
38

Redundant Arrays of Inexpensive Disks
(RAIDs)

When we use a disk, we sometimes wish it to be faster; I/O operations
are slow and thus can be the bottleneck for the entire system. When we
use a disk, we sometimes wish it to be larger; more and more data is being
put online and thus our disks are getting fuller and fuller. When we use
a disk, we sometimes wish for it to be more reliable; when a disk fails, if
our data isn’t backed up, all that valuable data is gone.

CRUX: HOW TO MAKE A LARGE, FAST, RELIABLE DISK

How can we make a large, fast, and reliable storage system? What are
the key techniques? What are trade-offs between different approaches?

In this chapter, we introduce the Redundant Array of Inexpensive
Disks better known as RAID [P+88], a technique to use multiple disks in
concert to build a faster, bigger, and more reliable disk system. The term
was introduced in the late 1980s by a group of researchers at U.C. Berke-
ley (led by Professors David Patterson and Randy Katz and then student
Garth Gibson); it was around this time that many different researchers si-
multaneously arrived upon the basic idea of using multiple disks to build
a better storage system [BG88, K86,K88,PB86,SG86].

Externally, a RAID looks like a disk: a group of blocks one can read
or write. Internally, the RAID is a complex beast, consisting of multiple
disks, memory (both volatile and non-), and one or more processors to
manage the system. A hardware RAID is very much like a computer
system, specialized for the task of managing a group of disks.

RAIDs offer a number of advantages over a single disk. One advan-
tage is performance. Using multiple disks in parallel can greatly speed
up I/O times. Another benefit is capacity. Large data sets demand large
disks. Finally, RAIDs can improve reliability; spreading data across mul-
tiple disks (without RAID techniques) makes the data vulnerable to the
loss of a single disk; with some form of redundancy, RAIDs can tolerate
the loss of a disk and keep operating as if nothing were wrong.

1



2 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

TIP: TRANSPARENCY ENABLES DEPLOYMENT

When considering how to add new functionality to a system, one should
always consider whether such functionality can be added transparently,
in a way that demands no changes to the rest of the system. Requiring a
complete rewrite of the existing software (or radical hardware changes)
lessens the chance of impact of an idea. RAID is a perfect example, and
certainly its transparency contributed to its success; administrators could
install a SCSI-based RAID storage array instead of a SCSI disk, and the
rest of the system (host computer, OS, etc.) did not have to change one bit
to start using it. By solving this problem of deployment, RAID was made
more successful from day one.

Amazingly, RAIDs provide these advantages transparently to systems
that use them, i.e., a RAID just looks like a big disk to the host system. The
beauty of transparency, of course, is that it enables one to simply replace
a disk with a RAID and not change a single line of software; the operat-
ing system and client applications continue to operate without modifica-
tion. In this manner, transparency greatly improves the deployability of
RAID, enabling users and administrators to put a RAID to use without
worries of software compatibility.

We now discuss some of the important aspects of RAIDs. We begin
with the interface, fault model, and then discuss how one can evaluate a
RAID design along three important axes: capacity, reliability, and perfor-
mance. We then discuss a number of other issues that are important to
RAID design and implementation.

38.1 Interface And RAID Internals

To a file system above, a RAID looks like a big, (hopefully) fast, and
(hopefully) reliable disk. Just as with a single disk, it presents itself as
a linear array of blocks, each of which can be read or written by the file
system (or other client).

When a file system issues a logical I/O request to the RAID, the RAID
internally must calculate which disk (or disks) to access in order to com-
plete the request, and then issue one or more physical I/Os to do so. The
exact nature of these physical I/Os depends on the RAID level, as we will
discuss in detail below. However, as a simple example, consider a RAID
that keeps two copies of each block (each one on a separate disk); when
writing to such a mirrored RAID system, the RAID will have to perform
two physical I/Os for every one logical I/O it is issued.

A RAID system is often built as a separate hardware box, with a stan-
dard connection (e.g., SCSI, or SATA) to a host. Internally, however,
RAIDs are fairly complex, consisting of a microcontroller that runs firmware
to direct the operation of the RAID, volatile memory such as DRAM
to buffer data blocks as they are read and written, and in some cases,

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 3

non-volatile memory to buffer writes safely and perhaps even special-
ized logic to perform parity calculations (useful in some RAID levels, as
we will also see below). At a high level, a RAID is very much a special-
ized computer system: it has a processor, memory, and disks; however,
instead of running applications, it runs specialized software designed to
operate the RAID.

