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Distributed Source Coding
Problem Statement

I Distributed source coding

Encoder 2-Y -MY

Decoder

-

-

(Ŷ , DY )

(X̂,DX)
Encoder 1-X -MX

A communication system with
I Two separate, correlated signals (X and Y )

I The sources cannot communicate with each other; thus,
encoding is done independently or in a distributed manner

I The receiver, however, can perform joint decoding
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Motivation and Applications

Why DSC?
I Reduce the data required for storage/transmission

I Increase battery life (eliminate power consumption for
communication)

I Low complexity encoders (shift the complexity to the
decoder)

Applications

I Sensor networks

I Low complexity video
coding

Central Unit

Local 

Sensor

Remote 

Sensor
Side 

Information

Remote 

Sensor

Remote 

Sensor

Remote 

Sensor
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Practical Code Construction
Lossless DSC (Slepian-Wolf Coding)

I DSC is essentially a channel coding problem (view Y as
corrupted version of discrete-valued X)

Encoder

Correlation Channel
(Virtual)

Decoder

Y (side information)

X syndrome X̂

I The channel code design and its rate depends on the
correlation channel

I The correlation is usually modeled as a BSC

I Capacity-approaching channel codes (LDPC and Turbo
codes) are asymptotically optimal
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Practical Code Construction
Lossy DSC

What if the sources are continuous-valued?

Conventional Approach

Quantizer
Slepian-Wolf

Encoder
Slepian-Wolf

Decoder
Reconstruction

X X̂

Y Y
Correlation Channel

Wyner − Ziv encoder Wyner − Ziv decoder

I There are quantization loss and binning loss

I Correlation between real-valued signals is translated to
binary domain which can bring about further loss
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Lossy DSC in the Real Field

Q: How can we better model the virtual correlation channel?

I The Proposed Framework

Slepian-Wolf
Encoder

Q Q−1
Slepian-Wolf

Decoder

X X̂

Y

Correlation Channel

Encoder Decoder

I Motivations
I More realistic correlation channel model
I Lower delay and complexity

[J1] M. Vaezi and F. Labeau,“Distributed source-channel coding based on real-field BCH codes,” IEEE Trans. Signal Process.,
Jan. 2014.

[C1] ——–,“Improved modeling of the correlation between continuous-valued sources in LDPC-based DSC,” In Proc. Asilomar 2012.
[C2] ——–,“Least squares solution for error correction on the real field using quantized DFT codes,” In Proc. EUSIPCO 2012.
[C3] ——–,“Distributed lossy source coding using real-number codes,” In Proc. VTC-Fall 2012.
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BCH-DFT Codes as Channel Codes
Encoding

DFT
zero

padding IDFT

Wk Σn×k WH
n

x ∈ Rk X ∈ Ck C ∈ Cn c ∈ Rn

G

I G consists of k columns from the IDFT matrix (WH
n )

I The remaining n− k columns of the IDFT matrix form H

Decoding: let r = c + e where e has ν ≤ t nonzero elements at
1 ≤ i1, . . . , iν ≤ n with magnitudes ei1 , . . . , eiν .

I Compute the syndrome of error (s = Hr = He)

I Form the below syndrome matrix for m =
⌈
d
2

⌉
Sm =


s1 s2 . . . sd−m+1

s2 s3 . . . sd−m+2

...
...

. . .
...

sm sm+1 . . . sd


I Decoding algorithms have the following major steps:

1. Detection (determine the number of errors; ν ≤ b d
2
c)

2. Localization (find the location of errors; i1, . . . , iν)
3. Estimation (calculate the magnitude of errors; ei1 , . . . , eiν )
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Proposed Lossy DSC Based on BCH-DFT Codes
Syndrome Approach

I The decoder computes sx

I The encoder finds se = sy−sx
(s̃e = sy − ŝx = se − q)

I Compression ratio is n : n− k

Encoder

x

n

sx

n−k
ŝx
n−k

x̂
n

y = x+ e

n

H Q Decoder

Correlation
Channel

Correlation model

Y = X + E, E ∼


N (0, σ2

0) w.p. p0,

N (0, σ2
1) w.p. p1,

0 w.p. 1− p0 − p1,

in which σ2
1 = σ2

i + σ2
0 , σ2

i � σ2
0 , and p0 + p1 ≤ 1.

