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Random Signals

A signal is random if it is not possible to predict its precise value
in advance.

Random signals are encountered in every practical communication
system, for example

Information
in analog communications: voice (which is often converted to an electrical
signal by means of a microphone), is quite random
in digital communications: the stream of 0s and 1s that are transported over
the Internet, they appear quite random

Noise is another example of a random signal – if noise was predictable, we
would then predict it at the receiver and remove it, negating its effect.
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Probability and Random Variables

Probability theory studies experiments with an outcome that is sub-
ject to chance, i.e., if the experiment is repeated, the outcome may
differ due to the influence of an underlying random phenomenon

Random Experiment is an experiment whose outcome cannot be
predicted until it is observed but all of its possible outcomes are known
and predictable in advance
Sample Space, S, is the set of all possible outcomes of a random
experiment
an Event E is a subset of the sample space, i.e., E b S.

Example: Tossing a coin is a random experiment. When we toss a
coin, the possible outcomes are Heads or Tails. Thus, the sample
space of a coin toss is S � �H,T�.
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Probability

Example: If we toss a coin twice, then the sample space is S �

�HH,HT,TH,TT�. We may, for example, define events:
E1: at least one Head occurs Ô� E1 � �HH,HT,TH�
E2: two Heads occurs Ô� E2 � �HH�
Illustration of the relationship between sample space, events, and
probability
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Random Variables

A random variable is simply a function that relates each possible
physical outcome to some unique, real number. Random variables
provide a general representation for analyzing, comparing, and pro-
cessing outcomes of random experiments.

Random variable: A (real-valued) random variable X is a function
mapping from sample space S to real numbers, i.e., X � S � R

since a random variable is a function, it assigns one and only one real
number to each element that belongs in the sample space S.
there may be more than one random variable associated with the same
random experiment

Example: When tossing a coin (S � �H,T�), we may, for example,
define random variable X mapping H to 5 and T to -5.
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Random Variables

There are three types of random variables (RVs):

discrete RVs take only a finite number of values, such as in the
coin-tossing experiment. For discrete RVs, the probability mass function
(pmf) describes the probability of each possible value of the random
variable.

continuous RVs take a range of real values. For example, the random
variable that represents the amplitude of a noise voltage at a particular
instant in time is continuous. The probability density function (pdf) is
used to describe the continuous RVs.

mixed RVs are a mixture os discrete and continuous RVs
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Random Variables
the relationship between sample space, random variables, and
probability
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Example: Random Variable

random variable in throwing a fair die

we may define many other random variables to describe the outcome of
this random experiment!
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Statistical Averages

While the pmf provides a complete description of the RV, it may in-
clude more detail than is necessary in some instances. We may wish
to use simple statistical averages, such as the mean and variance.

the expected value (or mean) of a RV X is denoted by E�X� and is
defined as follows

E�X� � Q
x>X�S�

xp�x� when X is discrete with the pmf p(x)

E�X� � S �ª

�ª

xf�x�dx when X is continious with the pdf f(x)

the variance of a RV is an estimate of the spread of the probability
distribution about the mean and is defined as

Var�X� � E��X �E�X��2�
Var�X� is usually denoted σ2

X . The positive square root of the variance
is called the standard deviation of X, and is denoted as σX .
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Random Processes (or Stochastic Processes)

the relationship between sample space and the ensemble of sample
functions
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Random Processes

Random processes represent the formal mathematical model of
random signals. Random processes have the following properties:

1. Random processes are functions of time.

2. Random processes are random in the sense that it is not
possible to predict exactly what waveform will be observed in
the future.

Examples of a random process include:

Electrical noise generated in the front-end amplifier of a radio or
television receiver.

Speech signal produced by a male or female speaker.

Video signal transmitted by the antenna of a TV broadcasting station
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Examples of Random Processes

The collection of all possible waveforms is known as the ensemble
(corresponding to the sample space) of the random process X�t�.
A waveform in this collection is a sample function (rather than a
sample point) of the random process
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Examples of Random Processes
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Correlation of Random Processes

While random processes are, by definition, unpredictable, we often
observe that samples of the process at different times may be cor-
related. For example, if X�t� is large, then we might also expect
X�t � τ� to be large, if τ is small.