38.2 Fault Model

To understand RAID and compare different approaches, we must have
a fault model in mind. RAIDs are designed to detect and recover from
certain kinds of disk faults; thus, knowing exactly which faults to expect
is critical in arriving upon a working design.

The first fault model we will assume is quite simple, and has been
called the fail-stop fault model [S84]. In this model, a disk can be in
exactly one of two states: working or failed. With a working disk, all
blocks can be read or written. In contrast, when a disk has failed, we
assume it is permanently lost.

One critical aspect of the fail-stop model is what it assumes about fault
detection. Specifically, when a disk has failed, we assume that this is
easily detected. For example, in a RAID array, we would assume that the
RAID controller hardware (or software) can immediately observe when a
disk has failed.

Thus, for now, we do not have to worry about more complex “silent”
failures such as disk corruption. We also do not have to worry about a sin-
gle block becoming inaccessible upon an otherwise working disk (some-
times called a latent sector error). We will consider these more complex
(and unfortunately, more realistic) disk faults later.

38.3 How To Evaluate A RAID

As we will soon see, there are a number of different approaches to
building a RAID. Each of these approaches has different characteristics
which are worth evaluating, in order to understand their strengths and
weaknesses.

Specifically, we will evaluate each RAID design along three axes. The
first axis is capacity; given a set of N disks each with B blocks, how much
useful capacity is available to clients of the RAID? Without redundancy,
the answer is N ·B; in contrast, if we have a system that keeps two copies
of each block (called mirroring), we obtain a useful capacity of (N · B)/2.
Different schemes (e.g., parity-based ones) tend to fall in between.

The second axis of evaluation is reliability. How many disk faults can
the given design tolerate? In alignment with our fault model, we assume
only that an entire disk can fail; in later chapters (i.e., on data integrity),
we’ll think about how to handle more complex failure modes.

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



4 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

Finally, the third axis is performance. Performance is somewhat chal-
lenging to evaluate, because it depends heavily on the workload pre-
sented to the disk array. Thus, before evaluating performance, we will
first present a set of typical workloads that one should consider.

We now consider three important RAID designs: RAID Level 0 (strip-
ing), RAID Level 1 (mirroring), and RAID Levels 4/5 (parity-based re-
dundancy). The naming of each of these designs as a “level” stems from
the pioneering work of Patterson, Gibson, and Katz at Berkeley [P+88].

38.4 RAID Level 0: Striping

The first RAID level is actually not a RAID level at all, in that there is
no redundancy. However, RAID level 0, or striping as it is better known,
serves as an excellent upper-bound on performance and capacity and
thus is worth understanding.

The simplest form of striping will stripe blocks across the disks of the
system as follows (assume here a 4-disk array):

Disk 0 Disk 1 Disk 2 Disk 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 38.1: RAID-0: Simple Striping

From Figure 38.1, you get the basic idea: spread the blocks of the array
across the disks in a round-robin fashion. This approach is designed to
extract the most parallelism from the array when requests are made for
contiguous chunks of the array (as in a large, sequential read, for exam-
ple). We call the blocks in the same row a stripe; thus, blocks 0, 1, 2, and
3 are in the same stripe above.

In the example, we have made the simplifying assumption that only 1
block (each of say size 4KB) is placed on each disk before moving on to
the next. However, this arrangement need not be the case. For example,
we could arrange the blocks across disks as in Figure 38.2:

Disk 0 Disk 1 Disk 2 Disk 3

0 2 4 6 chunk size:

1 3 5 7 2 blocks
8 10 12 14
9 11 13 15

Figure 38.2: Striping With A Bigger Chunk Size

In this example, we place two 4KB blocks on each disk before moving
on to the next disk. Thus, the chunk size of this RAID array is 8KB, and
a stripe thus consists of 4 chunks or 32KB of data.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 5

