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Fourier Analysis

o A signal is a real/complex-valued function of one or more real variables
o voltage across a resistor

o audio (telephone, radio, etc.) and video (e.g., television) signals
o price of Google stock at end of each trading day

Why Fourier Analysis?
o We live in the time-domain
o Sometimes viewing signals waveform does not easily provide insight

o Another natural way of understanding a signal is its spectrum (i.e.,
frequency content)

o Fourier transform links between the time-domain and frequency-domain
description of a signal
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Fourier Analysis

Every periodic signal can be represented in terms of an infinite sum of
sinusoids. (Joseph Fourier, 1822)
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Figure: Fourier representation of square wave. f(t) =2 ¥, 55  +sin(nxt).

Lecture 3: The Fourier Transform 3-4



Fourier Analysis

Continuous Time Discrete Time
L Di £
B [Fourier Series (FS) e Caa
5 Fourier Series
a
2 . . .
K Continuous- Discrete-Time
‘5| Time Fourier | Fourier Transform
Z| Transform (FT) | (DTFT — DFT)

This course: continuous-time Fourier transform (FT)
Labs: DFT (and its fast implementation, FFT)
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Fourier Transform - Definition

o Let g(t) be a signal in time domain (a function of time ¢), then

o Fourier transform of g(t) is defined as as

G = [ g™t

o The inverse transform is then expressed as

9(t) = [ G(f)e* It df

o Notation g(t) = G(f) or
G(f) = Flg(t)] and g(t) = FT[G(f)]

T

&) G()

\ r G(f)efz"/’df//

/ g(n)e?*™'dr
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Properties

Operation g(t) = G(f)
Linearity agi(t) +caga(t) =  aGi(f)+c2Ga(f)
Duality G(t) = 9(=f)

Time scaling g(at) = ﬁG(g)
Time shifting g(t —tg) = e 12 G(f)
Frequency shifting ej%f“tg(t) = G(f - fo)
Time convolution g1(t) * g2(2) = G1(f)Ga(f)
Modulation g1(t)ga(1) = G1(f) » Ga(f)
Time differentiation dy;%” = (j2mf)"G(f)
Time integration [ g(z)dz = jQ;fG(f) +1G(0)5f
Area under G(f) g(0) 15 G(f)df
Area under g(t) 15 g(t)dt = G(0)
Parseval's theorem [ g1(t)g3(t)dt = [ Gi(f)G5(f)df

Energy conservation

S lg(0)Pat

G Pdf
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Useful FT Pairs

Signal Time Function = Fourier Transform
Delta o(t) = 1
DC 1 = 5(f)
Shifted delta 8(t —to) = e-92rfto
Complex exponential el?miet = 5(f-fe)
Cosine cos 27 fot = I[6(f-fo)+0(f + f)]
Sine sin 27 fet = 2%.[6()‘—fc)—6(f+fc)]
Rectangle rect (%) = T sinc(fT)
Sinc sinc(2W't) = Fyrrect ( )
Triangle A(L) = T sinc®(fT)
Signum sign(t) = ﬁ

= = —jsign(f )
Unite step u(t) = 37+ 39(f)
Exponential, a > 0 e gt) = ﬁ
Gaussian et = e™f
Delta train Yoo 0(t-mTp) = To Yoo O(f -
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o Useful Signals and Their FT
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The Sinc Function

o The sinc function is very significant in the theory of signals and systems

and communications. It is defined as

sin(mt
sinc(t) = sin(rt)

it
o sinc(t) is even sinc(t)
o sinc(t) is zero for t = £1,+2,+3, -
o sinc(0) =1
o sinc(t) decays as 1/t
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Rectangular Pulse

o The rectangular pulse of duration T is defined as
t 1, -L<«t<Z
rect (—) = ’ 2 p 2

T 0, It > 5

o |g(t) = Arect (L) = G(f) = AT sinc(fT)

Proof: G(f) = [ " g(t)e It gy
sin(r fT)

e = AT sinc(fT)

xr
= [ [ Ae7 It = AT

-2

g(t) = rect(£)

G()] = |Tsine(fT)

/
3
T

i

wl
|

She
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Unit Impulse Function

Unit impulse function or Dirac delta is defined as:

5(t)=0 t=#0
[ T s(t)dt =1

o Unit impulse (a) and its approximation (b)

8(f) €
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Unit Impulse Properties

(%]

Multiplication of a function by unit impulse
o g(t)d(t—to) = g(t0)d(t - to)

o g(t)o(t) = g(0)a(t)

Sampling property of unit impulse

o [ 9(t)d(t —to)dt = g(to)
o g(t) »0(t) = g(t) convolution!

