Lecture 7 Angle Modulation I

Angle Modulation

Summary

• Angle Modulation

Summary

CW Modulation Schemes

• CW Modulation: is classified into two broadly defined families:

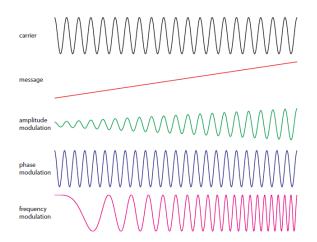
- Amplitude Modulation (chapter 3)
 - Amplitude modulation (AM)
 - Double sideband-suppressed carrier (DSB-SC)
 - Single sideband (SSB)
 - Vestigial sideband (VSB)
- Angle Modulation (chapter 4)
 - Frequency Modulation (FM)
 - Phase modulation (PM)

AM/PM/FM: What is the Difference?

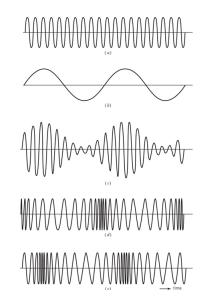
- In AM, amplitude of carrier is varied linearly with message.
- In FM, frequency of carrier is varied linearly with message.
- In PM, phase of carrier is varied linearly with message. (or equivalently, frequency of carrier is varied with the derivative of the message)
- Unlike amplitude modulation, angle modulation schemes are nonlinear

Why nonlinear? They do not obey superposition, i.e., $m(t) = m_1(t) + m_2(t) \implies s(t) = s_1(t) + s_2(t)$

AM/PM/FM: Illustrative Example 1



AM/PM/FM: Illustrative Example 2



- (a) Carrier Wave
- (b) Message
- (c) AM Signal
- (d) PM Signal
- (e) FM Signal

Instantaneous Frequency

For generalized sinusoid

 $\phi(t) = A\cos(\theta(t))$

 $\theta(t)$ is the generalized angle (can be any function of t).

• For true sinusoid

$$\theta(t) = \omega_c t + \theta_0$$

This is linear with slope ω_c and offset θ_0 .

• Instantaneous frequency is derivative of generalized angle:

$$\omega_i(t) = \frac{d\theta(t)}{dt} = \dot{\theta}(t)$$

Example: What is the instantaneous frequency of $10\cos(20\pi t + \pi t^2)$ in Hertz.

A:
$$\omega_i(t) = \dot{\theta}(t) = 20\pi + 2\pi t$$
 radian/second, then $f_i(t) = \frac{1}{2\pi}\omega_i(t) = 10 + t$ Hertz

Instantaneous Frequency

By Fundamental Theorem of Calculus

$$\theta(t) = \int_{-\infty}^{t} \omega_i(u) du = \theta(0) + \int_{0}^{t} \omega_i(u) du$$

- We can modulate a generalized sinusoid by using a signal m(t) to vary either $\theta(t)$ or $\omega_i(t)$.
- In either case, the frequency of the modulated signal changes as a function of m(t).

Phase Modulation (PM)

• In PM, phase is varied *linearly* with m(t):

$$\theta_i(t) = \omega_c t + \frac{k_p m(t)}{k_p m(t)}$$

Hence,

$$s_{PM}(t) = A_c \cos(\theta_i) = A_c \cos[\omega_c t + k_p m(t)]$$

The instantaneous frequency is

$$\omega_i(t) = \frac{d\theta_i(t)}{dt} = \omega_c + k_p \frac{dm(t)}{dt}$$

If m(t) varies rapidly, then the frequency deviations are larger.

• k_p is a constant (to be designed)

Frequency Modulation (FM)

• In FM, frequency is varied *linearly* with m(t):

$$\omega_i(t) = \omega_c + k_f m(t)$$

Then, the angle is

$$\theta_i(t) = \omega_c t + k_f \int_{-\infty}^t \frac{m(\lambda)}{d\lambda} d\lambda$$

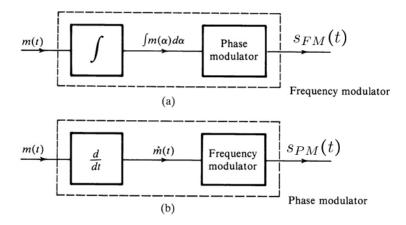
and

$$s_{FM}(t) = A_c \cos(\theta_i) = A_c \cos[\omega_c t + k_f \int_{-\infty}^t m(\lambda) d\lambda]$$