To quantify this relationship, we define the autocorrelation of the
random process as RX�t, s� � E�X�t�X��s��
If X�t� is second order stationary, the autocorrelation simplifies as

RX�t, s� � E�X�t�X��s�� � RX�t � s� � RX�τ�
where τ < t � s
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Examples of Random Processes
Autocorrelation functions for a slowly varying and a rapidly varying
random process
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Frequency Content of a Random Process

how can we know about the frequency content of a random process?

simply taking the Fourier transform of sample functions of a random
process does not work
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Frequency Content of a Random Process

Maybe averaging over Fourier transforms of different samples?

But,

how?

why?
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Power Spectral Density (PSD)

The Fourier transform of RX�τ� is called the power spectral density (PSD)
SX�f�.

SX�f� � R ª�ªRX�τ�e�j2πfτdτ

Property 1: Power spectral density and the autocorrelation func-
tion are a Fourier transform pair, i.e., RX�τ�X SX�f�.

But:

what is the PSD?

what is a “spectral density”?

why is SX�f� called a power spectral density?
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PSD of White and Thermal Noises
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Power Spectral Density

Recall that for a deterministic signal x�t� the Fourier transform is defined
as

X�f� � S ª

�ª

x�t�e�j2πftdt
To avoid convergence problems, we consider only a version of the signal
observed over a finite-time T

XT �f� � S T

�T
x�t�e�j2πftdt

then,

XTX
�

T � �S T

�T
x�t�e�j2πftdt	 �S T

�T
x��t�ej2πfsds	

� S
T

�T
S

T

�T
x�t�x��t�e�j2πf�t�s�dtds
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Power Spectral Density

Taking the expectation of both sides of the above equation we get

E�XTX
�

T � � E �S T

�T
S

T

�T
x�t�x��t�e�j2πf�t�s�dtds	

� S
T

�T
S

T

�T
E �x�t�x��t�� e�j2πf�t�s�dtds

� S
T

�T
S

T

�T
RX�τ�e�j2πfτdτ

The last step is obtained by letting s � t � τ and recalling that

E�x�t�x��s�� � E�x�t�x��t � τ�� � Rx�τ�,
and the fact that Rx�τ� � Rx��τ� thus

then,
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Power Spectral Density
After some more manipulations it can be shown that

E�XTX
�

T � � S T

�T
S

T

�T
RX�τ�e�j2πfτdτ

� T S
T

�T
�1 � Sτ S

T
	RX�τ�e�j2πfτdτ

Thus,

lim
T�ª

1
T
E�XTX

�

T � � lim
T�ª

S
T

�T
�1 � Sτ S

T
	RX�τ�e�j2πfτdτ

� S
ª

�ª

RX�τ�e�j2πfτdτ
� Sx�f�

Thus, in summary, the above demonstrates that

Sx�f� � lim
T�ª

1
T
E�SXT �f�S2�
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Power Spectral Density

Recalling that XT has units SU/Hz (where SU stands for “signal units,”
i.e., whatever units the signal xT �t� has), then 1

T
E�SXT �f�S2� the PSD

has units of SU2/Hz
thus, Sx has units of “power” per unit frequency explains the name
power spectral density

based on this idealized mathematical definition, any signal of finite duration
(or, more generally, any mean square integrable signal), will have power
spectrum identical to zero!
in practice, however, we do not let T extend much past the support
�Tmin, Tmax� of xT �t� where Tmin�Tmax� is the minimum (maximum) T for
which xT �t� � 0)
Since all signals that we measure in the laboratory have the form
y�t� � x�t� � n�t�, where n�t� is broadband noise, extending T to infinity
for any signal with finite support will end up giving Sx � Sn
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PSD Example I

Example: Random Cosine Process
Let X�t� be a random process defined by X�t� � A cos�2πfct � θ�
where the amplitude A and frequency fc are known, but θ is uniformly
distributed on the interval between 0 and 2π.