©

o Fourier transform of unit impulse | §(¢) =1
(1) = 8(n)
! G(f=1
1
[0 —> 0 >

() (b)

Then, applying duality the FT of dc function is |1 = §(f)

Lecture 3: The Fourier Transform
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Signum Function

The signum function sign(¢) is defined as sign(t)

1, >0 1
sign(t) =4 0, t=0

-1, t<0
-1

sign(t) = ﬁ

We can show that

Proof: For a > 0, define
e t>0
g(t) =4 0, t=0
- t<0
Applying the linearity property we can show
1 1 —jdm
G(f) = a+j2nf a-jorf T a2 +](27r];’)2

Then,
. o —jarn f _ 1
Flsign(t)] = (llli% a2+ (2nf)2  jnf
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Unit Step Function

The step function can be defined in terms of sign(t) as

u(t) = %[Sign(t) +1]

From the FT of the signum function and dc we have

u(t) = s + 16(f)

2 161

/N

0 o]
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o Fourier Transform Properties
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Duality

Duality: If g(t) = G(f) then G(¢) = g(-f)

o Proof: F[G(t)] = [ G(t)e™7*Itdt
note that, g(~t) = [ G(f)e 7> Itdf

o Example: using duality and the pair rect (%) = Tsinc(fT) we obtain
Tsinc(tT) = rect (%)

. g(t) = rect(

i
T

0.5

)

EE]

T

EE]

g(t) = Tsinc(tT)

Sl
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thus, F[G(t)] = g(-f)

T

G(f) = Tsine(fT)
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Time Scaling

Time Scaling: If g(t) = G(f) then g(at) = LG(L)
o Proof:

o for a >0, we have

Flg(at)] = f " g(at)e 7> gy

1 oo Cionda
:,f g(r)e 7" aTdr
a J-oo

-2a(d)

o for a <0, we will similarly get F[g(at)] = 2G(L)

o Special case: for a = -1 we get ‘ g(-t) = G(-f) ‘
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o Example:

&
i G
T
T [0 T - _E =1 0 T 2 [~
2 2 T T T T
(a)
92(t) = 9(3) a(f)
1 2t
0 =Tt T =T
-1 T 1 1 0o 1 1
B T x| mwoow T
(b)

Note that the lower pulse is g2(t) = g(%), thus G2(f) = 2G(2f)
o Q: What happens if 7 - oo0?

3-19
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Inverse Relationship between Time and Frequency

o Time-domain and frequency-domain representations of a signal are
inversely related

o If a signal is strictly limited in frequency, then time domain description

of that will trail on infinity, and vice versa

o A stretch in the time (or frequency) domain by a given factor a leads to

compression in the frequency (or time) domain by the same factor
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Time/Frequency Shifting

Time Shifting: g(t —to) = e 72/ G(f)

Frequency Shifting: /2™ /otg(t) = G(f - fo)

o Proof: use the definition!

o Example: (for frequency shift) FT of Radio Frequency Pulse
t
g(t) = Arect (T) cos(2m fet)

since cos(2m f.t) = %[eﬂﬂfﬂt +e7I2m/et] we have

G(f) = [smc[(f fe)T] +sinc[(f + f.)T]]
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o Example: FT of Radio Frequency Pulse (Cosine Pulse)

&n |
-
i i 1 —
2 3
(a)
(b)
glr) cos wyr
G(f+fo)/2 Gl f-fol2
- - 2
ek il 0]
o

M VT -

()

2
T s

(d)
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Differentiation

Time Differentiation: £-21) - (727 f)"G(f)

dtm

Particularly, for first derivation (n = 1) we get

dg(t) _

L2 = jamfO(f)

dG(f)

Frequency Differentiation: —j2wtg(t) = 7
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Example

o The spectrum of the blue triangular pulse is given on the right hand side.

