
OSTEP Chapter 19

ECE 3600, Fall 2022

Table of Contents

1. TLB
2. Cache Example
3. Memory Hierarchy Example with TLB and L2 Cache
4. OS Handling TLB Miss
5. TLB Contents
6. Measuring Cache Effects

file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_1.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_1.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_2.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_2.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_3.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_3.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_4.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_4.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_5.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_5.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_6.html
file:///home/perry/tmp/os/Chapters/19-vm-tlbs/print_6.html

1. TLB

TLB = translation-lookaside buffer = address-translation cache (may be at least partially managed by OS software)

[vs. lower-level data caches (L1, L2, L3) handled completely by hardware]

Assuming a linear page table (i.e. the page table is an array) and a hardware-managed TLB:

2. Cache Example

Consider an array of 10 4-byte integers in memory, starting at virtual address 100 = 0b01100100

An 8-bit virtual address space, with 16-byte pages: VA (8) = VPN (4) Offset (4) = 0b0110 0b0100 = 6 4

(Above is data cache, TLB cache not shown)

3. Memory Hierarchy Example with TLB and L2 Cache

Virtually Indexed, Physically Tagged

Note: L2 cache tag should be 20 bits (from Hennessy & Patterson)

4. OS Handling TLB Miss

5. TLB Contents

TLB entry = VPN, PFN, other bits (valid, protection, dirty, address space ID, ...)

32-bit address space with 4KB pages.

19-bit VPN (+1 bit reserved for kernel), 12-bit offset, translated to 24-bit PFN

224*4KB = 236 = 64 GB physical memory

global bit (G), 8-bit ASID, 3 coherence (C) bits, dirty bit, valid bit.

6. Measuring Cache Effects

Homework P19

Consider a 2D array with each row occupying one page of memory:

 #include <unistd.h>
 #include <stdlib.h>
 ...
 int main(void)
 {
 int nrows = 300, PAGESIZE = sysconf(_SC_PAGESIZE), ncols = PAGESIZE/sizeof(int);

 int *a = calloc(nrows*ncols, sizeof(int));

Note that a dynamically allocated 2D array is stored as a 1D array, so a[row][col] is really a[row*ncols+col]

Accessing the array by rows should be much faster than access by columns, due to TLB and data caching:

 // by rows
 //
 for(int row = 0; row < nrows; ++row)
 for(int col = 0; col < ncols; ++col)
 a[row*ncols+col] += 1;

or:

 // by cols
 //
 for(int col = 0; col < ncols; ++col)
 for(int row = 0; row < nrows; ++row)
 a[row*ncols+col] += 1;

file:///home/perry/ftp/os/p19/p19.html
file:///home/perry/ftp/os/p19/p19.html
file:///home/perry/ftp/os/man/sysconf.html
file:///home/perry/ftp/os/man/sysconf.html
file:///home/perry/ftp/os/man/calloc.html
file:///home/perry/ftp/os/man/calloc.html

