
29

Lock-based Concurrent Data Structures

Before moving beyond locks, we’ll first describe how to use locks in some
common data structures. Adding locks to a data structure to make it us-
able by threads makes the structure thread safe. Of course, exactly how
such locks are added determines both the correctness and performance of
the data structure. And thus, our challenge:

CRUX: HOW TO ADD LOCKS TO DATA STRUCTURES

When given a particular data structure, how should we add locks to
it, in order to make it work correctly? Further, how do we add locks such
that the data structure yields high performance, enabling many threads
to access the structure at once, i.e., concurrently?

Of course, we will be hard pressed to cover all data structures or all
methods for adding concurrency, as this is a topic that has been studied
for years, with (literally) thousands of research papers published about
it. Thus, we hope to provide a sufficient introduction to the type of think-
ing required, and refer you to some good sources of material for further
inquiry on your own. We found Moir and Shavit’s survey to be a great
source of information [MS04].

29.1 Concurrent Counters

One of the simplest data structures is a counter. It is a structure that
is commonly used and has a simple interface. We define a simple non-
concurrent counter in Figure 29.1.

Simple But Not Scalable

As you can see, the non-synchronized counter is a trivial data structure,
requiring a tiny amount of code to implement. We now have our next
challenge: how can we make this code thread safe? Figure 29.2 shows
how we do so.

1



2 LOCK-BASED CONCURRENT DATA STRUCTURES

1 typedef struct __counter_t {

2 int value;

3 } counter_t;

4

5 void init(counter_t *c) {

6 c->value = 0;

7 }

8

9 void increment(counter_t *c) {

10 c->value++;

11 }

12

13 void decrement(counter_t *c) {

14 c->value--;

15 }

16

17 int get(counter_t *c) {

18 return c->value;

19 }
Figure 29.1: A Counter Without Locks

This concurrent counter is simple and works correctly. In fact, it fol-
lows a design pattern common to the simplest and most basic concurrent
data structures: it simply adds a single lock, which is acquired when call-
ing a routine that manipulates the data structure, and is released when
returning from the call. In this manner, it is similar to a data structure
built with monitors [BH73], where locks are acquired and released auto-
matically as you call and return from object methods.

At this point, you have a working concurrent data structure. The prob-
lem you might have is performance. If your data structure is too slow,
you’ll have to do more than just add a single lock; such optimizations, if
needed, are thus the topic of the rest of the chapter. Note that if the data
structure is not too slow, you are done! No need to do something fancy if
something simple will work.

To understand the performance costs of the simple approach, we run a
benchmark in which each thread updates a single shared counter a fixed
number of times; we then vary the number of threads. Figure 29.5 shows
the total time taken, with one to four threads active; each thread updates
the counter one million times. This experiment was run upon an iMac
with four Intel 2.7 GHz i5 CPUs; with more CPUs active, we hope to get
more total work done per unit time.

From the top line in the figure (labeled ’Precise’), you can see that the
performance of the synchronized counter scales poorly. Whereas a single
thread can complete the million counter updates in a tiny amount of time
(roughly 0.03 seconds), having two threads each update the counter one
million times concurrently leads to a massive slowdown (taking over 5
seconds!). It only gets worse with more threads.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCK-BASED CONCURRENT DATA STRUCTURES 3

1 typedef struct __counter_t {

2 int value;

3 pthread_mutex_t lock;

4 } counter_t;

5

6 void init(counter_t *c) {

7 c->value = 0;

8 Pthread_mutex_init(&c->lock, NULL);

9 }

10

11 void increment(counter_t *c) {

12 Pthread_mutex_lock(&c->lock);

13 c->value++;

14 Pthread_mutex_unlock(&c->lock);

15 }

16

17 void decrement(counter_t *c) {

18 Pthread_mutex_lock(&c->lock);

19 c->value--;

20 Pthread_mutex_unlock(&c->lock);

21 }

22

23 int get(counter_t *c) {

24 Pthread_mutex_lock(&c->lock);

25 int rc = c->value;

26 Pthread_mutex_unlock(&c->lock);

27 return rc;

28 }
Figure 29.2: A Counter With Locks

Ideally, you’d like to see the threads complete just as quickly on mul-
tiple processors as the single thread does on one. Achieving this end is
called perfect scaling; even though more work is done, it is done in par-
allel, and hence the time taken to complete the task is not increased.