G(f) = Tsinc*(fT)
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Convolution

Time Convolution: g;(t) » g2(t) = G1(f)G2(f)

LTI System:

Input signal

Time-domain

Frequency-domain

x(1)
—>

X(f)

LTI system
h(t)
H(f)

Output signal

y(1) = h(t) = x(1)
>

Y(fy=H({f)-X(f)

Frequency Convolution: ¢, (t)g2(t) = G1(f) » Ga(f)

Lecture 3: The Fourier Transform
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Convolution Example: Triangular Pulse

(]

©

The triangular pulse of duration 27 is defined as

A(i)z N Y
T 0, [t| >T

From Signals class, we know that the convolution of two rectangular

pulses of duration T is a triangular pulse with duration 27T

©

(]

©

Lecture 3: The Fourier Transform

Specifically, rect (%) » rect (£) = TA (L)
We know that rect (%) = T sinc(fT)

Then, using convolution property, we get

A (L) =T sinc®(fT)

sinc?(fT)



Example: Properties

o Evaluate the spectrum of each the following signals (a, b, ¢, and d).
Assume T = 6.

Hint: We know that

rect () = T sinc(fT),
A(%) = T sinc?(fT), and
g(t—to) = eI G(f)
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Solution

Let us define 21 (t) =rect (%) and x2(t) = A(%). Then,
X1(f) =6sinc(6f) and Xo(f) = 3 sinc?(3f).
a. xq(t) =41 (t+3) —da1(t-3) = X, (f) = 4X1(f) e’ —4X,(f)e767f

b. ay(t) = 4x (t+3) +4ao(t-3) = Xp(f) = 4X1(f)e?™ +4X,(f)e 767f
¢ we(t) = 201(%) + 222(5) = Xo(f) = 4X1(2f) +4Xa(2f)

d. za(t) =221(%) - 222(5) = Xa(f) = 4X1(2f) - 4X2(2f)
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Conjugate Function
Conjugate Function: If g(t) = G(f) then ¢*(¢) = G*(-f)

o Proof: we know that g(t) = [*. G(f)e?*™/tdf. Taking the complex
conjugate of both sides yields

o= [ G et
- [ e
Thus,

g () = G*(-1)]

Conjugate Symmetry: If g(¢) is real, then we get G(f) = G*(-f).

That is, G(f) obeys conjugate symmetry, and we have
IG(f) =|G*(-f)|=|G(-f)| i.e., magnitude is even
2G(f)=+«G*(-f)=-2G(=f) i.e., phase is odd

Lecture 3: The Fourier Transform
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Conjugate Symmetry

o Example 1: Most of the functions we have seen so far in this lecture
(e.g., rectangular pulse, triangular pulse, etc.) have real valued FT. You
can easily check their FT are even and their phases are zero, which is an

odd function. Thus, conjugate symmetry holds.

Example 2: Let g(t) = e72u(t). From table, G(f) = m
= G(-1) - sl

= G*( f) 2+]27rf
Then it is easy to see that

|IG(F)| =|G*(=F)|=|G(=f)| i.e., magnitude is even
2G(f)=2G*(-f)=-<2G(=f) i.e., phase is odd
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Area Under a Signal and its Spectrum

Area under the signal (or DC value): [ g(t)dt = G(0)
Proof: Let f =0 in the definition of the FT.
Area under the spectrum: [ G(f)df = g(0)

Proof: Let t =0 in the definition of the inverse FT.
Example: Verify the above for the below FT pair.

|
4
}ﬂ

|
S

|
Si=
S

Lecture 3: The Fourier Transform

G(f) = Tsinc?(fT)

S

3-31



Parseval’s Theorem

General Case: [ g1(t)gs(t)dt = [5 G1(f)G3(f)df
By letting g1(t) = g2(¢) = g(t), we get

Parseval’'s Theorem: [ |g(t)|?dt = [ |G(f)|*df

o Parseval’s theorem says that energy in time domain is equal to energy in

the frequency domain (energy conservation)

o Parseval’s theorem is also valid for the Fourier series, DTFT, and DFT
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Example/Application

K

Q: Evaluate the energy of sinc(t).
)

) G(f) = rect(

TR\ g(t) = Tsine(eT)
0.5
¢ I
1\/3 3 _
7 . :

PO =

T

e

EE]

