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Distributed Source Coding

Problem Statement

» Distributed source coding

M

x :
Decoder

M

A communication system with

» Two separate, correlated signals (X and Y')

» The sources cannot communicate with each other; thus,
encoding is done independently or in a distributed manner

» The receiver, however, can perform joint decoding



Motivation and Applications
Why DSC?

> Reduce the data required for storage/transmission

> Increase battery life (eliminate power consumption for
communication)

> Low complexity encoders (shift the complexity to the
decoder)
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Practical Code Construction
Lossless DSC (Slepian-Wolf Coding)

» DSC is essentially a channel coding problem (view Y as
corrupted version of discrete-valued X)

X syndrome X

____________________

Correlation Channel
(Virtual)

Y (side information)

» The channel code design and its rate depends on the
correlation channel

» The correlation is usually modeled as a BSC

» Capacity-approaching channel codes (LDPC and Turbo
codes) are asymptotically optimal



Practical Code Construction
Lossy DSC

What if the sources are continuous-valued?

Conventional Approach

Wyner — Ziv encoder Wyner — Ziv decoder
e [T Detoer
' ' Encoder ' ' Decoder '

. 1 Y Y[

» There are quantization loss and binning loss

» Correlation between real-valued signals is translated to
binary domain which can bring about further loss



Lossy DSC in the Real Field

Q: How can we better model the virtual correlation channel?

» The Proposed Framework

Encoder Decoder

X ' | Slepian-Wolf - b 1 Slepian-Wolf PX
—L —] L [ R,
Encoder 1 Q Decoder

» Motivations

» More realistic correlation channel model
» Lower delay and complexity

[J1] M. Vaezi and F. Labeau, “Distributed source-channel coding based on real-field BCH codes,” IEEE Trans. Signal Process.,

Jan. 2014.
[C1] ,“Improved modeling of the correlation between continuous-valued sources in LDPC-based DSC,” In Proc. Asilomar 2012.
[C2] ——, “Least squares solution for error correction on the real field using quantized DFT codes,” In Proc. EUSIPCO 2012.
[C3] ——, “Distributed lossy source coding using real-number codes,” In Proc. VTC-Fall 2012.



BCH-DFT Codes as Channel Codes

Encoding G

padding

zeR I ] XeC [ zero | CeC [ ]
DFT IDFT
' ]
7!

» G consists of k columns from the IDFT matrix (W)

» The remaining n — k columns of the IDFT matrix form H



BCH-DFT Codes as Channel Codes

Encoding a
f-------------------------------------I
zeRM ] XeCl [ zero Cef‘:”|—|iceR”
> DFT padding IDFT |3
E Wk Enxk Wf :

Decoding: let r = ¢ + e where e has v < t nonzero elements at
1 <iy,...,% <n with magnitudes e;,,...,€;,.

» Compute the syndrome of error (s = Hr = He)

» Form the below syndrome matrix for m = [4]

2
S1 S2 s Sd—m+1
S2 S3 850 Sd—m+2
Sm =
Sm Sm+1 e Sd

» Decoding algorithms have the following major steps:
1. Detection (determine the number of errors; v < [£])
2. Localization (find the location of errors; i1, ...,4,)
3. Estimation (calculate the magnitude of errors; €;,,...,€;,)



Proposed Lossy DSC Based on BCH-DFT Codes

Syndrome Approach

» The decoder computes s, x
n

» The encoder finds s, = s, — s,
(8¢ =8y — 8, =58.—4q)

» Compression ratioisn:n —k

——-__Encoder_____

T 1820 L
L AL Deceder
E e . y=x+e
: i Correlation | n

' Channel E—



Proposed Lossy DSC Based on BCH-DFT Codes

Syndrome Approach

-----Encoder_____
» The decoder computes s z ! s |
P x 7 I H In:k I Q I lsaikl Decoder I—/—>
» The encoder finds s, = s, — s, b | T
(g —3 5. —s q) —— @ Vae= ‘ yszte
e — — 9x — Se 1 |m e y
Y . L " ' Correlation '_fn
» Compression ratioisn:n —k ' Channel 1

Correlation model
N(O7 0(2)) W.p. Po,
YZXJFE) EN N(07O—%) W.p. P1,
0 w.p. 1—po—p1,
in which 02 = 02 + 02, 02 > 02, and pg + p1 < 1.
» po =1 or p; =1 = Gaussian correlation model
> po + p1 = 1 = Gaussian-Bernoulli-Gaussian (GBG) model

> po+p1 <1, pop1 = 0 = Gaussian-Erasure (GE) model



Numerical Results

» Channel-error-to-quantization-noise

ratio (CEQNR)

o2
A 7 10
CEQNR = —
o
q
2 _ A2
where o, =95

» Gauss-Markov source X with
ox =1 p=09

» GE correlation model with 0w

Quantization error
== (10,5) code
—e— (12,5) code
== (15,5) code
A Genie-aided

20 25 30
Channel error to quantization noise (dB)