• k_f is a constant (to be designed)

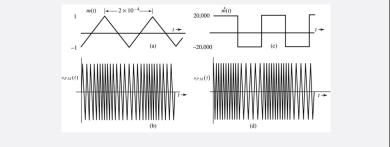
Relationship Between FM and PM

- Phase modulation of m(t) = frequency modulation of $\dot{m}(t)$.
- Frequency modulation of m(t) = phase modulation of $\int m(\lambda) d\lambda$



FM/PM Example

Example: Sketch FM and PM waves for m(t) shown in Fig. (a), for $k_f = 2\pi \times 10^5$, $k_p = 10\pi$, and $f_c = 100$ MHz. Plot s_{FM} , $\dot{m}(t)$, s_{PM} , and find instantaneous frequency for the FM case.



• Instantaneous frequency: $f_i = f_c + \frac{k_f}{2\pi}m(t) = 10^8 + 10^5m(t)$ Then, $f_{i,\min} = 99.9$ MHz and $f_{i,\max} = 100.1$ MHz

FM/PM Example

- Instantaneous frequency: $f_{i,\min}$ = 99.9 MHz and $f_{i,\max}$ = 100.1 MHz
- Q: Is the modulated signal confined to the frequency band 99.9-100.1?
 A: No! The bandwidth is approximately 250 KHz (we will see this later).

Angle Modulation: Summary

In FM, frequency is varied linearly with m(t)
In PM, phase is varied linearly with m(t)

• In FM
$$\omega_i(t) = \omega_c + k_f m(t)$$
 where k_f is a constant.
• In PM $\omega_i(t) = \omega_c + k_p \dot{m}(t)$ where k_p is a constant.

FM vs. PM

• In PM

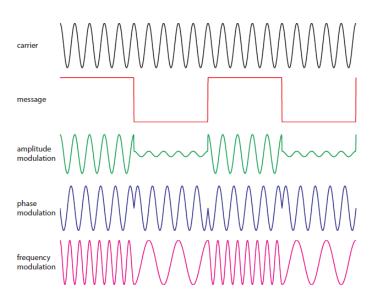
$$\theta_{i}(t) = \omega_{c}t + k_{p}m(t)$$

$$\omega_{i}(t) = \frac{d\theta_{i}(t)}{dt} = \omega_{c} + k_{p}\frac{dm(t)}{dt}$$

$$s_{PM}(t) = A_{c}\cos(\theta_{i}) = A_{c}\cos[\omega_{c}t + k_{p}m(t)]$$

$$\theta_{i}(t) = \omega_{c}t + k_{f} \int_{-\infty}^{t} m(\lambda)d\lambda$$
$$\omega_{i}(t) = \frac{d\theta_{i}(t)}{dt} = \omega_{c} + k_{f}m(t)$$
$$s_{FM}(t) = A_{c}\cos(\theta_{i}) = A_{c}\cos[\omega_{c}t + k_{f} \int_{-\infty}^{t} m(\lambda)d\lambda]$$

AM/PM/FM: Illustrative Example 3



Angle Modulation

Summary

Analog Modulation Schemes

Assuming the message is $\boldsymbol{m}(t)$ and the frequency of the carrier is ω_c , we have

- Amplitude Modulation (different ways to encode information in amplitude of carrier)
 - AM: $s(t) = [1 + k_a m(t)] \cos \omega_c t$
 - DSB-SC $s(t) = m(t) \cos \omega_c t$
 - SSB $s(t) = m(t) \cos \omega_c t \pm m_h(t) \sin \omega_c t$ (- for USB, + for LSB)
 - VSB s(t) depends on the filter
 - QAM $s(t) = m_1(t) \cos \omega_c t + m_2(t) \sin \omega_c t$
- **Angle Modulation** (different ways to encode information in carriers angle of carrier)

• PM:
$$s(t) = A_c \cos[\omega_c t + k_p m(t)]$$

• FM
$$s(t) = A_c \cos[\omega_c t + k_f \int_{-\infty}^t m(\lambda) d\lambda]$$

• k_a , k_p , and k_f are parameters (constants) to design