OSTEP Chapter 16

ECE 3600, Fall 2022

Table of Contents

1. Segmentation

2. Address Translation Examples
3. Segment Mapping Examples

4. Segment Options and Protection
5. Fragmentation

6. Exercises



file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_1.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_1.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_2.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_2.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_3.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_3.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_4.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_4.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_5.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_5.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_6.html
file:///home/perry/tmp/os/Chapters/16-vm-segmentation/print_6.html

1. Segmentation

0KB

1KB

2KB

3KB

4KB

5KB

6KB

7KB

14KB

15KB

16KB

Figure 16.1: An Address Space (Again) Figure 16.2: Placing Segments In Physical Memory

Program Code

Heap

(free)

Stack

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)
t

Stack

(not in use)

Code

Heap

)

(not in use)

Segment

4-7K
16-14K

Base
32K
34K
28K

Size
2K
3K (grows positive)
2K (grows negative)



2. Address Translation Examples
Segment VA Base Size

Code 0-2K 32768 2K
Heap 4-7K 34816 3K (grows positive) [4K = 4096] [34816 + 3K = 37888]
Stack 16-14K 28672 2K (grows negative) [16K = 16384]
Virtual Address 100 (Code) --> Physical Address 32768 + 100 = 32868
Virtual Address 4200 (Heap) --> Physical Address 34816 + (4200 - 4096) = 34920
Virtual Address 15360 (Stack) --> Physical Address 28672 - (16384 - 15360) = 27648

Segmentation Violation = Segmentation Fault = Illegal Virtual Address:

Virtual Address 8000 (Heap) --> Physical Address 34816 + (8000 - 4096) = 38720 = 37888



3. Segment Mapping Examples

16K virtual address space --> 14-bit virtual address
max segment size 4K --> 12-bit offset

2-bit segment number

13121110 9 8 7 6 5 4 3 2 1 0

Segr'nent Offset

4200 = 01 0000 0110 1000
13121110 9 8 7 6 5 4 3 2 1 0
01000001101000

Segment Offset

1 // get top 2 bits of 14-bit VA

2 Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT
3 // now get offset

4+ QOffset = VirtualAddress & OFFSET_MASK

5 if (Offset >= Bounds[Segment])

6 RaiseException (PROTECTION_FAULT)

7 else

8 PhysAddr = Base[Segment] + Offset

9 Register = AccessMemory (PhysAddr)

specify SEG MASK, SEG SHIFT, and OFFSET MASK:




4. Segment Options and Protection

Segment Base Size (max 4K) Grows Positive?

Codeqo 32K 2K 1
Heapo: 34K 3K 1
Stackl 1 28K 2K 0

Figure 16.4: Segment Registers (With Negative-Growth Support)

Segment Base Size (max 4K) Grows Positive? Protection
Codeno 32K 2K 1 Read-Execute
Heapg, 34K 3K 1 Read-Write
Stack,, 28K 2K 0 Read-Write

Figure 16.5: Segment Register Values (with Protection)



5. Fragmentation

OKB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

64KB

Not Compacted

Operating System

(not inuse)

Allocated

(notin use)

Allocated

(notin use)

Allocated

OKB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

64KB

Compacted

Operating System

Allocated

(not in use)

Figure 16.6: Non-compacted and Compacted Memory




6. Exercises

Exercises from the book using segmentation.py:

1. First let's use a tiny address space to translate some addresses. Here's a simple set of parameters with a few different random seeds; can you
translate the addresses?

segmentation.py -a 128 -p 512 -b 0 -1 20 -B 512 -L 20 -s 0O
segmentation.py -a 128 -p 512 -b 0 -1 20 -B 512 -L 20 -s 1
segmentation.py -a 128 -p 512 -b 0 -1 20 -B 512 -L 20 -s 2

2. Now, let's see if we understand this tiny address space we've constructed (using the parameters from the question above). What is the highest legal
virtual address in segment 0? What about the lowest legal virtual address in segment 1? What are the lowest and highest illegal addresses in this
entire address space? Finally, how would you run segmentation.py with the -A flag to test if you are right?