I p0 = 1 or p1 = 1 =⇒ Gaussian correlation model

I p0 + p1 = 1 =⇒ Gaussian-Bernoulli-Gaussian (GBG) model

I p0 + p1 < 1, p0p1 = 0 =⇒ Gaussian-Erasure (GE) model
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Numerical Results

I Channel-error-to-quantization-noise
ratio (CEQNR)

CEQNR ,
σ2
i

σ2
q

,

where σ2
q = ∆2

12 .

I Gauss-Markov source X with
σX = 1, ρ = 0.9

I GE correlation model with
p1 = 0.04
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Rate-Adaptive DSC
The proposed schemes, with short DFT codes, are

I Suitable for low-delay coding
I Vulnerable to the variations of channel

Solution: Rate-adaptive DSC with feedback

Encoder

x

n

sx

n−k
ŝx

n−k
x̂

n
H Q Decoder

H̄ Q
y

feedback

s̄x ˆ̄sx
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Rate-Distortion Performance

Parameters:
I Gauss-Markov source X with
σX = 1, ρ = 0.9

I GBG correlation model with
p1 = 0.04, σ0 = 0.05σe

I CEQNR= 25dB (or σ0 = 0.1282
and σe = 2.5647 for b = 4)

I RGBG
X|Y (D) =

∑1
j=0 pjRX|Y,sj (D)

I R̄GBG
X|Y (D) = RX|Y,s1(D)
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Other Contributions
Distributed Joint Source-Channel Coding

Gsys Q + Decoder

Correlation
Channel

Encoder

p p̂

y

x̂

ec

x

k n− k n− k k

k

I Parity-based DSC

I Distributed joint source-channel coding

I Systematic DFT frames and their properties

[J2] M. Vaezi and F. Labeau,“Systematic DFT frames: Principle, eigenvalues structure, and applications,” IEEE Trans.
Signal Process., Aug. 2013.

[C4] ——–,“Low-delay joint source-channel coding with side information at the decoder, ” In Proc. DSP 2013.
[C5] ——–,“Systematic DFT frames: Principle and eigenvalues structure,” In Proc. ISIT 2012.
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Other Contributions
Generalized Subspace-Based Error Localization

I Classical decoding with
subspace-based approach

I Improved decoding based on
extra syndromes

I Extended Subspace:
Increase the number of
vectors in the noise
subspace

I Generalized Subspace:
Utilize different syndrome
matrices for one code
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[J3] M. Vaezi and F. Labeau,“Generalized and extended subspace algorithms for error correction with quantized DFT codes,
IEEE Trans. Commun., Dec. 2013.

[C6] ——–,“Extended subspace error localization for rate-adaptive distributed source coding,” In Proc. ISIT 2013.
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Summary of Contributions

I A new framework for lossy DSC
I Syndrome approach
I Parity approach

I Distributed joint source-channel coding

I Systematic DFT frames

I Rate-adaptive DSC

I Improved decoding for BCH-DFT codes

I Generalized encoding for BCH-DFT codes
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Future Research Directions

There are several avenues for future work, mainly revolving
around improving the decoding algorithm for DFT codes or
extending the developed algorithms to other codes, or fields.

I Improving Error localization (Rate-Distortion)
Performance

I Generalized Decoding for DCT and DST Codes

I Lossy DSC Using Oversampled Filter Banks

I Parametric Frequency Estimation

I Spectral Compressive Sensing
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Rate Region
Lossless DSC (Slepian-Wolf coding)

Separate Encoding
and Decoding

H(X|Y ) H(X) H(X,Y ) RX

H(Y |X)

H(Y )

H(X,Y )

RY

u
A u

B

Figure: Achievable rate regions for the Slepian-Wolf coding (solid
lines) and separate encoding with separate decoding (dashed lines).
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BCH-DFT Codes
Encoding

I Encoding scheme for an (n, k) real BCH-DFT

DFT
zero

padding IDFT

Wk Σn×k WH
n

x ∈ Rk X ∈ Ck C ∈ Cn c ∈ Rn

G

I G consists of k columns from the IDFT matrix (WH
n )

I Σ inserts d = n− k successive zeros in the transform domain
I H takes n− k columns of WH

n corresponding to zeros of Σ
I The error correction capacity is t = bd2c = bn−k2 c