Rate-Adaptive DSC

The proposed schemes, with short DFT codes, are
» Suitable for low-delay coding
» Vulnerable to the variations of channel

10



Rate-Adaptive DSC

The proposed schemes, with short DFT codes, are
» Suitable for low-delay coding
» Vulnerable to the variations of channel

Solution: Rate-adaptive DSC with feedback

FEncoder

@ i &
T LE 79 T Decoder =
| S s T

Y
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Rate-Adaptive DSC

The proposed schemes, with short DFT codes, are
» Suitable for low-delay coding
» Vulnerable to the variations of channel

Quantization error
== (10,5) code, r=0.5
= % = (10,5) code, r=0.5037
5| =@= (12,5) code, r=0.5833
= @ = (12,5) code, r=0.5842
—8— (15,5) code, r=0.6667
= W = (15,5) code, r=0.6667
A Genie-aided X

MSE
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Rate-Distortion Performance

v.
Parameters: ol
» Gauss-Markov source X with AR, 4 i
ox =1 p=09 i *
_’g * *
» GBG correlation model with R
p1 = 0.04, o¢p = 0.050, g‘z" .
261 (6,3)
» CEQNR= 25dB (or og = 0.1282 |
and o, = 2.5647 for b = 4) "3 Unperbound
R ol

> Rg;(lB}E}( ) = Z;:O p] RX'Y,Sj (D) s T 12 17 15 I P 22

Rate (bit/sample)

> R%gsg}( ) = Rxv,s, (D)



Other Contributions
Distributed Joint Source-Channel Coding

,,,,, Encoder (1
: i % (G Ii 1 Q inf k@—' Deci)der —Z"
4 i

'
' ' Correlation '
_________ >l r
v Channel !

» Parity-based DSC
» Distributed joint source-channel coding

» Systematic DFT frames and their properties

[J2] M. Vaezi and F. Labeau, “Systematic DFT frames: Principle, eigenvalues structure, and applications,” IEEE Trans.
Signal Process., Aug. 2013,

[c4] ,“Low-delay joint source-channel coding with side information at the decoder, " In Proc. DSP 2013.

[C5] ——, “Systematic DFT frames: Principle and eigenvalues structure,” In Proc. ISIT 2012.
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Other Contributions

Generalized Subspace-Based Error Localization

> Classical decoding with
subspace-based approach

> Improved decoding based on
extra syndromes

> Extended Subspace:
Increase the number of
vectors in the noise
subspace

> Generalized Subspace:
Utilize different syndrome
matrices for one code

—©— Subspace
—8— Extended Subspace
—@— Generalized Subspace | 1
—=je— Generalized-Extended

Probability of correct localization of errors

10 15 20 2‘5 I;O (;5 40
CEQNR (dB)

[J3] M. Vaezi and F. Labeau, “Generalized and extended subspace algorithms for error correction with quantized DFT codes,
IEEE Trans. Commun., Dec. 2013.
[C6] ——, “Extended subspace error localization for rate-adaptive distributed source coding,” In Proc. ISIT 2013.
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Summary of Contributions

v

A new framework for lossy DSC

» Syndrome approach
» Parity approach

v

Distributed joint source-channel coding

v

Systematic DFT frames

Rate-adaptive DSC

Improved decoding for BCH-DFT codes
Generalized encoding for BCH-DFT codes

v

v

v
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Future Research Directions

There are several avenues for future work, mainly revolving
around improving the decoding algorithm for DFT codes or

extending the developed algorithms to other codes, or fields.

» Improving Error localization (Rate-Distortion)
Performance

Generalized Decoding for DCT and DST Codes
Lossy DSC Using Oversampled Filter Banks

v

v

v

Parametric Frequency Estimation

v

Spectral Compressive Sensing

15
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Rate Region
Lossless DSC (Slepian-Wolf coding)

Ry
H(X,)Y) E Separate Encoding
‘ and Decoding
H(Y)
H(Y|X)
H(X|Y) HX) H(X,Y) e

Figure: Achievable rate regions for the Slepian-Wolf coding (solid
lines) and separate encoding with separate decoding (dashed lines).

