OSTEP Chapter 17

ECE 3600, Fall 2022

Table of Contents

1. Free-Space Management

2. Implementation

3. Heap with One Allocation

4. Heap with Three Allocations
5. Heap with Two Allocations
6. A Non-Coalesced Free List
7. Policies

8. Custom Block Allocation

9. Exercises

file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_1.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_1.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_2.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_2.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_3.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_3.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_4.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_4.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_5.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_5.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_6.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_6.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_7.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_7.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_8.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_8.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_9.html
file:///home/perry/tmp/os/Chapters/17-vm-freespace/print_9.html

1. Free-Space Management

fragmentation, splitting, coalescing

free used free
0 10 20 30

The free list for this heap would have two elements on it. One entry de-
scribes the first 10-byte free segment (bytes 0-9), and one entry describes
the other free segment (bytes 20-29):

> addr:0 > addr:20 >
head len:10 len:10 NULL

After malloc(1):

addr:0 addr:21
head —» len:10 — leng — NULL

vs. after free(10):

'addr:10 , addr:0 'addr:20 ,
head len:10 len:10 len:10 NULL

After merge:

head —» 29900 —» NULL

2. Implementation

ptr = malloc(20);

~ The header used by malloc library
ptr >

- The 20 bytes returned to caller

Figure 17.1: An Allocated Region Plus Header

hptr >

size: 20

magic: 1234567
ptr > "

= The 20 bytes returned to caller

Figure 17.2: Specific Contents Of The Header

typedef struct { int size; int magic; } header t;

void free(void *ptr) { header t *hptr = (header t *) ptr - 1;

3. Heap with One Allocation

head > Lvirtual address: 16KB]
size: 4088 eader: size field
next: 0 header: next field (NULL is 0)
" = the rest of the 4KB chunk

Figure 17.3: A Heap With One Free Chunk

[virtual address: 16KB]

size: 100
magic: 1234567
ptr >)
= .. = The 100 bytes now allocated
head > -
size: 3980
next: 0
. .. = The free 3980 byte chunk

Figure 17.4: A Heap: After One Allocation

4096 - 1068 - 8 = 3980

4. Heap with Three Allocations

16 KB = 16384;

sptr —»

head —»

sptr =

size: 100

magic: 1234567

size: 100

magic: 1234567

size: 100

magic: 1234567

size: 3764

next: 0

16384 + 108 + 8 = 16500;

[virtual address: 16KB]

100 bytes still allocated

100 bytes still allocated

(but about to be freed)

100-bytes still allocated

The free 3764-byte chunk

head = sptr + 100 + 108 = 16708

Figure 17.5: Free Space With Three Chunks Allocated

4096 - 3*108 - 8 = 3764

5. Heap with Two Allocations

after free(sptr): head = sptr - 8 = 16492;

head —»

sptr —»

size: 100

magic: 1234567

[virtual address: 16KB]

100 bytes still allocated

size: 100
next: 16708
size: 100

magic: 1234567

size: 3764

(now a free chunk of memory)

100-bytes still allocated

next: 0

The free 3764-byte chunk

Figure 17.6: Free Space With Two Chunks Allocated

6. A Non-Coalesced Free List

after last two in-use chunks freed, without coalescing:

[virtual address: 16KB]
size: 100 | =
next: 16492
..o (now free)
size: 100 | =
next: 16708
- (now free)
head —»
size: 100
next: 16384
..o (now free)
size: 3764 | «
next: 0
- The free 3764-byte chunk

Figure 17.7: A Non-Coalesced Free List

7. Policies
goals: minimize fragmentation, minimize search time
ordering: address-based vs. increasing size vs. decreasing size

Best Fit, Worst Fit, First Fit, Next Fit

head — 10 —» 30 —» 20 — NULL

Assume an allocation request of size 15. A best-fit approach would
search the entire list and find that 20 was the best fit, as it is the smallest
free space that can accommodate the request. The resulting free list:

head —» 10 —» 30 —» 5 —» NULL

As happens in this example, and often happens with a best-fit ap-
proach, a small free chunk is now left over. A worst-fit approach is similar
but instead finds the largest chunk, in this example 30. The resulting list:

head —» 10 —» 15 —» 20 —» NULL

The first-fit strategy, in this example, does the same thing as worst-fit,
also finding the first free block that can satisfy the request. The difference
is in the search cost; both best-fit and worst-fit look through the entire list;
first-fit only examines free chunks until it finds one that fits, thus reducing
search cost.

Other: tree vs. list, separate lists for different sizes, custom block allocation, ...

8. Custom Block Allocation

An application with heavy use of malloc() and free() for a particular data structure may obtain a significant performance increase using block allocation and
caching.

For example, data nodes could be allocated in blocks of 1000, so then to allocate 1,000,000 nodes malloc() would be called only 1000 times.
And instead of using free(), unneeded nodes could be saved for later reuse.
Example implementation:

void *emalloc(size t nbytes) { // malloc() with exit on error
void *p = malloc(nbytes); if(!p) { fprintf(stderr, "malloc() failed\n"); exit(1l); } return p;
}

typedef struct node { double x; int y; /* ... data ... */ struct node *next; } Node;

#if BLOCK
static Node *head = 0;
static int block = 1000; // number of nodes to allocate at one time
Node *new node(void) {
if('head) { // allocate a block of nodes
head = emalloc(block*sizeof(Node)); Node *last = head+block-1;
for(Node *p = head; p < last; ++p) p->next = p+1; // link the nodes
last->next = 0;
}
Node *n = head; head = head->next; return n; // return head of list
}
void free node(Node *n) {
n->next = head; head = n; // insert at head of list
}
#else
#define new node() emalloc(sizeof (Node))
#define free node(n) free(n)
#endif

9. Exercises

Exercises from the book using malloc.py:

1. First run with the flags -n 10 -H 0 -p BEST -s 0 to generate a few random allocations and frees. Can you predict what alloc()/free() will return? Can
you guess the state of the free list after each request? What do you notice about the free list over time?

2. How are the results different when using a WORST fit policy to search the free list (-p WORST)? What changes?

3. What about when using FIRST fit (-p FIRST)? What speeds up when you use first fit?