Example: The (6,3) DFT code

G =



1 0 0
2
3

2
3

−1
3

0 1 0
−1
3

2
3

2
3

0 0 1
2
3

−1
3

2
3


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Error Correction in DFT Codes
I Decoding algorithms for a BCH-DFT code

1. Detection (to determine the number of errors;
ν ≤ t = bn−k2 c)

2. Localization (to find the location of errors; i1, . . . , iν)
3. Estimation (to calculate the magnitude of errors;

ei1 , . . . , eiν )

s = Hr = H(c + e) = He,

sm =
1√
n

ν∑
p=1

eipX
α−1+m
p , m = 1, . . . , d = n− k,

and Xp = e
j2π
n ip , p = 1, . . . , ν.

St =


s1 s2 . . . st
s2 s3 . . . st+1

...
...

. . .
...

st st+1 . . . s2t−1


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Error Correction in DFT Codes
Performance with Perfect Error Localization

0 5 10 15 20 25 30 35 40

10
−3

channel error to quantization noise ratio (dB)

M
S

E

 

 
Quantization error
No errors
One error
Two errors
Three errors
Four errors

Figure: The MSE performance of LS estimation for a (17, 9) DFT
code with perfect error localization for different error patterns.
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Error Correction in DFT Codes
Subspace-Based Approach

1. Form the error-locator matrix of order m as

Vm =


1 1 . . . 1
X1 X2 . . . Xν

...
...

. . .
...

Xm−1
1 Xm−1

2 . . . Xm−1
ν

 .
2. Define the syndrome matrix (for m = dd2e) by

Sm = VmDV
T
d−m+1

=


s1 s2 . . . sd−m+1

s2 s3 . . . sd−m+2

...
...

. . .
...

sm sm+1 . . . sd

 .
where D is a diagonal matrix of size ν with nonzero diagonal
elements dp = 1√

n
eipX

α
p , p = 1, . . . , ν.
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Error Correction in DFT Codes
Subspace-Based Approach

3. Eigen-decompose the covariance matrix Rm = SmS
H
m

Rm = [Ue Un]

[
∆e 0
0 ∆n

]
[Ue Un]H ,

I ∆e and ∆n contain the ν largest and m− ν smallest
eigenvalues

I Ue and Un contain the eigenvectors corresponding to ∆e

and ∆n

I The columns in Ue span the channel-error subspace spanned
by Vm thus, UHe Un = 0⇒ V Hm Un = 0

4. Let v = [1, x, x2, . . . , xm−1]T where x is a complex variable,
then

F (x) ,
m−ν∑
j=1

vHun,j =
m−ν∑
j=1

m−1∑
i=0

fjix
i.

F (x) is sum of m− ν polynomials {fji}m−νj=1 of order m− 1.
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Error Correction in DFT Codes
Subspace-Based Approach

U
e

U
n

Ũe

Ũ
n

V
m

Û
n

Figure: Subspace method: graphical representation

Subspace vs. coding-theoretic method
There are m− ν = dd2e − ν polynomials rather than just one, and
they have higher degrees of freedom
⇒ Subspace method performs better than the coding-theoretic
approach

24



Error Correction in DFT Codes
Subspace-Based Approach

U
e

U
n

Ũe
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Extended Subspace Decoding
Motivation

Main idea:

Increasing the dimension of the estimated noise subspace ⇒
the number of polynomials with linearly independent
coefficients and/or their degree grow.

Construction:
The extended syndrome matrix S′m is defined for d′ > d, and
similar to Sm it is decomposable as

S′m = VmDV
T
d′−m+1.

To form S′m we need d′ syndrome samples while we only
have d samples.

s′m =
1√
n

ν∑
p=1

eipX
α−1+m
p , m = 1, . . . , d′,
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Extended Subspace Decoding
Extended Syndrome

s′m =

{
sm, 1 ≤ m ≤ d,
s̄m−d, d < m ≤ d′,

where s̄ = H̄e, is the extended syndrome of error.
Recal: H̄ consists of those k columns of the IDFT matrix of
order n not used in H (used in G).

Q:
How can we compute s̄?

