Due in one week after assignment, upload to Blackboard
- 25% penalty for late assignments
- No assignment is accepted after posting solutions
- You could work in group but everyone should turn in their own write up



• Course Information

• History of Communication

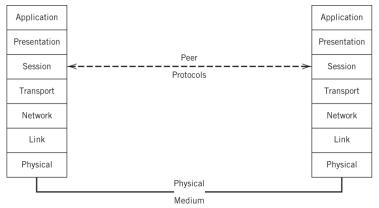
• Communication Process and OSI Model

Early Communication Methods

Modern Communication Systems

Telegraph

- 1830, Joseph Henry
- 1837, Samuel B. Morse, Morse code
- Telephone
 - 1876, Alexander G. Bell ("Watson come here; I need you")
 - 1915, US transcontinental service (requires amplifiers)
- Wireless telegraphy
 - 1895, Jagadish Chandra Bose builds radio transmitter
 - 1896, Marconi patents radio telegraphy
 - 1901, Marconi, first transatlantic transmission
- Radio
 - 1906, first broadcast (Reginald Fessendend)
 - $\,\circ\,$ 1920, first commercial AM radio station (Montreal XWA \rightarrow CINW)
 - 1935, FM radio (Edwin Howard Armstrong)


• Course Information

• History of Communication

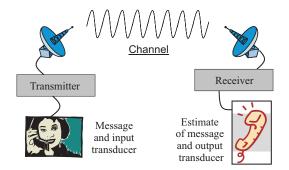
• Communication Process and OSI Model

Open Standards Interconnection (OSI) Reference Model

 The OSI is a conceptual model created by international organization for standardization (ISO) to describe a stack of layers that enable communications between two systems.

The OSI Model

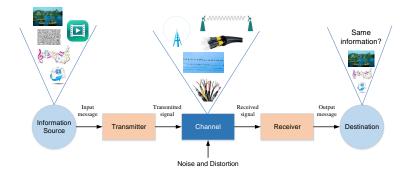
- The OSI model comprises 7 *layers*, defining various functions involved in establishing an end-to-end communications.
- It simplifies the design and permits independent development of different functions.


Layer 7 - Application	• End User Layer • Examples - HTTP, FTP, Telnet, SNMP
Layer 6 - Presentation	Syntax for Applications (Translation, Encryption, Compression) Examples - SSL, JPEG, MPEG
Layer 5 - Session	Connections between systems (Open, manage and close) Examples - RPC, API
Layer 4 - Transport	• End-to-end communication; Assembles / reassembles data • Examples - TCP, UDP
Layer 3 - Network	• Packets Routing • Examples - IP, IPX
Layer 2 - Data Link	• Data transmission (in frames) between two devices on same Network • Examples - PPP, Frame Relay
Layer 1 - Physical	• Raw data over physical medium • Examples - Coax, Fiber

Example: Sending an Email

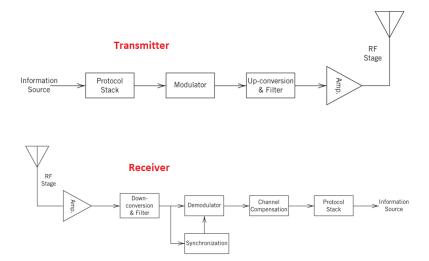
- Layer 7 (Application) what the system does for the user (enables sending emails, in this example)
- Layer 6 (Presentation) what app you could use to send an email, e.g., outlook, Gmail, etc.
- Layer 5 (Session) controls the session, checks username/passwords
- Layer 4 (Transport) which network to use to get the info from the source to destination (5G, GSM, telephony network, etc.)
- Layer 3 (Network) which way (route) to send the info
- Layer 2 (Data Link) controls the flow of info between the nodes and handles congestion and re-transmission
- Layer 1 (Physical) means of communication (voltage, frequency, transmission rate, medium (wire, radio, fiber), etc.)

Electrical Communication System

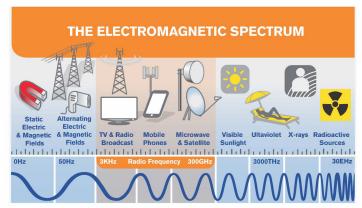

 In its simplest form, a telecommunication system consists of a transmitter, a channel, and a receiver.

Examples of channels

- Wired (copper wire: 1 MHz, coaxial cable: 100 MHz)
- Wireless (microwave: GHz)
- Optical fibre (uses light as the signal carrier, THz)

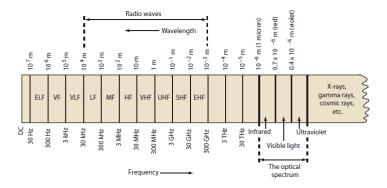

Elements of Communication System

• Early communication systems were all analog: examples include


- AM and FM radio, analog TV, audio cassettes
- First generation cellular phone technology (based on FM)
- Analog communication getting obsolete

Basic Components of Transmitter/Receiver

Electromagnetic Spectrum


- Electromagnetic frequency spectrum (dc to light)
 - Radio spectrum: 3kH 300GHz
 - Optical spectrum: 300GHz 3×10^{21} HZ

picture source: the web

Wavelength and Frequency

• Wavelength: $\lambda = \frac{v}{f}$ v = speed of light = 3×10^8 m/s

picture source: the web

Communication Resources

- **Bandwidth:** the range of frequencies a channel can transmit with reasonable fidelity
 - A precious and very expensive resource

 An example of FCC auctions in 2017: 84 MHz of wireless spectrum for about \$20 B

- Power: Signal power P is related to the quality of transmission
 - Often measured in terms of the signal power over the noise power (SNR)
 - Limited by availability and/or regulation

Why are these important?

• Shannon's channel capacity equation

 $C = W \log_2(1 + SNR) \quad bits/s$

That is, data rate (C) depends on bandwidth (W) and SNR (which is related to power)

Objectives of System Design

To transmit the message both *efficiently* and *reliably*, subject to certain design constraints: power, bandwidth, and cost.

- Efficiency: is usually measured by the amount of messages sent in unit power, unit time and unit bandwidth
- Reliability: is expressed in terms of bit error rate (BER) or SNR
 - $\,\circ\,$ Shannon capacity formula says zero error rate is possible as long as actual signaling rate is less than C