ASIDE: THE RAID MAPPING PROBLEM

Before studying the capacity, reliability, and performance characteristics
of the RAID, we first present an aside on what we call the mapping prob-
lem. This problem arises in all RAID arrays; simply put, given a logical
block to read or write, how does the RAID know exactly which physical
disk and offset to access?
For these simple RAID levels, we do not need much sophistication in
order to correctly map logical blocks onto their physical locations. Take
the first striping example above (chunk size = 1 block = 4KB). In this case,
given a logical block address A, the RAID can easily compute the desired
disk and offset with two simple equations:

Disk = A % number_of_disks

Offset = A / number_of_disks

Note that these are all integer operations (e.g., 4 / 3 = 1 not 1.33333...).
Let’s see how these equations work for a simple example. Imagine in the
first RAID above that a request arrives for block 14. Given that there are
4 disks, this would mean that the disk we are interested in is (14 % 4 = 2):
disk 2. The exact block is calculated as (14 / 4 = 3): block 3. Thus, block
14 should be found on the fourth block (block 3, starting at 0) of the third
disk (disk 2, starting at 0), which is exactly where it is.
You can think about how these equations would be modified to support
different chunk sizes. Try it! It’s not too hard.

Chunk Sizes

Chunk size mostly affects performance of the array. For example, a small
chunk size implies that many files will get striped across many disks, thus
increasing the parallelism of reads and writes to a single file; however, the
positioning time to access blocks across multiple disks increases, because
the positioning time for the entire request is determined by the maximum
of the positioning times of the requests across all drives.

A big chunk size, on the other hand, reduces such intra-file paral-
lelism, and thus relies on multiple concurrent requests to achieve high
throughput. However, large chunk sizes reduce positioning time; if, for
example, a single file fits within a chunk and thus is placed on a single
disk, the positioning time incurred while accessing it will just be the po-
sitioning time of a single disk.

Thus, determining the “best” chunk size is hard to do, as it requires a
great deal of knowledge about the workload presented to the disk system
[CL95]. For the rest of this discussion, we will assume that the array uses
a chunk size of a single block (4KB). Most arrays use larger chunk sizes
(e.g., 64 KB), but for the issues we discuss below, the exact chunk size
does not matter; thus we use a single block for the sake of simplicity.

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



6 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

Back To RAID-0 Analysis

Let us now evaluate the capacity, reliability, and performance of striping.
From the perspective of capacity, it is perfect: given N disks each of size
B blocks, striping delivers N ·B blocks of useful capacity. From the stand-
point of reliability, striping is also perfect, but in the bad way: any disk
failure will lead to data loss. Finally, performance is excellent: all disks
are utilized, often in parallel, to service user I/O requests.

Evaluating RAID Performance

In analyzing RAID performance, one can consider two different perfor-
mance metrics. The first is single-request latency. Understanding the la-
tency of a single I/O request to a RAID is useful as it reveals how much
parallelism can exist during a single logical I/O operation. The second
is steady-state throughput of the RAID, i.e., the total bandwidth of many
concurrent requests. Because RAIDs are often used in high-performance
environments, the steady-state bandwidth is critical, and thus will be the
main focus of our analyses.

To understand throughput in more detail, we need to put forth some
workloads of interest. We will assume, for this discussion, that there
are two types of workloads: sequential and random. With a sequential
workload, we assume that requests to the array come in large contigu-
ous chunks; for example, a request (or series of requests) that accesses
1 MB of data, starting at block x and ending at block (x+1 MB), would be
deemed sequential. Sequential workloads are common in many environ-
ments (think of searching through a large file for a keyword), and thus
are considered important.

For random workloads, we assume that each request is rather small,
and that each request is to a different random location on disk. For exam-
ple, a random stream of requests may first access 4KB at logical address
10, then at logical address 550,000, then at 20,100, and so forth. Some im-
portant workloads, such as transactional workloads on a database man-
agement system (DBMS), exhibit this type of access pattern, and thus it is
considered an important workload.

Of course, real workloads are not so simple, and often have a mix
of sequential and random-seeming components as well as behaviors in-
between the two. For simplicity, we just consider these two possibilities.

