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1. TLB

TLB = translation-lookaside buffer = address-translation cache (may be at least partially managed by OS software)

[vs. lower-level data caches (L1, L2, L3) handled completely by hardware]

Assuming a linear page table (i.e. the page table is an array) and a hardware-managed TLB:



2. Cache Example

Consider an array of 10 4-byte integers in memory, starting at virtual address 100 = 0b01100100

An 8-bit virtual address space, with 16-byte pages: VA (8) = VPN (4) Offset (4) = 0b0110 0b0100 = 6 4

(Above is data cache, TLB cache not shown)



3. Memory Hierarchy Example with TLB and L2 Cache

Virtually Indexed, Physically Tagged

Note: L2 cache tag should be 20 bits (from Hennessy & Patterson)



4. OS Handling TLB Miss



5. TLB Contents

TLB entry = VPN, PFN, other bits (valid, protection, dirty, address space ID, ...)

32-bit address space with 4KB pages.

19-bit VPN (+1 bit reserved for kernel), 12-bit offset, translated to 24-bit PFN

224*4KB = 236 = 64 GB physical memory

global bit (G), 8-bit ASID, 3 coherence (C) bits, dirty bit, valid bit.



6. Measuring Cache Effects

Homework P19

Consider a 2D array with each row occupying one page of memory:

  #include <unistd.h>
  #include <stdlib.h>
  ...
  int main( void)
  {
    int nrows = 300, PAGESIZE = sysconf(_SC_PAGESIZE), ncols = PAGESIZE/sizeof(int);

    int *a = calloc( nrows*ncols, sizeof(int));

Note that a dynamically allocated 2D array is stored as a 1D array, so a[row][col] is really a[row*ncols+col]

Accessing the array by rows should be much faster than access by columns, due to TLB and data caching:

   // by rows
   //
    for( int row = 0; row < nrows; ++row)
      for( int col = 0; col < ncols; ++col)
        a[row*ncols+col] += 1;

or:

   // by cols
   //
    for( int col = 0; col < ncols; ++col)
      for( int row = 0; row < nrows; ++row)
        a[row*ncols+col] += 1;
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