Scalable Counting

Amazingly, researchers have studied how to build more scalable coun-
ters for years [MS04]. Even more amazing is the fact that scalable coun-
ters matter, as recent work in operating system performance analysis has
shown [B+10]; without scalable counting, some workloads running on
Linux suffer from serious scalability problems on multicore machines.

Many techniques have been developed to attack this problem. We’ll
describe one approach known as an approximate counter [C06].

The approximate counter works by representing a single logical counter
via numerous local physical counters, one per CPU core, as well as a single
global counter. Specifically, on a machine with four CPUs, there are four

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



4 LOCK-BASED CONCURRENT DATA STRUCTURES

Time L1 L2 L3 L4 G

0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 5 → 0 1 3 4 5 (from L1)
7 0 2 4 5 → 0 10 (from L4)

Figure 29.3: Tracing the Approximate Counters

local counters and one global one. In addition to these counters, there are

also locks: one for each local counter1, and one for the global counter.
The basic idea of approximate counting is as follows. When a thread

running on a given core wishes to increment the counter, it increments its
local counter; access to this local counter is synchronized via the corre-
sponding local lock. Because each CPU has its own local counter, threads
across CPUs can update local counters without contention, and thus up-
dates to the counter are scalable.

However, to keep the global counter up to date (in case a thread wishes
to read its value), the local values are periodically transferred to the global
counter, by acquiring the global lock and incrementing it by the local
counter’s value; the local counter is then reset to zero.

How often this local-to-global transfer occurs is determined by a thresh-
old S. The smaller S is, the more the counter behaves like the non-scalable
counter above; the bigger S is, the more scalable the counter, but the fur-
ther off the global value might be from the actual count. One could sim-
ply acquire all the local locks and the global lock (in a specified order, to
avoid deadlock) to get an exact value, but that is not scalable.

To make this clear, let’s look at an example (Figure 29.3). In this ex-
ample, the threshold S is set to 5, and there are threads on each of four
CPUs updating their local counters L1 ... L4. The global counter value
(G) is also shown in the trace, with time increasing downward. At each
time step, a local counter may be incremented; if the local value reaches
the threshold S, the local value is transferred to the global counter and
the local counter is reset.

The lower line in Figure 29.5 (labeled ’Approximate’, on page 6) shows
the performance of approximate counters with a threshold S of 1024. Per-
formance is excellent; the time taken to update the counter four million
times on four processors is hardly higher than the time taken to update it
one million times on one processor.

1We need the local locks because we assume there may be more than one thread on each
core. If, instead, only one thread ran on each core, no local lock would be needed.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCK-BASED CONCURRENT DATA STRUCTURES 5

1 typedef struct __counter_t {

2 int global; // global count

3 pthread_mutex_t glock; // global lock

4 int local[NUMCPUS]; // per-CPU count

5 pthread_mutex_t llock[NUMCPUS]; // ... and locks

6 int threshold; // update frequency

7 } counter_t;

8

9 // init: record threshold, init locks, init values

10 // of all local counts and global count

11 void init(counter_t *c, int threshold) {

12 c->threshold = threshold;

13 c->global = 0;

14 pthread_mutex_init(&c->glock, NULL);

15 int i;

16 for (i = 0; i < NUMCPUS; i++) {

17 c->local[i] = 0;

18 pthread_mutex_init(&c->llock[i], NULL);

19 }

20 }

21

22 // update: usually, just grab local lock and update

23 // local amount; once local count has risen ’threshold’,

24 // grab global lock and transfer local values to it

25 void update(counter_t *c, int threadID, int amt) {

26 int cpu = threadID % NUMCPUS;