As you can tell, sequential and random workloads will result in widely
different performance characteristics from a disk. With sequential access,
a disk operates in its most efficient mode, spending little time seeking and
waiting for rotation and most of its time transferring data. With random
access, just the opposite is true: most time is spent seeking and waiting
for rotation and relatively little time is spent transferring data. To capture
this difference in our analysis, we will assume that a disk can transfer
data at S MB/s under a sequential workload, and R MB/s when under a
random workload. In general, S is much greater than R (i.e., S ≫ R).

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 7

To make sure we understand this difference, let’s do a simple exercise.
Specifically, let’s calculate S and R given the following disk characteris-
tics. Assume a sequential transfer of size 10 MB on average, and a random
transfer of 10 KB on average. Also, assume the following disk character-
istics:

Average seek time 7 ms
Average rotational delay 3 ms

Transfer rate of disk 50 MB/s

To compute S, we need to first figure out how time is spent in a typical
10 MB transfer. First, we spend 7 ms seeking, and then 3 ms rotating.
Finally, transfer begins; 10 MB @ 50 MB/s leads to 1/5th of a second, or
200 ms, spent in transfer. Thus, for each 10 MB request, we spend 210 ms
completing the request. To compute S, we just need to divide:

S = Amount of Data

Time to access
= 10 MB

210 ms
= 47.62 MB/s

As we can see, because of the large time spent transferring data, S is
very near the peak bandwidth of the disk (the seek and rotational costs
have been amortized).

We can compute R similarly. Seek and rotation are the same; we then
compute the time spent in transfer, which is 10 KB @ 50 MB/s, or 0.195
ms.

R = Amount of Data

Time to access
= 10 KB

10.195 ms
= 0.981 MB/s

As we can see, R is less than 1 MB/s, and S/R is almost 50.

Back To RAID-0 Analysis, Again

Let’s now evaluate the performance of striping. As we said above, it is
generally good. From a latency perspective, for example, the latency of a
single-block request should be just about identical to that of a single disk;
after all, RAID-0 will simply redirect that request to one of its disks.

From the perspective of steady-state sequential throughput, we’d ex-
pect to get the full bandwidth of the system. Thus, throughput equals
N (the number of disks) multiplied by S (the sequential bandwidth of a
single disk). For a large number of random I/Os, we can again use all of
the disks, and thus obtain N · R MB/s. As we will see below, these val-
ues are both the simplest to calculate and will serve as an upper bound in
comparison with other RAID levels.

38.5 RAID Level 1: Mirroring

Our first RAID level beyond striping is known as RAID level 1, or
mirroring. With a mirrored system, we simply make more than one copy
of each block in the system; each copy should be placed on a separate
disk, of course. By doing so, we can tolerate disk failures.

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



8 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

In a typical mirrored system, we will assume that for each logical
block, the RAID keeps two physical copies of it. Here is an example:

Disk 0 Disk 1 Disk 2 Disk 3
0 0 1 1
2 2 3 3
4 4 5 5
6 6 7 7

Figure 38.3: Simple RAID-1: Mirroring

In the example, disk 0 and disk 1 have identical contents, and disk 2
and disk 3 do as well; the data is striped across these mirror pairs. In
fact, you may have noticed that there are a number of different ways to
place block copies across the disks. The arrangement above is a common
one and is sometimes called RAID-10 (or RAID 1+0, stripe of mirrors)
because it uses mirrored pairs (RAID-1) and then stripes (RAID-0) on top
of them; another common arrangement is RAID-01 (or RAID 0+1, mir-
ror of stripes), which contains two large striping (RAID-0) arrays, and
then mirrors (RAID-1) on top of them. For now, we will just talk about
mirroring assuming the above layout.

When reading a block from a mirrored array, the RAID has a choice: it
can read either copy. For example, if a read to logical block 5 is issued to
the RAID, it is free to read it from either disk 2 or disk 3. When writing
a block, though, no such choice exists: the RAID must update both copies
of the data, in order to preserve reliability. Do note, though, that these
writes can take place in parallel; for example, a write to logical block 5
could proceed to disks 2 and 3 at the same time.

RAID-1 Analysis

Let us assess RAID-1. From a capacity standpoint, RAID-1 is expensive;
with the mirroring level = 2, we only obtain half of our peak useful ca-
pacity. With N disks of B blocks, RAID-1 useful capacity is (N ·B)/2.