Sl
S

A: In the above figure, let T' =1 and find the area of the rectangle! So, the
energy of sinc(t) is one Watt.
o Example: Find the energy of the pulse Asinc(2Bt).
E= f A?sinc? (2Bt)dt
A 2 o ) f A 2 B A2
= — t e l = — f d = —
(23) [w ree (23)(f (23) Y= 25
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The Inverse Fourier Transform Proof

o Here, we prove why g(t) = F7G(f)]

o The inverse transform can be expressed as

fimG(f)ejz’rftdf= f:m(f‘” g(A)e—ﬂ’ff*dA)eﬂ"ftdf

=—o0

= [T [T e axay

- /:,o g(N) (ff:; 6*j2ﬂ'f()\—t)df) o
- f:w g(N)F(A - t)dA
=g(t)

o Note that Dirac delta can be defined as an integral of a complex

exponential, i.e.,

—oo

6(t) = [2 e ay |

Lecture 3: The Fourier Transform

3-35



Delta Function Generated by Complex Exponential

o Here, we prove that [ e®2™/tqf = 5(t)
o Proof: Consider the sinc function function which can be obtained by the

following integral

/‘% 92 ftgr 1 ri2mft
- +72mt

a . t
- sin(rta) = a sinc(at)
-2 +7t

3
o Note that a is increased, the function a sinc(at) becomes narrower but
taller, until when a — oo, it becomes infinity at ¢ = 0 but zero everywhere
else.
o Also, the integral of this sinc function is unity (why?)
o This result can be interpreted intuitively as a superposition of infinitely
many sinusoids with progressively higher frequency f. These sinusoids
cancel each other at any time t except when t = 0, where all cosine

functions equal to 1 and their superposition becomes infinity.

o Similarly, we have [ e*/27/tdt = §(f)
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Parseval’s Theorem Proof

General Case: [ g1(t)gs(t)dt = [5 G1(f)G3(f)df

Proof:
/t.: g1(t)g5 (t)dt = fwoo(ffi Gl(f)egzwftdf) (fi G2()\)ej2mt)*dt
- [T [T e ( [T era i

) f=_°o _/).\=_°° G1(f)G2(N)(f = A)dAdf
= [f:oo G1(f) (/;:oo G5(N)o(f - )\)d)\) df
- [T _aweni
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Energy Conservation

Parseval’'s Theorem: [ |g(t)|?dt = [ |G(f)|*df

o Parseval’s theorem says that energy in time domain is equal to energy in
the frequency domain

o Proof:
Ey= [ gg @yt
- [Cow| [T e nrerrar ar

_ [: G (f) [[:g(t)e—ﬂ”ﬁdt] df
- [~
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Lecture 3: The Fourier Transform

Differentiation

Time Differentiation: ©21) - (727 f)"G(f)

dtm

o Proof: differentiate both sides of inverse FT with respect to ¢

90 = [ G(perita
= WO [ jor ey say

Then, if we take the Fourier transform of both side we will get

9() — jor fG(f)

Note that, we will need the change of integration order and using the
fact that 6(t) = [ e*I2mftqf
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Time Integration

Time Integration: f_too g(z)dz = G(f)+1G(0)sf

]2Wf

Proof: The integral can be seen as convolution of g(t) with unit step u(t).

v = [ gl)de
= [ a(ryutt-r)r = g(2) + u(t)
= Y(1) = 60 | 55+ 5000

WG(f) *G(O)a(f)
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Example

o A triangular pulse and its first and second derivatives of shown below

Lso=a¢)

0.5

o Q1: Evaluate the FT of the triangular pulse using its derivative.

t =T

[1 29 1
T dt T

T

o Q2: Suppose you only know the FT of the deltas. Evaluate the FT of
the other two pulses. (This question is equivalent to evaluating G(f)
and G(f) from G(f))

Lecture 3: The Fourier Transform
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Q1: Evaluating G(f) from G(f)

o First, we evaluate G(f) from g(t) which is sum of rectangular pulses

G(f) = H[Tsine(FT)e™% ~ Tsine(fT)e /]

= sinc(fT)[e/?™ 7 — 7927/ 3
= j2 sinc(fT) sin(m fT)

o Note that G(0) = 0 (area under g(t)), and thus using time integration
relation we have

G(f) = G(f)

o fﬂsmc(fT)sm(ﬂ'fT) T sinc?(fT)
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Q2: Evaluating G(f) and G(f) from G(f)

o First, we evaluate G(f) from §(t), that is
G(f) — %[ejQﬂ'fT 94 e—j27rfT]

o Since G(0) = 0, using time integration relation we have

T L 7P S S v —j2m fT

G = 7Y = [T 2 2001
B B —4sin?w fT
= n T [2cos2mfT —2] = T
= j2sinc(fT) sin(w fT)

o With this, we go beck to the previous example to show that
G(f) = Tsinc®(fT)

Lecture 3: The Fourier Transform
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