27 pthread_mutex_lock(&c->llock[cpu]);

28 c->local[cpu] += amt;

29 if (c->local[cpu] >= c->threshold) {

30 // transfer to global (assumes amt>0)

31 pthread_mutex_lock(&c->glock);

32 c->global += c->local[cpu];

33 pthread_mutex_unlock(&c->glock);

34 c->local[cpu] = 0;

35 }

36 pthread_mutex_unlock(&c->llock[cpu]);

37 }

38

39 // get: just return global amount (approximate)

40 int get(counter_t *c) {

41 pthread_mutex_lock(&c->glock);

42 int val = c->global;

43 pthread_mutex_unlock(&c->glock);

44 return val; // only approximate!

45 }
Figure 29.4: Approximate Counter Implementation

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



6 LOCK-BASED CONCURRENT DATA STRUCTURES

1 2 3 4
0

5

10

15

Threads

T
im

e
 (

s
e
c
o
n
d
s
)

Precise
Approximate

Figure 29.5: Performance of Traditional vs. Approximate Counters

1 2 4 8 16 32 64 128 256 1024512
0

5

10

15

Approximation Factor (S)

T
im

e
 (

s
e
c
o
n
d
s
)

Figure 29.6: Scaling Approximate Counters

Figure 29.6 shows the importance of the threshold value S, with four
threads each incrementing the counter 1 million times on four CPUs. If S
is low, performance is poor (but the global count is always quite accurate);
if S is high, performance is excellent, but the global count lags (by at most
the number of CPUs multiplied by S). This accuracy/performance trade-
off is what approximate counters enable.

A rough version of an approximate counter is found in Figure 29.4
(page 5). Read it, or better yet, run it yourself in some experiments to
better understand how it works.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCK-BASED CONCURRENT DATA STRUCTURES 7

TIP: MORE CONCURRENCY ISN’T NECESSARILY FASTER

If the scheme you design adds a lot of overhead (for example, by acquir-
ing and releasing locks frequently, instead of once), the fact that it is more
concurrent may not be important. Simple schemes tend to work well,
especially if they use costly routines rarely. Adding more locks and com-
plexity can be your downfall. All of that said, there is one way to really
know: build both alternatives (simple but less concurrent, and complex
but more concurrent) and measure how they do. In the end, you can’t
cheat on performance; your idea is either faster, or it isn’t.

29.2 Concurrent Linked Lists

We next examine a more complicated structure, the linked list. Let’s
start with a basic approach once again. For simplicity, we’ll omit some of
the obvious routines that such a list would have and just focus on concur-
rent insert; we’ll leave it to the reader to think about lookup, delete, and
so forth. Figure 29.7 shows the code for this rudimentary data structure.

As you can see in the code, the code simply acquires a lock in the insert
routine upon entry, and releases it upon exit. One small tricky issue arises
if malloc() happens to fail (a rare case); in this case, the code must also
release the lock before failing the insert.

This kind of exceptional control flow has been shown to be quite error
prone; a recent study of Linux kernel patches found that a huge fraction of
bugs (nearly 40%) are found on such rarely-taken code paths (indeed, this
observation sparked some of our own research, in which we removed all
memory-failing paths from a Linux file system, resulting in a more robust
system [S+11]).

Thus, a challenge: can we rewrite the insert and lookup routines to re-
main correct under concurrent insert but avoid the case where the failure
path also requires us to add the call to unlock?

The answer, in this case, is yes. Specifically, we can rearrange the code
a bit so that the lock and release only surround the actual critical section
in the insert code, and that a common exit path is used in the lookup code.
The former works because part of the insert actually need not be locked;
assuming that malloc() itself is thread-safe, each thread can call into it
without worry of race conditions or other concurrency bugs. Only when
updating the shared list does a lock need to be held. See Figure 29.8 for
the details of these modifications.