From a reliability standpoint, RAID-1 does well. It can tolerate the fail-
ure of any one disk. You may also notice RAID-1 can actually do better
than this, with a little luck. Imagine, in the figure above, that disk 0 and
disk 2 both failed. In such a situation, there is no data loss! More gen-
erally, a mirrored system (with mirroring level of 2) can tolerate 1 disk
failure for certain, and up to N/2 failures depending on which disks fail.
In practice, we generally don’t like to leave things like this to chance; thus
most people consider mirroring to be good for handling a single failure.

Finally, we analyze performance. From the perspective of the latency
of a single read request, we can see it is the same as the latency on a single
disk; all the RAID-1 does is direct the read to one of its copies. A write
is a little different: it requires two physical writes to complete before it
is done. These two writes happen in parallel, and thus the time will be
roughly equivalent to the time of a single write; however, because the
logical write must wait for both physical writes to complete, it suffers the

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 9

ASIDE: THE RAID CONSISTENT-UPDATE PROBLEM

Before analyzing RAID-1, let us first discuss a problem that arises in
any multi-disk RAID system, known as the consistent-update problem
[DAA05]. The problem occurs on a write to any RAID that has to up-
date multiple disks during a single logical operation. In this case, let us
assume we are considering a mirrored disk array.
Imagine the write is issued to the RAID, and then the RAID decides that
it must be written to two disks, disk 0 and disk 1. The RAID then issues
the write to disk 0, but just before the RAID can issue the request to disk
1, a power loss (or system crash) occurs. In this unfortunate case, let us
assume that the request to disk 0 completed (but clearly the request to
disk 1 did not, as it was never issued).
The result of this untimely power loss is that the two copies of the block
are now inconsistent; the copy on disk 0 is the new version, and the copy
on disk 1 is the old. What we would like to happen is for the state of both
disks to change atomically, i.e., either both should end up as the new
version or neither.
The general way to solve this problem is to use a write-ahead log of some
kind to first record what the RAID is about to do (i.e., update two disks
with a certain piece of data) before doing it. By taking this approach, we
can ensure that in the presence of a crash, the right thing will happen; by
running a recovery procedure that replays all pending transactions to the
RAID, we can ensure that no two mirrored copies (in the RAID-1 case)
are out of sync.
One last note: because logging to disk on every write is prohibitively
expensive, most RAID hardware includes a small amount of non-volatile
RAM (e.g., battery-backed) where it performs this type of logging. Thus,
consistent update is provided without the high cost of logging to disk.

worst-case seek and rotational delay of the two requests, and thus (on
average) will be slightly higher than a write to a single disk.

To analyze steady-state throughput, let us start with the sequential
workload. When writing out to disk sequentially, each logical write must
result in two physical writes; for example, when we write logical block
0 (in the figure above), the RAID internally would write it to both disk
0 and disk 1. Thus, we can conclude that the maximum bandwidth ob-
tained during sequential writing to a mirrored array is (N

2
·S), or half the

peak bandwidth.

Unfortunately, we obtain the exact same performance during a se-
quential read. One might think that a sequential read could do better,
because it only needs to read one copy of the data, not both. However,
let’s use an example to illustrate why this doesn’t help much. Imagine we
need to read blocks 0, 1, 2, 3, 4, 5, 6, and 7. Let’s say we issue the read of
0 to disk 0, the read of 1 to disk 2, the read of 2 to disk 1, and the read of
3 to disk 3. We continue by issuing reads to 4, 5, 6, and 7 to disks 0, 2, 1,

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



10 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

and 3, respectively. One might naively think that because we are utilizing
all disks, we are achieving the full bandwidth of the array.

To see that this is not (necessarily) the case, however, consider the
requests a single disk receives (say disk 0). First, it gets a request for
block 0; then, it gets a request for block 4 (skipping block 2). In fact, each
disk receives a request for every other block. While it is rotating over the
skipped block, it is not delivering useful bandwidth to the client. Thus,
each disk will only deliver half its peak bandwidth. And thus, the se-
quential read will only obtain a bandwidth of (N

2
· S) MB/s.

Random reads are the best case for a mirrored RAID. In this case, we
can distribute the reads across all the disks, and thus obtain the full pos-
sible bandwidth. Thus, for random reads, RAID-1 delivers N ·R MB/s.

