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The Abstraction: The Process

In this chapter, we discuss one of the most fundamental abstractions that
the OS provides to users: the process. The definition of a process, infor-
mally, is quite simple: it is a running program [V+65,BH70]. The program
itself is a lifeless thing: it just sits there on the disk, a bunch of instructions
(and maybe some static data), waiting to spring into action. It is the oper-
ating system that takes these bytes and gets them running, transforming
the program into something useful.

It turns out that one often wants to run more than one program at
once; for example, consider your desktop or laptop where you might like
to run a web browser, mail program, a game, a music player, and so forth.
In fact, a typical system may be seemingly running tens or even hundreds
of processes at the same time. Doing so makes the system easy to use, as
one never need be concerned with whether a CPU is available; one simply
runs programs. Hence our challenge:

THE CRUX OF THE PROBLEM:
HOW TO PROVIDE THE ILLUSION OF MANY CPUS?

Although there are only a few physical CPUs available, how can the
OS provide the illusion of a nearly-endless supply of said CPUs?

The OS creates this illusion by virtualizing the CPU. By running one
process, then stopping it and running another, and so forth, the OS can
promote the illusion that many virtual CPUs exist when in fact there is
only one physical CPU (or a few). This basic technique, known as time
sharing of the CPU, allows users to run as many concurrent processes as
they would like; the potential cost is performance, as each will run more
slowly if the CPU(s) must be shared.

To implement virtualization of the CPU, and to implement it well, the
OS will need both some low-level machinery and some high-level in-
telligence. We call the low-level machinery mechanisms; mechanisms
are low-level methods or protocols that implement a needed piece of
functionality. For example, we’ll learn later how to implement a context
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2 THE ABSTRACTION: THE PROCESS

TIP: USE TIME SHARING (AND SPACE SHARING)
Time sharing is a basic technique used by an OS to share a resource. By
allowing the resource to be used for a little while by one entity, and then
a little while by another, and so forth, the resource in question (e.g., the
CPU, or a network link) can be shared by many. The counterpart of time
sharing is space sharing, where a resource is divided (in space) among
those who wish to use it. For example, disk space is naturally a space-
shared resource; once a block is assigned to a file, it is normally not as-
signed to another file until the user deletes the original file.

switch, which gives the OS the ability to stop running one program and
start running another on a given CPU; this time-sharing mechanism is
employed by all modern OSes.

On top of these mechanisms resides some of the intelligence in the
OS, in the form of policies. Policies are algorithms for making some
kind of decision within the OS. For example, given a number of possi-
ble programs to run on a CPU, which program should the OS run? A
scheduling policy in the OS will make this decision, likely using histori-
cal information (e.g., which program has run more over the last minute?),
workload knowledge (e.g., what types of programs are run), and perfor-
mance metrics (e.g., is the system optimizing for interactive performance,
or throughput?) to make its decision.

4.1 The Abstraction: A Process

The abstraction provided by the OS of a running program is something
we will call a process. As we said above, a process is simply a running
program; at any instant in time, we can summarize a process by taking an
inventory of the different pieces of the system it accesses or affects during
the course of its execution.

To understand what constitutes a process, we thus have to understand
its machine state: what a program can read or update when it is running.
At any given time, what parts of the machine are important to the execu-
tion of this program?

One obvious component of machine state that comprises a process is
its memory. Instructions lie in memory; the data that the running pro-
gram reads and writes sits in memory as well. Thus the memory that the
process can address (called its address space) is part of the process.

Also part of the process’s machine state are registers; many instructions
explicitly read or update registers and thus clearly they are important to
the execution of the process.

Note that there are some particularly special registers that form part
of this machine state. For example, the program counter (PC) (sometimes
called the instruction pointer or IP) tells us which instruction of the pro-
gram will execute next; similarly a stack pointer and associated frame
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THE ABSTRACTION: THE PROCESS 3

TIP: SEPARATE POLICY AND MECHANISM

In many operating systems, a common design paradigm is to separate
high-level policies from their low-level mechanisms [L+75]. You can
think of the mechanism as providing the answer to a how question about
a system; for example, how does an operating system perform a context
switch? The policy provides the answer to a which question; for example,
which process should the operating system run right now? Separating the
two allows one easily to change policies without having to rethink the
mechanism and is thus a form of modularity, a general software design
principle.

pointer are used to manage the stack for function parameters, local vari-
ables, and return addresses.

