OSTEP Chapter 13

ECE 3600, Fall 2022

Table of Contents

1. Address Spaces

2. Sharing Memory
3. Code, Heap, Stack
4. Experiment



file:///home/perry/tmp/os/Chapters/13-vm-intro/print_1.html
file:///home/perry/tmp/os/Chapters/13-vm-intro/print_1.html
file:///home/perry/tmp/os/Chapters/13-vm-intro/print_2.html
file:///home/perry/tmp/os/Chapters/13-vm-intro/print_2.html
file:///home/perry/tmp/os/Chapters/13-vm-intro/print_3.html
file:///home/perry/tmp/os/Chapters/13-vm-intro/print_3.html
file:///home/perry/tmp/os/Chapters/13-vm-intro/print_4.html
file:///home/perry/tmp/os/Chapters/13-vm-intro/print_4.html

1. Address Spaces

OKB
Operating System
(code, data, etc.)
64KB
Current Program
(code, data, etc.)
max

Figure 13.1: Operating Systems: The Early Days



2. Sharing Memory

OKB
Operating System
(code, data, etc.)
64KB
(free)
128KB
Process C
(code, data, etc.)
192KB
Process B
(code, data, etc.)
256KB
(free)
320KB
Process A
(code, data, etc.)
384KB
(free)
448KB
(free)
512KB

Figure 13.2: Three Processes: Sharing Memory



3. Code, Heap, Stack

0OKB
the code segment:
Program Code | \nere instructions ive
1KB
the heap segment:
Heap contains malloc'd data
oKB dynamic data structures
(it grows positively)
(free)
(it grows negatively)
the stack segment:
15KB contains local variables
arguments to routines,
Stack return values, etc.
16KB

Figure 13.3: An Example Address Space



4. Experiment

va.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
printf("location of code : %p\n", main);
printf("location of heap : %p\n", malloc(100e6));

int x = 3;
printf("location of stack: %p\n", &x);
return 0;

}

Sample output:

location of code : 0x55aal6a896fa
location of heap : 0x7f9c83599010
location of stack: Ox7ffddc28c204

note: stack/1e9 = 140728, i.e. 140 TB
try: static data
try commands: free, ps, pmap, top, Iscpu; also see: /proc/<pid>/maps, /proc/cpuinfo

Homework Q3: Create a little program that uses a certain amount of memory, called memory-user.c. This program should take one command-line
argument: the number of megabytes of memory it will use. When run, it should allocate an array, and constantly stream through the array, touching
each entry. The program should do this indefinitely, or, perhaps, for a certain amount of time also specified at the command line.

alternative: see malloc() example