As for the lookup routine, it is a simple code transformation to jump
out of the main search loop to a single return path. Doing so again re-
duces the number of lock acquire/release points in the code, and thus
decreases the chances of accidentally introducing bugs (such as forget-
ting to unlock before returning) into the code.

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



8 LOCK-BASED CONCURRENT DATA STRUCTURES

1 // basic node structure

2 typedef struct __node_t {

3 int key;

4 struct __node_t *next;

5 } node_t;

6

7 // basic list structure (one used per list)

8 typedef struct __list_t {

9 node_t *head;

10 pthread_mutex_t lock;

11 } list_t;

12

13 void List_Init(list_t *L) {

14 L->head = NULL;

15 pthread_mutex_init(&L->lock, NULL);

16 }

17

18 int List_Insert(list_t *L, int key) {

19 pthread_mutex_lock(&L->lock);

20 node_t *new = malloc(sizeof(node_t));

21 if (new == NULL) {

22 perror("malloc");

23 pthread_mutex_unlock(&L->lock);

24 return -1; // fail

25 }

26 new->key = key;

27 new->next = L->head;

28 L->head = new;

29 pthread_mutex_unlock(&L->lock);

30 return 0; // success

31 }

32

33 int List_Lookup(list_t *L, int key) {

34 pthread_mutex_lock(&L->lock);

35 node_t *curr = L->head;

36 while (curr) {

37 if (curr->key == key) {

38 pthread_mutex_unlock(&L->lock);

39 return 0; // success

40 }

41 curr = curr->next;

42 }

43 pthread_mutex_unlock(&L->lock);

44 return -1; // failure

45 }
Figure 29.7: Concurrent Linked List

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCK-BASED CONCURRENT DATA STRUCTURES 9

1 void List_Init(list_t *L) {

2 L->head = NULL;

3 pthread_mutex_init(&L->lock, NULL);

4 }

5

6 void List_Insert(list_t *L, int key) {

7 // synchronization not needed

8 node_t *new = malloc(sizeof(node_t));

9 if (new == NULL) {

10 perror("malloc");

11 return;

12 }

13 new->key = key;

14

15 // just lock critical section

16 pthread_mutex_lock(&L->lock);

17 new->next = L->head;

18 L->head = new;

19 pthread_mutex_unlock(&L->lock);

20 }

21

22 int List_Lookup(list_t *L, int key) {

23 int rv = -1;

24 pthread_mutex_lock(&L->lock);

25 node_t *curr = L->head;

26 while (curr) {

27 if (curr->key == key) {

28 rv = 0;

29 break;

30 }

31 curr = curr->next;

32 }

33 pthread_mutex_unlock(&L->lock);

34 return rv; // now both success and failure

35 }

Figure 29.8: Concurrent Linked List: Rewritten

Scaling Linked Lists

Though we again have a basic concurrent linked list, once again we are
in a situation where it does not scale particularly well. One technique
that researchers have explored to enable more concurrency within a list is
something called hand-over-hand locking (a.k.a. lock coupling) [MS04].

The idea is pretty simple. Instead of having a single lock for the entire
list, you instead add a lock per node of the list. When traversing the
list, the code first grabs the next node’s lock and then releases the current
node’s lock (which inspires the name hand-over-hand).

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



10 LOCK-BASED CONCURRENT DATA STRUCTURES

TIP: BE WARY OF LOCKS AND CONTROL FLOW

A general design tip, which is useful in concurrent code as well as else-
where, is to be wary of control flow changes that lead to function returns,
exits, or other similar error conditions that halt the execution of a func-
tion. Because many functions will begin by acquiring a lock, allocating
some memory, or doing other similar stateful operations, when errors
arise, the code has to undo all of the state before returning, which is error-
prone. Thus, it is best to structure code to minimize this pattern.