Let us try
H̄r = H̄c + H̄e 6= H̄e

So to have H̄r = s̄, either H̄c must vanish or we should
remove it.
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Extended Subspace Decoding
Extended Syndrome

I H̄c = 0 could happen in the special case of rate 1
2

codes when all error indices are even

I In general, we need to find a way to remove H̄c

We exploit the gain from the extended subspace decoding by
transmitting extra samples ⇒ Rate-adaptive DFT codes

1. Rate-adaptive DSC (syndrome & parity approaches)

2. Rate-adaptive channel coding

3. Rate-adaptive distributed joint source-channel coding
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Generalized Error Localization
Subspace Approach

1. Eigen-decompose the covariance matrix
Rm = SmS

H
m , m = dd2e = dn−k2 e

Rm = [Ue Un]

[
∆e 0
0 ∆n

]
[Ue Un]H ,

I The columns in Ue span channel-error
subspace spanned by Vm. Thus,
UHe Un = 0⇒ V Hm Un = 0

2. Let v = [1, x, x2, . . . , xm−1]T where x is a
complex variable, then

F (x) ,
m−ν∑
j=1

vHun,j =

m−ν∑
j=1

m−1∑
i=0

fjix
i.

⇒ F (x) is sum of m− ν polynomials.

U
e

U
n

Ũe

Ũ
n

V
m

Û
n

Figure: Subspace approach
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Generalized Subspace-Based

S[i]
m ,


sV0Wn sViWn . . . sVi(d−m)Wn
sViWn sV2iWn . . . sVi(d−m+1)Wn

...
...

. . .
...

sVi(m−1)Wn sVimWn . . . sVi(d−1)Wn

 ,
= V [i]

m DV
[i]T
d−m+1

Algorithm

1. Eigendecompose S
[i]
mS

[i]H
m to find U

[i]
e , U

[i]
q

2. Since the columns in U
[i]
e and V

[i]
m span the same subspace,

U
[i]H
e U

[i]
n = 0⇒ V

[i]H
m U

[i]
n = 0 ∀ i ∈ Pn

3. Define

Γ(x) ,
∑
i∈Pn

F [i](x) =
∑
i∈Pn

m−ν∑
j=1

m−1∑
k=0

f
[i]
jkx

ki,

and use it for error localization.
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Example 1

Consider the (10, 5) code, for which Pn = {1, 3, 7, 9}. Then
we have

S
[1]
3 =

 s1 s2 s3
s2 s3 s4
s3 s4 s5

 , S[3]
3 =

 s1 s4 s7
s4 s7 s10
s7 s10 s3

 ,
S
[7]
3 =

 s1 s8 s5
s8 s5 s2
s5 s2 s9

 , S[9]
3 =

 s1 s10 s9
s10 s9 s8
s9 s8 s7

 .
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Example 2

I (11, 3) code; n = 11 =⇒ Pn = {1, . . . , 10}
I We can have 10 syndrome matrices for each d′ ∈ [8, . . . , 11]

I For d′ = 11, these matrices share the same elements only
with different arrangements, e.g.,

S
′[2]
6 =


s1 s3 s5 s7 s9 s11

s3 s5 s7 s9 s11 s2

s5 s7 s9 s11 s2 s4

s7 s9 s11 s2 s4 s6

s9 s11 s2 s4 s6 s8

s11 s2 s4 s6 s8 s10

 ,
and

S
′[9]
6 =


s1 s10 s8 s6 s4 s2

s10 s8 s6 s4 s2 s11

s8 s6 s4 s2 s11 s9

s6 s4 s2 s11 s9 s7

s4 s2 s11 s9 s7 s5

s2 s11 s9 s7 s5 s3

 .
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Rate-Adaptive DSC
The proposed schemes, with short DFT codes, are

I Suitable for low-delay coding

I Vulnerable to the variations of channel

Solution: Rate-adaptive DSC with feedback

I Define H̄ such that [HT
n−k×n|H̄T

k×n] = WH
n

I Algorithm:

1. Decoder: Request for extra syndrome samples if ν̂ ≥ t
2. Encoder: Transmit s̄x = H̄x sample by sample
3. Decoder: Compute s̄y = H̄y = s̄x + s̄e and

s̄e = s̄y − s̄x
4. Decoder: Append s̄e to se and use the extended

subspace decoding

Solution: Rate-adaptive DSC with feedback
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Quantization error
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(12,5) code, r=0.5833
(12,5) code, r=0.5842
(15,5) code, r=0.6667
(15,5) code, r=0.6667
Genie−aided
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