18



BCH-DFT Codes

Encoding
» Encoding scheme for an (n, k) real BCH-DFT
G
xRN T XeC[ zero |Cecr rcER"
! DFT padding IDFT :
: Wk En><k erl :

» G consists of k columns from the IDFT matrix (W)
> Y inserts d = n — k successive zeros in the transform domain
» H takes n — k columns of W corresponding to zeros of ¥
> The error correction capacity is t = |4] = | 25%]

Example: The (6,3) DFT code

Q

I
wito ow‘L owity =
ol el O“‘L =)

“‘L oWl e ©
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Error Correction in DFT Codes
» Decoding algorithms for a BCH-DFT code

1. Detection (to determine the number of errors;
_ |n=k
v<i=|E) |
2. Localization (to find the location of errors; iy,...,4,)
3. Estimation (to calculate the magnitude of errors;
61'17. .. ,eiy)
s=Hr=H(c+e)=He,
Sm = ! Zu:elXo‘me m=1 d=n—k
m ip“tp ’ - 5 y &= ’
and X, = 53 p=1,...,v
S1 S92 . St
S92 S3 . St+1
S, =
St St+1 ... S2t—1

20



Error Correction in DFT Codes

Performance with Perfect Error Localization

T T T T T T T
Quantization error
— = = No errors
<+ One error
— A - Two errors
- = Three errors

A Four errors

MSE

10+ 1
Aeop-- A A A A -A--A

. . . . .
0 5 10 15 20 25 30 35 40
channel error to quantization noise ratio (dB)

Figure: The MSE performance of LS estimation for a (17,9) DFT
code with perfect error localization for different error patterns.

21



Error Correction in DFT Codes
Subspace-Based Approach

1. Form the error-locator matrix of order m as

1 1 1
X1 Xo X,
Vin = . :
xp-to o xreeto 0 xet
2. Define the syndrome matrix (for m = [2]) by

Spn =V DV 1

S1 So oo Sd—m+1
S92 S3 oo Sd—m+2
Sm Sm+1 ... Sd

where D is a diagonal matrix of size v with nonzero diagonal
elements d, = felea,p =1,...,v

22



Error Correction in DFT Codes
Subspace-Based Approach

3. Eigen-decompose the covariance matrix R,, = S,,SH

A, O

Ry = [U. Uy [ 0 A,

] 27 0

» A. and A, contain the v largest and m — v smallest
eigenvalues

» U, and U, contain the eigenvectors corresponding to A,
and A,

> The columns in U, span the channel-error subspace spanned
by Vi thus, UFU, = 0= V,7U, =0

m=UT \where x is a complex variable,

4. Letv=[1,2,2% ... 2
then
m—v m—v m—1
F(z) = Z v, ;= Z Z fiizt,
j=1

j=1 i=0

F(x) is sum of m — v polynomials {f;;}7," of order m — 1.
23



Error Correction in DFT Codes
Subspace-Based Approach

Figure: Subspace method: graphical representation



Error Correction in DFT Codes
Subspace-Based Approach -

Figure: Subspace method: graphical representation



Error Correction in DFT Codes
Subspace-Based Approach

’ -\\
g 4
’ & "
SR
4 \

Figure: Subspace method: graphical representation
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Error Correction in DFT Codes
Subspace-Based Approach

/'-\\
7 2
SR
4 \

Figure: Subspace method: graphi(cal representation

Subspace vs. coding-theoretic method

There are m —v = [%1 — v polynomials rather than just one, and
they have higher degrees of freedom

= Subspace method performs better than the coding-theoretic
approach

24



Extended Subspace Decoding
Motivation
Main idea:

Increasing the dimension of the estimated noise subspace =
the number of polynomials with linearly independent
coefficients and/or their degree grow.

Construction:

The extended syndrome matrix S), is defined for d’ > d, and
similar to S, it is decomposable as

St =V DVy_ 1.

To form S, we need d’ syndrome samples while we only
have d samples.

14
1
!/ a—1+m _ /
s ——E €i, X , m=1,...,d,
=1

25



Extended Subspace Decoding

Extended Syndrome

S/ — S’n’L) ]- S m S d7
Sm—ds d<m<d,

where 5 = He, is the extended syndrome of error.
Recal: H consists of those k columns of the IDFT matrix of
order n not used in H (used in G).

Q:
How can we compute 87
Let us try
Hr =Hc+ He # He
So to have Hr = §, either Hc must vanish or we should
remove it.

26



Extended Subspace Decoding

Extended Syndrome

» Hec = 0 could happen in the special case of rate %
codes when all error indices are even

> In general, we need to find a way to remove Hc

We exploit the gain from the extended subspace decoding by
transmitting extra samples = Rate-adaptive DFT codes

1. Rate-adaptive DSC (syndrome & parity approaches)
2. Rate-adaptive channel coding

3. Rate-adaptive distributed joint source-channel coding

27



Generalized Error Localization
Subspace Approach

1. Eigen-decompose the covariance matrix
Ry, = SmSvIr{w m= (%1 = [nT_Iq

A. 0 ol
Rm = [Ue Un] l: Oe An :l [Ue Un]Ha
» The columns in U, span channel-error
subspace spanned by V,,,. Thus,
vlv,=0=V/U,=0
2. Letv =[l,z,22%,..., 2" 17 where x is a Q
complex variable, then %
g m-vm_1 Figure: Subspace approach
" )
Fla) 2 Y offung =3 3 fid
j=1 Jj=1 =0

= F(z) is sum of m — v polynomials.