Conceptually, a hand-over-hand linked list makes some sense; it en-
ables a high degree of concurrency in list operations. However, in prac-
tice, it is hard to make such a structure faster than the simple single lock
approach, as the overheads of acquiring and releasing locks for each node
of a list traversal is prohibitive. Even with very large lists, and a large
number of threads, the concurrency enabled by allowing multiple on-
going traversals is unlikely to be faster than simply grabbing a single
lock, performing an operation, and releasing it. Perhaps some kind of hy-
brid (where you grab a new lock every so many nodes) would be worth
investigating.

29.3 Concurrent Queues

As you know by now, there is always a standard method to make a
concurrent data structure: add a big lock. For a queue, we’ll skip that
approach, assuming you can figure it out.

Instead, we’ll take a look at a slightly more concurrent queue designed
by Michael and Scott [MS98]. The data structures and code used for this
queue are found in Figure 29.9 on the following page.

If you study this code carefully, you’ll notice that there are two locks,
one for the head of the queue, and one for the tail. The goal of these two
locks is to enable concurrency of enqueue and dequeue operations. In
the common case, the enqueue routine will only access the tail lock, and
dequeue only the head lock.

One trick used by Michael and Scott is to add a dummy node (allo-
cated in the queue initialization code); this dummy enables the separa-
tion of head and tail operations. Study the code, or better yet, type it in,
run it, and measure it, to understand how it works deeply.

Queues are commonly used in multi-threaded applications. However,
the type of queue used here (with just locks) often does not completely
meet the needs of such programs. A more fully developed bounded
queue, that enables a thread to wait if the queue is either empty or overly
full, is the subject of our intense study in the next chapter on condition
variables. Watch for it!

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCK-BASED CONCURRENT DATA STRUCTURES 11

1 typedef struct __node_t {

2 int value;

3 struct __node_t *next;

4 } node_t;

5

6 typedef struct __queue_t {

7 node_t *head;

8 node_t *tail;

9 pthread_mutex_t head_lock, tail_lock;

10 } queue_t;

11

12 void Queue_Init(queue_t *q) {

13 node_t *tmp = malloc(sizeof(node_t));

14 tmp->next = NULL;

15 q->head = q->tail = tmp;

16 pthread_mutex_init(&q->head_lock, NULL);

17 pthread_mutex_init(&q->tail_lock, NULL);

18 }

19

20 void Queue_Enqueue(queue_t *q, int value) {

21 node_t *tmp = malloc(sizeof(node_t));

22 assert(tmp != NULL);

23 tmp->value = value;

24 tmp->next = NULL;

25

26 pthread_mutex_lock(&q->tail_lock);

27 q->tail->next = tmp;

28 q->tail = tmp;

29 pthread_mutex_unlock(&q->tail_lock);

30 }

31

32 int Queue_Dequeue(queue_t *q, int *value) {

33 pthread_mutex_lock(&q->head_lock);

34 node_t *tmp = q->head;

35 node_t *new_head = tmp->next;

36 if (new_head == NULL) {

37 pthread_mutex_unlock(&q->head_lock);

38 return -1; // queue was empty

39 }

40 *value = new_head->value;

41 q->head = new_head;

42 pthread_mutex_unlock(&q->head_lock);

43 free(tmp);

44 return 0;

45 }
Figure 29.9: Michael and Scott Concurrent Queue

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



12 LOCK-BASED CONCURRENT DATA STRUCTURES

1 #define BUCKETS (101)

2

3 typedef struct __hash_t {

4 list_t lists[BUCKETS];

5 } hash_t;

6

7 void Hash_Init(hash_t *H) {

8 int i;

9 for (i = 0; i < BUCKETS; i++)

10 List_Init(&H->lists[i]);

11 }

12

13 int Hash_Insert(hash_t *H, int key) {

14 return List_Insert(&H->lists[key % BUCKETS], key);

15 }

16

17 int Hash_Lookup(hash_t *H, int key) {

18 return List_Lookup(&H->lists[key % BUCKETS], key);

19 }

Figure 29.10: A Concurrent Hash Table

29.4 Concurrent Hash Table

We end our discussion with a simple and widely applicable concurrent
data structure, the hash table. We’ll focus on a simple hash table that does
not resize; a little more work is required to handle resizing, which we
leave as an exercise for the reader (sorry!).