Find the autocorrelation function of this random process

evaluate the power spectral density

RX�t, t � τ� � A2

2 cos�2πfcτ�
we know that PSD and the autocorrelation function are a Fourier
transform pair, i.e., RX�τ�X SX�f�, thus

SX�f� � A2

4
�δ�f � fc� � δ�f � fc��

Q: what is SX�f�S2 for a given θ (a given sample function)? does
it make sense to have SX�f�S2 � SX�f�? why?
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PSD Example II

Example: (Ex. 5.8) Random Binary Signal
A sample function of a process X�t� is shown in Figure 26.

The process consists of binary symbols 1 and 0 with amplitudes
�A and �A volts respectively, and the duration T second.

The pulses are not synchronized, so that the starting time td is
uniformly distributed with the following pdf

fTd
�td� �

¢̈̈¦̈̈¤
1
T
, 0 B td B T

0, elsewhere

during any time interval �n � 1�T B t � td B nT , where n is an
integer, the presence of 1 and 0 is determined by tossing a fair
coin; specifically, if the outcome is “heads” we have 1 and if the
outcome is “tails” we have 0, and these are equally likely.
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Solution

Figure: A sample function of the random binary signal.

E�X�t�� � 0,¦t since amplitudes are �A and �A with equal probability
to find RX�tk, ti� we need to evaluate E�X�tk�X�ti��
if Stk � tiS A T , then r.v.s X�tk� and X�ti� occur in different pulse
intervals and thus are independent. Then,

E�X�tk�X�ti�� � E�X�tk��E�X�ti�� � 0

if Stk � tiS B T , then r.v.s X�tk� and X�ti� occur in the
same or different pulse intervals
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Solution
Let ti � tk � τ . Define

P1 � P�tk and ti in the same pulse interval Stk B ti�
P2 � P�tk and ti in the same pulse interval Sti B tk�
P1 � P�td � T B tk and ti B td� � P�ti B td B tk � T �

�
1
T
�tk � T � tj� � 1

T
�T � τ�

P2 � P�td � T B ti and tk B td� � P�tk B td B ti � T �
�

1
T
�ti � T � tk� � 1

T
�T � τ�

P�tk and ti in the same bit interval� � P1 � P2 �
1
T
�T � Sτ S� < P0

Also, if r.v.s X�tk� and X�ti� occur in the same pulse intervals then
E�X�tk�X�ti�� � A2 and otherwise E�X�tk�X�ti�� � 0. Hence,

E�X�tk�X�ti�� � A2P0 � 0�1 � P0� � A2

T
�T � Sτ S�
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Solution

That is,

RX�τ� � ¢̈̈¦̈̈¤
A2 �1 � Sτ S

T
� , Sτ S @ T

0, Sτ S C T
Note that RX�τ� is independent of td.
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PSD of Certain Line Codes

1. unipolar NRZ

2. polar NRZ

3. unipolar RZ

4. polar RZ

5. Manchester

Q: What line code is the most bandwidth efficient?
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PSD Example III

Example: Evaluate the PSD of unipolar NRZ pulse given in the
previous page.

Let X�t� be the code in Example II and X ��t� be the unipolar NRZ.
Then, X ��t� is obtained by X ��t� � �X�t� �A�~2

RX��τ� � E�X ��t�X ��t � τ�� � E�X�t� �A
2

X�t � τ� �A
2

�
�

1
4
E�X�t�X�t � τ�� � A

4
E�X�t�� � A

4
E�X�t � τ�� � A2

4

�
1
4
RX�τ� � A2

4

Therefore, SX��f� � 1
4SX�f� � A2

4 δ�f� (check the PSD plots)
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Solution

Sy�f� � SH�f�S2Sx�f�
Ry�τ� � h�τ� � h��τ� �Rx�τ�
my � E�y�t�� � E R ª�ª�h�λ�x�t � λ�dλ� �mxH�0�
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