
Lecture 10: Sampling ECE 3770: Communication Systems

Lecture 10
Sampling and Reconstruction

Why Digital Communications?

Digital Representation of Analog Signals

Sampling

Aliasing

Interpolation

Pulse Modulation

Appendix

Mojtaba Vaezi 10-1

https://www.ece.villanova.edu/~mvaezi


Contents

Why Digital Communications?

Digital Representation of Analog Signals

Sampling

Aliasing

Interpolation

Pulse Modulation

Appendix

Lecture 10: Sampling 10-2



Digital Communications
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Why Digital Communications?

Digital transmission has many advantages over analog transmission.

Digital systems are less sensitive to noise than analog
With digital systems it is easier to integrate different services, such as
video and voice
Hardware design for digital signals is easier than analog ones (digital ICs
are smaller and easier to make than analog ICs)
Digital transmission techniques use the media more efficiently

Multiplexing is easier (Compatible with Time-Division Multiplexing)
There are techniques for removing redundancy (compression)
There are techniques for adding “controlled” redundancy (error correction)

Digital techniques make it easier to specify complex standards

Understanding digital communications was developed through 1930-
1960 and it became efficient and economical in 1970, after devel-
opments in micro-electronics.
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Why Digital Communications?

Digital signals, which are usually binary, are more immune to noise
than analog signals are.

(a) Noise on a binary signal. (b) Clean binary signal after regeneration.
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Disadvantages of Digital Communication

There are some disadvantages to digital communication.

With binary techniques, the bandwidth of a signal can be two or more
times greater than it would be with analog methods.

Digital communication circuits are usually more complex than analog
circuits. However, although more circuitry is needed to do the same job,
the circuits are usually in IC form, are inexpensive, and do not require
much expertise or attention on the part of the user.
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Analog vs. Digital Communications

Analog

1. bandwidth required is less

2. more vulnerable to noise

3. error correction is not possible

4. cost is low

5. less complex

6. less reliable

Digital

1. bandwidth required is high

2. less vulnerable to noise

3. error correction is possible�

4. cost is high

5. complexity is high

6. more reliable∗

∗Examples of such error correction codes include LDPC codes used in storage
systems (e.g., flash memory and hard disk drives) as well as cellular communication
systems (4G and 5G).
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Analog to Digital Conversion

The first step in the evolution from analog to digital transmission
is the conversion of analog information sources, such as voice and
music, are inherently analog.

Analog to digital conversion
First step: sampling

Suppose you have some continuous-time signal, x�t�, and you want to
sample it, in order to store the sample values in a computer. The samples
are collected once every Ts �

1
fs

seconds:

x�n� � x�t � nTs�

Second step: quantizing the samples to discrete levels
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Sampling
Sampling an analog signal results in a sequence of real numbers.

Example: if we sample g�t� � 5 cos�50πt� � 5 cos�100πt� every 5ms we
get samples � �10,3.54,�5,�3.54,0,�3.54, . . .�
Note that g�n� � g�t � nTs� � g�t � 5n

1000� � 5 cos�nπ4 � � 5 cos�nπ2 �

10 20 30 40 50 60 70
�5

5
10

t~ms

g�t� � 5 cos�50πt� � 5 cos�100πt�

In this lecture, we will learn the theory of sampling and recon-
struction. Two fundamental questions are

Q1: How often should we sample to be able to recover g�t�?
Q2: Given the samples, how can we recover g�t�?
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Fourier Transform of Impulse Train (FT Table)

ª

Q
m��ª

δ�t �mT0�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
impulse train

X

1
T0

ª

Q
n��ª

δ �f � n

T0
�

Proof:

First, we find the Fourier series of impulse train

x�t� � ª

Q
m��ª

δ�t �mT0� �
ª

Q
n��ª

cne
j2πnf0t

where cn �
1
T0
S

T0
2

�

T0
2

x�t�e�j2πnf0tdt �
1
T0
S

T0
2

�

T0
2

δ�t�e�j2πnf0tdt �
1
T0

From the FT table, we know that ej2πnf0t
X δ�f � nf0�

Taking the FT of x�t� proves the desired FT pair (note f0 �
1
T0
).
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Sampling

Converting an analog signal into a corresponding sequence of sam-
ples that are usually spaced uniformly in time.

Ts (sampling period) 
� fs �
1
Ts

(sampling rate)
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Sampling
Mathematically, sampling can be achieved by multiplying the signal by
an impulse train.

gδ�t� � g�t�
ª

Q
n��ª

δ�t � nTs�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
impulse train

�

ª

Q
n��ª

g�nTs�δ�t � nTs� (1)

What is the FT of the sampled signal gδ�t�?
gδ�t�X fsPªm��ª

G�f �mfs�

Proof: Using multiplication property of the FT we have

F �gδ�t�� � G�f� �F� ª

Q
n��ª

δ�t � nTs��

� G�f� � 1
Ts

ª

Q
m��ª

δ �f � m

Ts
�

� fs
ª

Q
m��ª

G�f �mfs�
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Sampling

Uniformly sampling a continuous-time signal results in a periodic
spectrum with a period equal to the sampling rate.

Gδ�f� � fsPªm��ª
G�f �mfs�

Suppose G�f� is zero for Sf S CW and let us choose Ts � 1
2W , then
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Sampling and Reconstruction
What about other values of Ts. Specifically, Ts @ 1

2W and Ts A 1
2W ?

Theorem: A signal g�t� with bandwidth W can be reconstructed
exactly from samples taken at any rate fs A 2W.

The sampling rate of fs � 2W samples/sec is called Nyquist rate.
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Example: Sampling/Reconstruction

Example: For the signals g�t� � sinc�200t�
1. plot g�t� and G�f�
2. specify W (the maximum frequency)

3. specify the Nyquist rate (fs) and the Nyquist interval (Ts)
4. plot Gδ�f� for

i. Ts � 3 ms
i. Ts � 5 ms
i. Ts � 10 ms

− 3
T − 2

T − 1
T

1
T

2
T

3
T

1
g(t) = sinc(Tt)

t


 −T
2

T
2

1
T

G(f) = 1
T rect(

f
T )

f
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Aliasing

In general, if g�t� is sampled below the Nyquist rate fs @ 2W , then g�t�
cannot be recovered from its samples due to aliasing.

Aliasing: high frequency component of the signal
are folded back into the spectrum.
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Aliasing

To combat the effect of aliasing in practice, we may use two corrective
metods
1. Using a low-pas pre-alias filter prior to sampling to attenuate the high

frequency components of the signal
2. The filtered signal is sampled at a rate slightly higher than the Nyquist

rate (fs A 2W )

The use fs A 2W also has the beneficial effect of easing the design of
the reconstruction filter

The filter has a transition band extending from W to fs �W
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Reconstruction Filter

Figure: (a) Pre-alias filtered spectrum (b) Spectrum of the sampled signal
(c) Amplitude response of reconstruction filter
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Example: Nyquist rate

Example: Specify the Nyquist rate (fs) and the Nyquist interval
(Ts) for each of the following signals:
(a) g�t� � sinc�200t�
(b) g�t� � sinc2�200t�
(c) g�t� � sinc�200t� � sinc2�200t�

Hint: plot G�f� for each signal. (FT Table: sinc�2Wt�X 1
2W rect� f

2W �)

(a) W � 100 Hz�
Nyquist rate = 2W = 200 Hz or 200 samples per second
Nyquist interval = 1

2W
= 5 ms

(b) W � 200� Nyquist rate = 400 Hz; Nyquist interval = 2.5 ms
(c) W � 200� Nyquist rate = 400 Hz; Nyquist interval = 2.5 ms
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Example: Nyquist rate

Example: A continuous-time signal g�t� � cosπt is uniformly sam-
pled to produce the infinite sequence �g�nTs��ª�ª. Determine the
condition that the sampling period Ts must satisfy so that the signal
is uniquely recovered from the sequence �g�nTs��.
The highest frequency of g�t� � cosπt is 1

2 Hz.
The Nyquist rate must exceed 1 Hz. Thus, Ts must be less than 1s.
If fs B 1 Hz (sample/second), then aliasing will happen.
Note that, when highest frequency in the spectrum involves a delta,
fs � 2w will also create an aliasing.
Example: g�t� � cosπt will be aliased if fs � 1 sample/second. (verify
this by plotting the spectrum of gδ�t�)
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Aliased Sinusoids

Q: Can every sampled sine wave be reconstructed?
A: Unfortunately, not. Only if Nyquist’s rate is satisfied.