This concurrent hash table (Figure 29.10) is straightforward, is built us-
ing the concurrent lists we developed earlier, and works incredibly well.
The reason for its good performance is that instead of having a single
lock for the entire structure, it uses a lock per hash bucket (each of which
is represented by a list). Doing so enables many concurrent operations to
take place.

Figure 29.11 shows the performance of the hash table under concur-
rent updates (from 10,000 to 50,000 concurrent updates from each of four
threads, on the same iMac with four CPUs). Also shown, for the sake
of comparison, is the performance of a linked list (with a single lock).
As you can see from the graph, this simple concurrent hash table scales
magnificently; the linked list, in contrast, does not.

29.5 Summary

We have introduced a sampling of concurrent data structures, from
counters, to lists and queues, and finally to the ubiquitous and heavily-
used hash table. We have learned a few important lessons along the way:
to be careful with acquisition and release of locks around control flow

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCK-BASED CONCURRENT DATA STRUCTURES 13

0 10 20 30 40
0

5

10

15

Inserts (Thousands)

T
im

e
 (

s
e
c
o
n
d
s
)

Simple Concurrent List
Concurrent Hash Table

Figure 29.11: Scaling Hash Tables

changes; that enabling more concurrency does not necessarily increase
performance; that performance problems should only be remedied once
they exist. This last point, of avoiding premature optimization, is cen-
tral to any performance-minded developer; there is no value in making
something faster if doing so will not improve the overall performance of
the application.

Of course, we have just scratched the surface of high performance
structures. See Moir and Shavit’s excellent survey for more information,
as well as links to other sources [MS04]. In particular, you might be inter-
ested in other structures (such as B-trees); for this knowledge, a database
class is your best bet. You also might be curious about techniques that
don’t use traditional locks at all; such non-blocking data structures are
something we’ll get a taste of in the chapter on common concurrency
bugs, but frankly this topic is an entire area of knowledge requiring more
study than is possible in this humble book. Find out more on your own
if you desire (as always!).

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



14 LOCK-BASED CONCURRENT DATA STRUCTURES

TIP: AVOID PREMATURE OPTIMIZATION (KNUTH’S LAW)
When building a concurrent data structure, start with the most basic ap-
proach, which is to add a single big lock to provide synchronized access.
By doing so, you are likely to build a correct lock; if you then find that it
suffers from performance problems, you can refine it, thus only making
it fast if need be. As Knuth famously stated, “Premature optimization is
the root of all evil.”

Many operating systems utilized a single lock when first transitioning
to multiprocessors, including Sun OS and Linux. In the latter, this lock
even had a name, the big kernel lock (BKL). For many years, this sim-
ple approach was a good one, but when multi-CPU systems became the
norm, only allowing a single active thread in the kernel at a time became
a performance bottleneck. Thus, it was finally time to add the optimiza-
tion of improved concurrency to these systems. Within Linux, the more
straightforward approach was taken: replace one lock with many. Within
Sun, a more radical decision was made: build a brand new operating sys-
tem, known as Solaris, that incorporates concurrency more fundamen-
tally from day one. Read the Linux and Solaris kernel books for more
information about these fascinating systems [BC05, MM00].

.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCK-BASED CONCURRENT DATA STRUCTURES 15

References

[B+10] “An Analysis of Linux Scalability to Many Cores” by Silas Boyd-Wickizer, Austin T.
Clements, Yandong Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Morris, Nickolai Zel-
dovich . OSDI ’10, Vancouver, Canada, October 2010. A great study of how Linux performs on
multicore machines, as well as some simple solutions. Includes a neat sloppy counter to solve one form
of the scalable counting problem.

[BH73] “Operating System Principles” by Per Brinch Hansen. Prentice-Hall, 1973. Available:
http://portal.acm.org/citation.cfm?id=540365. One of the first books on operating
systems; certainly ahead of its time. Introduced monitors as a concurrency primitive.