Finally, programs often access persistent storage devices too. Such I/O
information might include a list of the files the process currently has open.

4.2 Process API

Though we defer discussion of a real process API until a subsequent
chapter, here we first give some idea of what must be included in any
interface of an operating system. These APIs, in some form, are available
on any modern operating system.

• Create: An operating system must include some method to cre-
ate new processes. When you type a command into the shell, or
double-click on an application icon, the OS is invoked to create a
new process to run the program you have indicated.

• Destroy: As there is an interface for process creation, systems also
provide an interface to destroy processes forcefully. Of course, many
processes will run and just exit by themselves when complete; when
they don’t, however, the user may wish to kill them, and thus an in-
terface to halt a runaway process is quite useful.

• Wait: Sometimes it is useful to wait for a process to stop running;
thus some kind of waiting interface is often provided.

• Miscellaneous Control: Other than killing or waiting for a process,
there are sometimes other controls that are possible. For example,
most operating systems provide some kind of method to suspend a
process (stop it from running for a while) and then resume it (con-
tinue it running).

• Status: There are usually interfaces to get some status information
about a process as well, such as how long it has run for, or what
state it is in.
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Figure 4.1: Loading: From Program To Process

4.3 Process Creation: A Little More Detail

One mystery that we should unmask a bit is how programs are trans-
formed into processes. Specifically, how does the OS get a program up
and running? How does process creation actually work?

The first thing that the OS must do to run a program is to load its code
and any static data (e.g., initialized variables) into memory, into the ad-
dress space of the process. Programs initially reside on disk (or, in some
modern systems, flash-based SSDs) in some kind of executable format;
thus, the process of loading a program and static data into memory re-
quires the OS to read those bytes from disk and place them in memory
somewhere (as shown in Figure 4.1).

In early (or simple) operating systems, the loading process is done ea-
gerly, i.e., all at once before running the program; modern OSes perform
the process lazily, i.e., by loading pieces of code or data only as they are
needed during program execution. To truly understand how lazy loading
of pieces of code and data works, you’ll have to understand more about
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THE ABSTRACTION: THE PROCESS 5

the machinery of paging and swapping, topics we’ll cover in the future
when we discuss the virtualization of memory. For now, just remember
that before running anything, the OS clearly must do some work to get
the important program bits from disk into memory.

Once the code and static data are loaded into memory, there are a few
other things the OS needs to do before running the process. Some mem-
ory must be allocated for the program’s run-time stack (or just stack).
As you should likely already know, C programs use the stack for local
variables, function parameters, and return addresses; the OS allocates
this memory and gives it to the process. The OS will also likely initial-
ize the stack with arguments; specifically, it will fill in the parameters to
the main() function, i.e., argc and the argv array.

The OS may also allocate some memory for the program’s heap. In C
programs, the heap is used for explicitly requested dynamically-allocated
data; programs request such space by calling malloc() and free it ex-
plicitly by calling free(). The heap is needed for data structures such as
linked lists, hash tables, trees, and other interesting data structures. The
heap will be small at first; as the program runs, and requests more mem-
ory via the malloc() library API, the OS may get involved and allocate
more memory to the process to help satisfy such calls.

The OS will also do some other initialization tasks, particularly as re-
lated to input/output (I/O). For example, in UNIX systems, each process
by default has three open file descriptors, for standard input, output, and
error; these descriptors let programs easily read input from the terminal
and print output to the screen. We’ll learn more about I/O, file descrip-
tors, and the like in the third part of the book on persistence.

By loading the code and static data into memory, by creating and ini-
tializing a stack, and by doing other work as related to I/O setup, the OS
has now (finally) set the stage for program execution. It thus has one last
task: to start the program running at the entry point, namely main(). By
jumping to the main() routine (through a specialized mechanism that
we will discuss next chapter), the OS transfers control of the CPU to the
newly-created process, and thus the program begins its execution.

4.4 Process States

Now that we have some idea of what a process is (though we will
continue to refine this notion), and (roughly) how it is created, let us talk
about the different states a process can be in at a given time. The notion
that a process can be in one of these states arose in early computer systems
[DV66,V+65]. In a simplified view, a process can be in one of three states:

• Running: In the running state, a process is running on a processor.
This means it is executing instructions.

• Ready: In the ready state, a process is ready to run but for some
reason the OS has chosen not to run it at this given moment.
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Figure 4.2: Process: State Transitions

• Blocked: In the blocked state, a process has performed some kind
of operation that makes it not ready to run until some other event
takes place. A common example: when a process initiates an I/O
request to a disk, it becomes blocked and thus some other process
can use the processor.

If we were to map these states to a graph, we would arrive at the di-
agram in Figure 4.2. As you can see in the diagram, a process can be
moved between the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been sched-
uled; being moved from running to ready means the process has been
descheduled. Once a process has become blocked (e.g., by initiating an
I/O operation), the OS will keep it as such until some event occurs (e.g.,
I/O completion); at that point, the process moves to the ready state again
(and potentially immediately to running again, if the OS so decides).

Let’s look at an example of how two processes might transition through
some of these states. First, imagine two processes running, each of which
only use the CPU (they do no I/O). In this case, a trace of the state of each
process might look like this (Figure 4.3).

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready
4 Running Ready Process0 now done
5 – Running
6 – Running
7 – Running
8 – Running Process1 now done

Figure 4.3: Tracing Process State: CPU Only
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Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready Process0 initiates I/O
4 Blocked Running Process0 is blocked,
5 Blocked Running so Process1 runs
6 Blocked Running
7 Ready Running I/O done
8 Ready Running Process1 now done
9 Running –

10 Running – Process0 now done

Figure 4.4: Tracing Process State: CPU and I/O

In this next example, the first process issues an I/O after running for
some time. At that point, the process is blocked, giving the other process
a chance to run. Figure 4.4 shows a trace of this scenario.

More specifically, Process0 initiates an I/O and becomes blocked wait-
ing for it to complete; processes become blocked, for example, when read-
ing from a disk or waiting for a packet from a network. The OS recog-
nizes Process0 is not using the CPU and starts running Process1. While
Process1 is running, the I/O completes, moving Process0 back to ready.
Finally, Process1 finishes, and Process0 runs and then is done.

Note that there are many decisions the OS must make, even in this
simple example. First, the system had to decide to run Process1 while
Process0 issued an I/O; doing so improves resource utilization by keep-
ing the CPU busy. Second, the system decided not to switch back to
Process0 when its I/O completed; it is not clear if this is a good deci-
sion or not. What do you think? These types of decisions are made by the
OS scheduler, a topic we will discuss a few chapters in the future.

4.5 Data Structures

The OS is a program, and like any program, it has some key data struc-
tures that track various relevant pieces of information. To track the state
of each process, for example, the OS likely will keep some kind of pro-
cess list for all processes that are ready and some additional informa-
tion to track which process is currently running. The OS must also track,
in some way, blocked processes; when an I/O event completes, the OS
should make sure to wake the correct process and ready it to run again.

Figure 4.5 shows what type of information an OS needs to track about
each process in the xv6 kernel [CK+08]. Similar process structures exist
in “real” operating systems such as Linux, Mac OS X, or Windows; look
them up and see how much more complex they are.

From the figure, you can see a couple of important pieces of informa-
tion the OS tracks about a process. The register context will hold, for a
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// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

int eip;

int esp;

int ebx;

int ecx;

int edx;

int esi;

int edi;

int ebp;

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

// the information xv6 tracks about each process

// including its register context and state

struct proc {

char *mem; // Start of process memory

uint sz; // Size of process memory

char *kstack; // Bottom of kernel stack

// for this process

enum proc_state state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

void *chan; // If !zero, sleeping on chan

int killed; // If !zero, has been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

struct context context; // Switch here to run process

struct trapframe *tf; // Trap frame for the

// current interrupt

};

Figure 4.5: The xv6 Proc Structure

stopped process, the contents of its registers. When a process is stopped,
its registers will be saved to this memory location; by restoring these reg-
isters (i.e., placing their values back into the actual physical registers), the
OS can resume running the process. We’ll learn more about this technique
known as a context switch in future chapters.

You can also see from the figure that there are some other states a pro-
cess can be in, beyond running, ready, and blocked. Sometimes a system
will have an initial state that the process is in when it is being created.
Also, a process could be placed in a final state where it has exited but
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ASIDE: DATA STRUCTURE — THE PROCESS LIST

Operating systems are replete with various important data structures
that we will discuss in these notes. The process list (also called the task
list) is the first such structure. It is one of the simpler ones, but certainly
any OS that has the ability to run multiple programs at once will have
something akin to this structure in order to keep track of all the running
programs in the system. Sometimes people refer to the individual struc-
ture that stores information about a process as a Process Control Block
(PCB), a fancy way of talking about a C structure that contains informa-
tion about each process (also sometimes called a process descriptor).

has not yet been cleaned up (in UNIX-based systems, this is called the

zombie state1). This final state can be useful as it allows other processes
(usually the parent that created the process) to examine the return code
of the process and see if the just-finished process executed successfully
(usually, programs return zero in UNIX-based systems when they have
accomplished a task successfully, and non-zero otherwise). When fin-
ished, the parent will make one final call (e.g., wait()) to wait for the
completion of the child, and to also indicate to the OS that it can clean up
any relevant data structures that referred to the now-extinct process.

4.6 Summary

We have introduced the most basic abstraction of the OS: the process.
It is quite simply viewed as a running program. With this conceptual
view in mind, we will now move on to the nitty-gritty: the low-level
mechanisms needed to implement processes, and the higher-level poli-
cies required to schedule them in an intelligent way. By combining mech-
anisms and policies, we will build up our understanding of how an oper-
ating system virtualizes the CPU.

1Yes, the zombie state. Just like real zombies, these zombies are relatively easy to kill.
However, different techniques are usually recommended.
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ASIDE: KEY PROCESS TERMS

• The process is the major OS abstraction of a running program. At
any point in time, the process can be described by its state: the con-
tents of memory in its address space, the contents of CPU registers
(including the program counter and stack pointer, among others),
and information about I/O (such as open files which can be read or
written).

• The process API consists of calls programs can make related to pro-
cesses. Typically, this includes creation, destruction, and other use-
ful calls.

• Processes exist in one of many different process states, including
running, ready to run, and blocked. Different events (e.g., getting
scheduled or descheduled, or waiting for an I/O to complete) tran-
sition a process from one of these states to the other.

• A process list contains information about all processes in the sys-
tem. Each entry is found in what is sometimes called a process
control block (PCB), which is really just a structure that contains
information about a specific process.
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Homework (Simulation)

This program, process-run.py, allows you to see how process states
change as programs run and either use the CPU (e.g., perform an add
instruction) or do I/O (e.g., send a request to a disk and wait for it to
complete). See the README for details.

Questions

1. Run process-run.pywith the following flags: -l 5:100,5:100.
What should the CPU utilization be (e.g., the percent of time the
CPU is in use?) Why do you know this? Use the -c and -p flags to
see if you were right.

2. Now run with these flags: ./process-run.py -l 4:100,1:0.
These flags specify one process with 4 instructions (all to use the
CPU), and one that simply issues an I/O and waits for it to be done.
How long does it take to complete both processes? Use -c and -p

to find out if you were right.

3. Switch the order of the processes: -l 1:0,4:100. What happens
now? Does switching the order matter? Why? (As always, use -c
and -p to see if you were right)

4. We’ll now explore some of the other flags. One important flag is
-S, which determines how the system reacts when a process is-
sues an I/O. With the flag set to SWITCH ON END, the system
will NOT switch to another process while one is doing I/O, in-
stead waiting until the process is completely finished. What hap-
pens when you run the following two processes (-l 1:0,4:100

-c -S SWITCH ON END), one doing I/O and the other doing CPU
work?

5. Now, run the same processes, but with the switching behavior set
to switch to another process whenever one is WAITING for I/O (-l
1:0,4:100 -c -S SWITCH ON IO). What happens now? Use -c
and -p to confirm that you are right.

6. One other important behavior is what to do when an I/O com-
pletes. With -I IO RUN LATER, when an I/O completes, the pro-
cess that issued it is not necessarily run right away; rather, whatever
was running at the time keeps running. What happens when you
run this combination of processes? (Run ./process-run.py -l

3:0,5:100,5:100,5:100 -S SWITCH ON IO -I IO RUN LATER

-c -p) Are system resources being effectively utilized?

7. Now run the same processes, but with -I IO RUN IMMEDIATE set,
which immediately runs the process that issued the I/O. How does
this behavior differ? Why might running a process that just com-
pleted an I/O again be a good idea?
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8. Now run with some randomly generated processes: -s 1 -l 3:50,3:50

or -s 2 -l 3:50,3:50 or -s 3 -l 3:50,3:50. See if you can
predict how the trace will turn out. What happens when you use
the flag -I IO RUN IMMEDIATE vs. -I IO RUN LATER? What hap-
pens when you use -S SWITCH ON IO vs. -S SWITCH ON END?
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