Example: Consider two signals x1�t� and x2�t�, at 10kHz and 6kHz
respectively: x1�t� � cos�2π10000t�, x2�t� � cos�2π6000t�

Let’s sample them at fs � 16,000 samples/second:

x1�n� � cos�2π10000 n

16000
�, x2�n� � cos�2π6000 n

16000
�

Simplifying a bit, we discover that x1�n� � x2�n�.
We say that the 10kHz tone has been “aliased” to 6kHz:

x1�n� � cos�5πn
4

� � cos�3πn
4

�

x2�n� � cos�3πn
4

� � cos�5πn
4

�
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Aliased Sinusoids

Q: What is the minimum fs to avoid aliasing?
A: fs A 2 � 10,000 = 20,000 samples/second

We are going to explore this more in the lab session.
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Interpolation

Q: How can we recover an analog signal from its samples?
A: Through a process called interpolation.

This reconstruction process can be expressed as a linear combination of
shifted pulses.
Two factors affect the quality of the reconstruction
1. the pulse shape
2. the relative sampling rate (interpolation is much easier for oversampled

signals and increases the accuracy of the reconstruction).

There are multiple ways for interpolation. A few are listed here:

1. using the square pulse

2. using the triangular pulse (piece-wise linear interpolation)

3. using the truncated sinc pulse (close to ideal recovery)

4. using the sinc pulse (ideal, perfect recovery)
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Piece-wise Linear interpolation
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Sinc Interpolation-Example
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Since Interpolation-Theory

Theorem: To recover an analog signal from its uniform samples
interpolation is used. Ideal interpolation represents a signal as sum
of shifted sincs, given by

g�t� � Pªn��ª g�nTs� sinc2W �t � nTs�
Here, it is assumed fs C 2W where W is the maximum frequency
in signal and also the bandwidth of the ideal lowpass filter.
Proof: See the Appendix.
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Example 1: Interpolation

Example: Find a signal g�t� that is bandlimited to W � 50 Hz and
whose samples are

g�nTs� �

¢̈̈̈
¨̈̈̈̈
¨̈¦̈̈
¨̈̈̈̈
¨̈̈¤

3.2, for n = -1
10, for n = 0
0, for n = 1
�5.5 for n = 2
0 for all other n

where Ts is the Nyquist interval of g�t�.
Ts �

1
2W �

1
100 � 0.01sec.

g�t� �
ª

Q
n��ª

g�nTs� sinc2W �t � nTs� (2)

�

ª

Q
n��ª

g�0.01n� sinc100�t � 0.01n�

� 3.2 sinc100�t � 0.01� � 10 sinc100�t� � 0 � 5.5 sinc100�t � 2 � 0.01�

� 3.2 sinc�100t � 1� � 10 sinc�100t� � 5.5 sinc�100t � 2�
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Check Example 1!
Re-sample g�t� to demonstrate that you retrieve the original samples,
indicating that interpolation is effective.

g�t� � 3.2 sinc�100t � 1� � 10 sinc�100t� � 5.5 sinc�100t � 2�

g��2Ts� �

g��1Ts� �

g�0� �

g�Ts� �

g�2Ts� �

g�3Ts� �
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Example 2: Interpolation

Example: Find a signal g�t� that is bandlimited toW Hz and whose
samples are

g�0� � 1 and g��Ts� � g��2Ts� � � � � � 0,

where Ts is the Nyquist interval of g�t�.
Since all but one of the Nyquist samples are zero, using the
interpolation formula we have

g�t� � ª

Q
n��ª

g�nTs� sinc2W �t � nTs�
� g�0� sinc2W �t � 0�
� sinc�2Wt�

Q: Does this make sense?
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Summary of Previous Pages
1. Uniform sampling:

Uniformly sampling a continuous-time signal every Ts sec gives a
periodic spectrum with a period equal to the sampling rate fs � 1

Ts
.

Gδ�f� � fsPªm��ª
G�f �mfs�

2. Reconstruction from uniform samples:

A signal g�t� with bandwidth W can be reconstructed exactly from
samples taken at any rate fs C 2W.

g�t� is uniquely determined by the sample values �g�nTs��, �ª @ n @ª

g�t� � Pªn��ª g�nTs�sinc2W �t � nTs�
Here, it is assumed that an ideal lowpass filter with bandwidth W is
used for reconstruction.

The sampling rate of fs � 2W samples/sec is called Nyquist rate.
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Review of Sampling

Sampling an analog signal results in a sequence of real numbers.
Example: Ts � 5ms� samples � �10,3.54,�5,�3.54,0,�3.54, . . .�

10 20 30 40 50 60 70
�5

5
10

t~ms

g�t� � 5 cos�50πt� � 5 cos�100πt�

If the Nyquist sampling rate is satisfied, then we can replace the
continuous-time signal by its samples.