[BC05] “Understanding the Linux Kernel (Third Edition)” by Daniel P. Bovet and Marco Cesati.
O’Reilly Media, November 2005. The classic book on the Linux kernel. You should read it.

[C06] “The Search For Fast, Scalable Counters” by Jonathan Corbet. February 1, 2006. Avail-
able: https://lwn.net/Articles/170003. LWN has many wonderful articles about the latest
in Linux This article is a short description of scalable approximate counting; read it, and others, to learn
more about the latest in Linux.

[L+13] “A Study of Linux File System Evolution” by Lanyue Lu, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, Shan Lu. FAST ’13, San Jose, CA, February 2013. Our paper that
studies every patch to Linux file systems over nearly a decade. Lots of fun findings in there; read it to
see! The work was painful to do though; the poor graduate student, Lanyue Lu, had to look through
every single patch by hand in order to understand what they did.

[MS98] “Nonblocking Algorithms and Preemption-safe Locking on by Multiprogrammed Shared-
memory Multiprocessors. ” M. Michael, M. Scott. Journal of Parallel and Distributed Com-
puting, Vol. 51, No. 1, 1998 Professor Scott and his students have been at the forefront of concurrent
algorithms and data structures for many years; check out his web page, numerous papers, or books to
find out more.

[MS04] “Concurrent Data Structures” by Mark Moir and Nir Shavit. In Handbook of Data
Structures and Applications (Editors D. Metha and S.Sahni). Chapman and Hall/CRC Press,
2004. Available: www.cs.tau.ac.il/˜shanir/concurrent-data-structures.pdf.
A short but relatively comprehensive reference on concurrent data structures. Though it is missing
some of the latest works in the area (due to its age), it remains an incredibly useful reference.

[MM00] “Solaris Internals: Core Kernel Architecture” by Jim Mauro and Richard McDougall.
Prentice Hall, October 2000. The Solaris book. You should also read this, if you want to learn about
something other than Linux.

[S+11] “Making the Common Case the Only Case with Anticipatory Memory Allocation” by
Swaminathan Sundararaman, Yupu Zhang, Sriram Subramanian, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau . FAST ’11, San Jose, CA, February 2011. Our work on removing
possibly-failing allocation calls from kernel code paths. By allocating all potentially needed memory
before doing any work, we avoid failure deep down in the storage stack.

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



16 LOCK-BASED CONCURRENT DATA STRUCTURES

Homework (Code)

In this homework, you’ll gain some experience with writing concur-
rent code and measuring its performance. Learning to build code that
performs well is a critical skill and thus gaining a little experience here
with it is quite worthwhile.

Questions

1. We’ll start by redoing the measurements within this chapter. Use
the call gettimeofday() to measure time within your program.
How accurate is this timer? What is the smallest interval it can mea-
sure? Gain confidence in its workings, as we will need it in all sub-
sequent questions. You can also look into other timers, such as the
cycle counter available on x86 via the rdtsc instruction.

2. Now, build a simple concurrent counter and measure how long it
takes to increment the counter many times as the number of threads
increases. How many CPUs are available on the system you are
using? Does this number impact your measurements at all?

3. Next, build a version of the sloppy counter. Once again, measure its
performance as the number of threads varies, as well as the thresh-
old. Do the numbers match what you see in the chapter?

4. Build a version of a linked list that uses hand-over-hand locking
[MS04], as cited in the chapter. You should read the paper first
to understand how it works, and then implement it. Measure its
performance. When does a hand-over-hand list work better than a
standard list as shown in the chapter?

5. Pick your favorite data structure, such as a B-tree or other slightly
more interesting structure. Implement it, and start with a simple
locking strategy such as a single lock. Measure its performance as
the number of concurrent threads increases.

6. Finally, think of a more interesting locking strategy for this favorite
data structure of yours. Implement it, and measure its performance.
How does it compare to the straightforward locking approach?

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG


