Lecture 8 Angle Modulation Part II

• FM bandwidth and Carson's rule

• Narrowband FM

Wideband FM

Contents

• FM bandwidth and Carson's rule

Narrowband FM

Wideband FM

The Last Lecture Summary

FM

$$\theta_i(t) = \omega_c t + k_f \int_{-\infty}^t m(\lambda) d\lambda$$
$$\omega_i(t) = \frac{d\theta_i(t)}{dt} = \omega_c + k_f m(t)$$
$$s_{FM}(t) = A_c \cos[\omega_c t + k_f \int_{-\infty}^t m(\lambda) d\lambda]$$

• PM

$$\theta_i(t) = \omega_c t + k_p m(t)$$
$$\omega_i(t) = \frac{d\theta_i(t)}{dt} = \omega_c + k_p \frac{dm(t)}{dt}$$
$$s_{PM}(t) = A_c \cos[\omega_c t + k_p m(t)]$$

Today's Lecture Summary

- Angle modulation is nonlinear and complex to analyze
- Early developers thought that bandwidth could be reduced to zero
- They were wrong! Theoretically, FM has infinite bandwidth!
- Two approximations for FM signals:
 - 1. narrowband approximation (NBFM)
 - If $|k_f a(t)| \ll 1$ (where $a(t) = \int_{-\infty}^t m(\lambda) d\lambda$), then $B_T \approx 2W$ and $s_{NBFM}(t) \approx A_c \cos \omega_c t A_c k_f a(t) \sin \omega_c t$ $s_{NBPM}(t) \approx A_c \cos \omega_c t - A_c k_p m(t) \sin \omega_c t$
 - 2. wideband approximation (WBFM)
 - maximum frequency deviation $\Delta f = \max |k_f m(t)|/2\pi$

$$B_T \approx 2W + 2\Delta f$$

This is known as known as Carson's rule

Carson's rule sort of works for both narrow band and wideband cases

Contents

• FM bandwidth and Carson's rule

Narrowband FM

• Wideband FM

Worksheet - FM Analysis

Example: If g₁(t) has a bandwidth W₁ and g₂(t) has a bandwidth W₂, then what is the bandwidth of
g₁(t)g₂(t)
g₁ⁿ(t)g₂ⁿ(t)
g₁(t) + g₂(t)

Example: Recalling sinc2Wt $\Rightarrow \frac{1}{2W}$ rect $(\frac{f}{2W})$, what is the BW of

• sinc4000t

• $100 \sin c4000t + \sin c^2 4000t$

• Maclaurin series¹ of e^x is given by $e^x = 1 + x + \frac{x^2}{2!} + \cdots$

¹Recall from Calculus that $f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots$ Lecture 8: Angle Modulation II

FM Analysis

• Let $a(t) = \int_{-\infty}^{t} m(\lambda) d\lambda$ and define the complex FM signal by

$$\tilde{s}_{FM}(t) = A_c e^{j[\omega_c t + k_f a(t)]} = A_c e^{jk_f a(t)} \cdot e^{j\omega_c t}$$

- Then, real FM signal is $s_{FM}(t) = \operatorname{Re}\{\tilde{s}_{FM}(t)\}$
- The Maclaurin series of $\tilde{s}_{FM}(t)$ is given by

$$\tilde{s}_{FM}(t) = A_c \left(1 + jk_f a(t) + j^2 \frac{k_f^2}{2!} a^2(t) + \dots + j^n \frac{k_f^n}{n!} a^n(t) + \dots \right) e^{j\omega_c t}$$

- If a(t) has a bandwidth W, then the n-th term has a bandwidth nW (why?)
- This expansion for $\tilde{s}_{FM}(t)$ shows that the bandwidth is ∞
- However, things are not quite that bad
- Since $\frac{k_f}{n!} \to 0$ all but a small amount of power is in a finite band

Narrowband FM (NBFM)

• From $s_{FM}(t) = \operatorname{Re}\{\tilde{s}_{FM}(t)\}$, the FM signal is given by

$$s_{FM}(t) = A_c \left(\cos \omega_c t - k_f a(t) \sin \omega_c t - \frac{k_f^2}{2!} a^2(t) \cos \omega_c t + \frac{k_f^3}{3!} a^3(t) \sin \omega_c t + \cdots \right)$$

• If $|k_f a(t)| \ll 1$ then all but first two terms are negligible and we get the narrowband FM approximation

$$s_{NBFM}(t) \approx A_c(\cos \omega_c t - k_f a(t) \sin \omega_c t)$$

- **Bandwidth:** NBFM signal has $B_T = 2W$, same as AM signal
- Power: NBFM signal has power ≈ ^{A²/_c}/₂ (why?) which does not depend on message m(t), or a(t).

Narrowband PM (NBPM)

- PM analysis is very similar to the FM analysis in the previous pages except that we need to replace $k_f a(t)$ by $k_p m(t)$
- \bullet Particularly, for $|k_p m(t)| \ll 1$ we get narrowband PM approximation which is

$$s_{NBPM}(t) \approx A_c(\cos \omega_c t - \frac{k_p m(t)}{\sin \omega_c t})$$

Bandwidth and power of NBPM are also similar to those of NBFM

Example 1: Frequency Modulation of Tone $f_m = 1$

• $s_{FM}(t) = A_c \cos[\omega_c t + k_f a(t)], \quad f_c = 20, a(t) = \cos 2\pi f_m t,$ for $|k_f a(t)| = 0.2, 0.8,$ and 3.2

Spectrum of Tone FM $f_m = 1$

• $s_{FM}(t) = A_c \cos[\omega_c t + k_f a(t)]$, for $|k_f a(t)| = 0.2, 0.8$, and 3.2

The first one is narrowband whereas the other two are wideband.

How to Get the Spectrum of Tone PM/FM?

The following subsection is for visualization of FM spectrum, and you are not responsible for it.

• To find the Fourier transform of a "tone" PM/FM signal, let us assume

$$s(t) = A_c \cos[\omega_c t + k_f \sin \omega_m t]$$

= $A_c \cos \omega_c t \cos(k_f \sin \omega_m t) - A_c \sin \omega_c t \sin(k_f \sin \omega_m t)$

- The message is periodic in $T = \frac{2\pi}{\omega_m}$, therefore $\cos(k_f \sin \omega_m t)$ and $\sin(k_f \sin \omega_m t)$ are periodic in T.
- Then, we can find Fourier series of those terms and plot their spectrum as well as the spectrum of s(t)
- Next slides give the spectrum for certain values of k_f

• We start plotting the spectrum of the below part in the below signal

$$s(t) = A_c \cos[\omega_c t + k_f \sin \omega_m t]$$

= $A_c \cos \omega_c t \cos(k_f \sin \omega_m t) - A_c \sin \omega_c t \sin(k_f \sin \omega_m t)$

• $|a_k|$ is the magnitude of the Fourier series for the *k*th harmonic (i.e., $\omega = k\omega_m$)

$$s(t) = A_c \cos[\omega_c t + k_f \sin \omega_m t]$$

= $A_c \cos \omega_c t \cos(k_f \sin \omega_m t) - A_c \sin \omega_c t \sin(k_f \sin \omega_m t)$

 $s(t) = A_c \cos[\omega_c t + k_f \sin \omega_m t]$ = $A_c \cos \omega_c t \cos(k_f \sin \omega_m t) - A_c \sin \omega_c t \sin(k_f \sin \omega_m t)$

Contents

• FM bandwidth and Carson's rule

Narrowband FM

• Wideband FM

Wideband FM (WBFM)

• Recall that $s_{FM}(t) = A_c \cos[\omega_c t + k_f a(t)]$ where $a(t) = \int_{-\infty}^t m(u) du$

Q: If the bandwidth of m(t) is W, then what is the FM transmission bandwidth (i.e., the bandwidth of $s_{FM}(t)$)? **A:** This is a difficult question in general. Explicit solutions exist only for a few signals, such as sinusoids.

- There are two contributors to the transmission bandwidth
 - 1. Signal bandwidth W
 - 2. Maximum frequency deviation $\Delta f = \frac{k_f m_p}{2\pi}$ (recall $f_i = f_c + \frac{k_f}{2\pi}m(t)$ for FM)
- m_p is the peak amplitude of m(t), i.e., $m_p = \max |m(t)|$
- Note that if m(t) has bandwidth W then a(t) also has bandwidth W (integration does not change the highest frequency in the signal)
 WBFM Bandwidth: This leads to Carson's rule for FM bandwidth

$$B_T \approx 2(W + \Delta f)$$

۲

Example 2: Commercial FM

Example: Commercial FM signals use a peak frequency deviation of Δf = 75 kHz and a maximum baseband message frequency of 15 kHz (W = 15 kHz). What is the (transmission) bandwidth of this FM signal?

A: Carson's rule estimates the FM signal bandwidth as

 $B_T = 2(75 + 15) = 180 \text{kHz}$

which is six times the 30 kHz bandwidth that would be required for AM modulation and 12 times of that of SSB.

FM vs. AM Broadcast in Northern America

- 1. FM Broadcast
 - Frequency range: 88.0 108.0 MHz
 - Channel width 200 kHz \Longrightarrow 100 channels
 - Channel center frequencies: 88.1, 88.3, ..., 107.9
 - Frequency deviation: ± 75 kHz
 - Signal bandwidth: high-fidelity audio requires only 20 kHz, so bandwidth is available for applications like music.
- 2. AM Broadcast
 - Frequency range: 540 kHz up to 1700 kHz
 - Channel width 10 kHz (5 kHz above and below the assigned center frequency)
 - Channel center frequencies: 540, 550, ..., 1700

• For every FM channel, we could have 20 AM channels!

Example 3: FM Bandwidth

Example: (Lathi, Example 5.3) Estimate the bandwidth of the FM signal when the modulating signal is the one shown in the figure, the carrier frequency is $f_c = 100$ MHz and $k_f = 2\pi \times 10^5$.

- Peak amplitude of m(t) is $m_p = 1$.
- Fundamental period of signal is $T_0 = 2 \times 10^{-4}$ s, hence the fundamental frequency is $f_0 = 5$ kHz.
- We assume that the essential bandwidth of m(t) is the third harmonic. Hence the modulating signal bandwidth is $W = 3f_0 = 15$ kHz.
- The frequency deviation is Δf = $\frac{k_f m_p}{2\pi}$ = $\frac{2\pi \times 10^5 \times 1}{2\pi}$ = 100 kHz
- The Bandwidth of the FM signal is $B_T = 2(W + \Delta f) = 230 \text{ kHz}$

What is the BW if the message amplitude doubles? $B_T = 430 \text{ kHz}$

Example 4: Bandwidth in Angle Modulation

Example: (Lathi, Example 5.5) An angle-modulated signal with carrier frequency $\omega_c = 2\pi \times 10^5$ is described by the equation $s(t) = 10 \cos(\omega_c t + 5 \sin 3000t + 10 \sin 2000\pi t)$

- 1. Find the power of the modulated signal.
- 2. Find the frequency deviation Δf .
- 3. Find the deviation ratio $\beta = \frac{\Delta f}{W}$.
- 4. Find the phase deviation $\Delta\phi$.
- 5. Estimate the bandwidth of s(t).

Example 4: Bandwidth in Angle Modulation

 $s(t) = 10\cos(\omega_c t + 5\sin 3000t + 10\sin 2000\pi t)$ and $\omega_c = 2\pi \times 10^5$

Answer: (Note: we need not know whether it is FM or PM)

- 1. $P \approx 10^2/2 = 50$.
- 2. $\Delta \omega = 15,000 + 20,000\pi$, $\Delta f = \Delta \omega / 2\pi = 12.387 \text{ kHz}$
 - note that $\theta(t) = \omega_c t + 5 \sin 3000t + 10 \sin 2000\pi t$ • $\omega(t) = \frac{d\theta(t)}{dt} = \omega_c + 15,000 \cos 3000t + 20,000\pi \cos 2000\pi t$
- 3. $\beta = \frac{\Delta f}{W} \approx 12.4$,
 - there are two frequencies in the message: $3000/2\pi$ Hz, and $2000\pi/2\pi$ Hz • message BW is the highest frequency, i.e., $W = 2000\pi/2\pi = 1000$ Hz
- 4. $\Delta \phi = 5 + 10 = 15$ rad.
- 5. Bandwidth of s(t) is $B_T = 2(W + \Delta f) = 26.774$ kHz

Blank Page

Single Tone FM Modulation

• Let $m(t) = A_m \cos \omega_m t$. Then

$$s_{FM}(t) = A_c \cos(\omega_c t + k_f \int_0^t m(\lambda) d\lambda) = A_c \cos(\omega_c t + \frac{k_f A_m}{\omega_m} \sin \omega_m t)$$

The modulation index is defined as

$$\beta \triangleq \frac{k_f A_m}{\omega_m} = \frac{\text{peak frequency deviation}}{\text{modulating frequency}} = \frac{\Delta f}{f_m}$$

• It can be shown by the use of the Fourier series that

$$s_{FM}(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos(\omega_c + n\omega_m) t$$

where $J_n(\beta)$ is the *n*th order *Bessel function of the first kind*, which can be computed by the series

$$J_n(x) = \sum_{m=0}^{\infty} (-1)^m \frac{(\frac{1}{2}x)^{n+2m}}{m!(n+m)!}$$

The spectrum of the FM signal is much more complex than that of the AM signal.

Bessel Function $J_n(\beta)$

• $J_n(\beta)$ is negligible for $n > \beta + 1$, thus

$$B_T \approx 2(\beta + 1)f_m = 2(\Delta f + W).$$

Recall that $\Delta f = \beta f_m$, and $W = f_m$ for a tone.

Lecture 8: Angle Modulation II

Spectrum of FM for a Tone

• Spectra of tone FM signal for a fixed f_m and varying A_m (we know that $\beta = \frac{k_f A_m}{\omega_m}$ and $\Delta f = \beta f_m$)

Scaling A_m scales Δf the same amount. (why?)

Spectrum of FM for a Tone

• Spectra of tone FM for a fixed A_m and varying f_m (we know that $\beta = \frac{k_f A_m}{\omega_m}$ and $\Delta f = \beta f_m$)

Changing f_m does not change Δf . (why?)

Blank Page

NBFM vs WBFM

NBFM

- ${\, \bullet \,}$ the modulating index, $\beta,$ is less than 1
- has smaller bandwidth and its spectrum consists of a carrier, upper side band and lower side band
- figure of merit of NBFM is $\frac{1}{3}$
- is commonly used for police, fire, emergency services, ambulances, and taxicabs, although it is increasingly being replaced by digital radio systems that are harder to decode.¹
- WBFM
 - ${\scriptstyle \bullet} \,$ the modulating index, $\beta,$ is grater than 1
 - has a large bandwidth and its spectrum consists of a carrier and infinite number of side bands
 - figure of merit of NBFM is $\frac{3}{2}\beta^2$
 - is used in FM radio (the 88–108 MHz band)

 $^{^1 \}rm NBFM$ is commonly used in Amateur Radio in the 144–148 MHz VHF band and the 420–450 MHz UHF band.