This is because, if these real numbers are transmitted to the receiver
accurately, then the receiver will be able to reconstruct the exact analog
signal (the one before sampling) by interpolation

Q: How can we transmit these real numbers?
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Pulse Modulation

In general, there are two ways to transmit the discrete sequence of real
numbers:

Analog Pulse Modulation: results from varying some parameter of a
pulse (amplitude, duration, etc.) based on the values of the sampled
sequence (which is analog)

Pulse Amplitude Modulation (PAM)
Pulse Duration Modulation (PDM) or Pulse Width Modulation (PWM)
Pulse Position Modulation (PPM)

Digital Pulse Modulation: represents analog information source as a
sequence of quantized pulses. That is, we quantize the sampled
sequence and assign pulses.

Pulse Code Modulation (PCM)
Delta Modulation

(Digital pulse modulation will be discussed in Lecture 11)
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Pulse Amplitude Modulation

Sampling allows replacing the continuous-time signal by a discrete
sequence of numbers

Processing continuous-time signal is then equivalent to processing
discrete sequence of numbers

Next, we can assign a pulse to each number

Pulse-Amplitude Modulation (PAM): the amplitude of evenly
spaced pulses are varied in proportion to the sample value.
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Pulse-modulated signals- PDM/PWM and PPM

(a) The unmodulated signal. (b) The PAM signal. (c) The pulse width
modulation (PWM) or pulse duration modulation (PDM) signal. (d) The
pulse position modulation (PPM) signal
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Sampling Application: Time-Division Multiplexing
(TDM)

Sampling provides basis for time-division multiplexing (TDM)

Simply put, TDM means to transmit samples of other signals between
the two samples of one signal

TDM of N signals introduces a bandwidth expansion of N
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TDM

Example: TDM of N � 2 signals

The transmission bandwidth required for N TDM signals each with
bandwidth W is BT � NW , because using TDM, the number of
samples (pulses, here) increases N times.
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A TDM Standard (T1 Carrier System)

T1 system was developed in Bell Labs in 1955, and first installed in Chicago
local network in 1962. In 1965, 100,000 telephone systems were using it.
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TDM - Example

Example: Twenty-four voice signals are sampled uniformly and then
time-division multiplexed. The sampling operation uses flat-top sam-
ples with 1µs duration.The multiplexing operation includes provision
for synchronization by adding an extra pulse of sufficient amplitude
and also 1µs duration. The highest frequency component of each
voice signal is 3.4 kHz.
a) Assuming a sampling rate of 8 kHz, calculate the spacing between
successive pulses of the multiplexed signal.
b) Repeat your calculation assuming the use of Nyquist rate sampling

a) 4µs

b) 4.88µs
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Blank Page/Solution

a) fs � 8 kHz� Ts �
1
fs

�
1

8000 � 125µs
So, 25 pulses (24 + SYNC) should be sent in 125 µs.
125/25 = 5 µs the pulse period + spacing between pulses
5-1 = 4 µs the spacing between successive pulses

b) fs � 2 � 3.4 � 6.8 kHz and repeat the above!
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Reconstruction

Reconstruction from uniform samples (ideal)

If sample rate fs � 1~Ts is greater than 2W , shifted copies of spectrum
do not overlap, so low pass filtering recovers original signal, i.e.,

G�f� � 1
fs
Gδ�f�, �W @ f @W

In the next page, it is shown that for fs � 2W

G�f� � 1
2W Pªn��ª g� n

2W �e�j πnfW , �W @ f @W (3)

The latter indicates that the sequence �g� n
2W �� has all information

contained in g�t�. In other words, g�t� is uniquely determined by the
sample values �g� n

2W �� for �ª @ n @ª
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Fourier Transform of Gδ�f� - Second Representation

Recall from (1) that

gδ�t� �
ª

Q
n��ª

g�nTs�δ�t � nTs�

Taking the Fourier transform from both sides of (1) we get

Gδ�f� �
ª

Q
n��ª

g�nTs�e�j2πnTsf

Suppose G�f� is zero for Sf S CW and let us choose Ts � 1
2W , then

Gδ�f� �
ª

Q
n��ª

g� n

2W
�e�j πnfW

Then, since G�f� � 1
fs
Gδ�f�, we get (3).

Finally, taking the inverse FT of (3), we get

g�t� � Pªn��ª g� n
2W �sinc�2Wt � n�
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Reconstruction

The above relation is for fs � 2W .

It can be checked from the previous proof that, in general, for anf
fs C 2W where W is the maximum frequency in signal and the
bandwidth of the lowpass filter, we have

g�t� � Pªn��ª g�nTs�sinc2W �t � nTs�
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