Generalized Error Localization
Subspace Approach

1. Eigen-decompose the covariance matrix
Ry, = SmSvIr{w m= (%1 = [nT_Iq
A, o

A e A

» The columns in U, span channel-error
subspace spanned by V,,,. Thus,
vlv,=0=V/U,=0

2. Letv =[l,z,22%,..., 2" 17 where x is a ’ e

complex variable, then %
g m-vm_1 ) Figure: Subspace approach
Fla) 2 Y offung =3 3 fid
j=1 j=1 i=0

= F(z) is sum of m — v polynomials.



Generalized Error Localization
Subspace Approach

1. Eigen-decompose the covariance matrix
Ry, = SmSvIr{w m= (%1 = [nT_Iq

Ac

A e A

» The columns in U, span channel-error
subspace spanned by V,,,. Thus,
vlv,=0=V/U,=0

2. Letv =[l,z,22%,..., 2" 17 where x is a
complex variable, then

m—v m—vm—1

H .

Fla) 2 Y offung =3 3 fid
j=1 Jj=1 =0

= F(z) is sum of m — v polynomials.

&

<

72

Figure: Subspace approach
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Generalized Subspace-Based

S[0Tn STile -++  S[i(d=—m)Tn
gl & Srrz:ﬂn 5N2_ﬂ|n ~_~~ 8Wz’<d—7_n+1)ﬂn 7
STitm=1Tn  STimTn  «-+ STi(d=D)Ta
= VJ@Z.]DVJ@Z@H
Algorithm

1. Eigendecompose S%]S,[SH to find Uem,Ug]

2. Since the columns in Ucm and Vn[f] span the same subspace,
vl =o= vl =0 viep,

3. Define

m—vm—1

Tz)2 S Flil@) =3 37 5 ek,

1€Pn 1€Pn j=1 k=0

and use it for error localization.

29



Example 1

Consider the (10, 5) code, for which P,, = {1,3,7,9}. Then

we have
[ S1 S2 83 [ [ S1 84 St 1
gl _ gl _
3 = | S2 83 S84 |[,03 = S4 St S10 | >
L 3 S4 S5 | St 810 83 |
S1 S8 S5 $1  S10 99
gl _ gl _
3 = S8 S5 52 y 03 = S10 S9 S8
L S5 S2 S9 | L 99 S8 S7 |




Example 2
> (11,3) code; n = 11 = P, = {1,...,10}

> We can have 10 syndrome matrices for each d’ € [8,...,11]

» For d’ = 11, these matrices share the same elements only
with different arrangements, e.g.,

S1 53 S5 S7 S9  S11
s3 S5 St SS9 S11 82
S/ (2] S5 St S9  S11 S22 84
St S9 S11 S22 S84 S¢
S9 S11 S22 S4 S S8
S11 52 S4 56 s8 810
and
S1  S10 S8 S6 S4 52
S10 S8 Se¢  S4  S2 S11
Sé[9] _| s8 Se¢ sS4 S2 Su S
S6 S4 S2 S11 89 S7
S4 S22 S11 S9 St S5
S2 S11 89 St S5 53




Rate-Adaptive DSC

The proposed schemes, with short DFT codes, are
» Suitable for low-delay coding
> Vulnerable to the variations of channel

32



Rate-Adaptive DSC

The proposed schemes, with short DFT codes, are
» Suitable for low-delay coding
> Vulnerable to the variations of channel
Solution: Rate-adaptive DSC with feedback

» Define H such that [HT , |HE ]=WH

n—kxn n
> Algorithm:

1. Decoder: Request for extra syndrome samples if 7 > ¢
2. Encoder: Transmit 5, = Hx sample by sample
3. Decoder: Compute 5, = Hy = 8, + 3. and
5. =35, — 3,
4. Decoder: Append s, to s, and use the extended
subspace decoding

32



Rate-Adaptive DSC

The proposed schemes, with short DFT codes, are
» Suitable for low-delay coding

» Vulnerable to the variations of channel

Solution: Rate-adaptive DSC with feedback

Quantization error
=¥ (10,5) code, r=0.5
=% = (10,5) code, r=0.5037
.|| == (12,5) code, r=0.5833
[| = ® = (12,5) code, r=0.5842
—8— (15,5) code, r=0.6667
= W = (155) code, r=0.6667
A Genie-aided *

MSE
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