Finally, random writes perform as you might expect: N
2
·R MB/s. Each

logical write must turn into two physical writes, and thus while all the
disks will be in use, the client will only perceive this as half the available
bandwidth. Even though a write to logical block x turns into two parallel
writes to two different physical disks, the bandwidth of many small re-
quests only achieves half of what we saw with striping. As we will soon
see, getting half the available bandwidth is actually pretty good!

38.6 RAID Level 4: Saving Space With Parity

We now present a different method of adding redundancy to a disk ar-
ray known as parity. Parity-based approaches attempt to use less capac-
ity and thus overcome the huge space penalty paid by mirrored systems.
They do so at a cost, however: performance.

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Figure 38.4: RAID-4 With Parity

Here is an example five-disk RAID-4 system (Figure 38.4). For each
stripe of data, we have added a single parity block that stores the redun-
dant information for that stripe of blocks. For example, parity block P1
has redundant information that it calculated from blocks 4, 5, 6, and 7.

To compute parity, we need to use a mathematical function that en-
ables us to withstand the loss of any one block from our stripe. It turns
out the simple function XOR does the trick quite nicely. For a given set of
bits, the XOR of all of those bits returns a 0 if there are an even number of
1’s in the bits, and a 1 if there are an odd number of 1’s. For example:

In the first row (0,0,1,1), there are two 1’s (C2, C3), and thus XOR of
all of those values will be 0 (P); similarly, in the second row there is only

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 11

C0 C1 C2 C3 P
0 0 1 1 XOR(0,0,1,1) = 0
0 1 0 0 XOR(0,1,0,0) = 1

one 1 (C1), and thus the XOR must be 1 (P). You can remember this in a
simple way: that the number of 1s in any row, including the parity bit,
must be an even (not odd) number; that is the invariant that the RAID
must maintain in order for parity to be correct.

From the example above, you might also be able to guess how parity
information can be used to recover from a failure. Imagine the column la-
beled C2 is lost. To figure out what values must have been in the column,
we simply have to read in all the other values in that row (including the
XOR’d parity bit) and reconstruct the right answer. Specifically, assume
the first row’s value in column C2 is lost (it is a 1); by reading the other
values in that row (0 from C0, 0 from C1, 1 from C3, and 0 from the parity
column P), we get the values 0, 0, 1, and 0. Because we know that XOR
keeps an even number of 1’s in each row, we know what the missing data
must be: a 1. And that is how reconstruction works in a XOR-based par-
ity scheme! Note also how we compute the reconstructed value: we just
XOR the data bits and the parity bits together, in the same way that we
calculated the parity in the first place.

Now you might be wondering: we are talking about XORing all of
these bits, and yet from above we know that the RAID places 4KB (or
larger) blocks on each disk; how do we apply XOR to a bunch of blocks
to compute the parity? It turns out this is easy as well. Simply perform a
bitwise XOR across each bit of the data blocks; put the result of each bit-
wise XOR into the corresponding bit slot in the parity block. For example,
if we had blocks of size 4 bits (yes, this is still quite a bit smaller than a
4KB block, but you get the picture), they might look something like this:

Block0 Block1 Block2 Block3 Parity
00 10 11 10 11
10 01 00 01 10

As you can see from the figure, the parity is computed for each bit of
each block and the result placed in the parity block.

RAID-4 Analysis

Let us now analyze RAID-4. From a capacity standpoint, RAID-4 uses 1
disk for parity information for every group of disks it is protecting. Thus,
our useful capacity for a RAID group is (N − 1) ·B.

Reliability is also quite easy to understand: RAID-4 tolerates 1 disk
failure and no more. If more than one disk is lost, there is simply no way
to reconstruct the lost data.

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



12 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

0 1 2 3 P0
4 5 6 7 P1
8 9 10 11 P2
12 13 14 15 P3

Figure 38.5: Full-stripe Writes In RAID-4

Finally, there is performance. This time, let us start by analyzing steady-
state throughput. Sequential read performance can utilize all of the disks
except for the parity disk, and thus deliver a peak effective bandwidth of
(N − 1) · S MB/s (an easy case).

To understand the performance of sequential writes, we must first un-
derstand how they are done. When writing a big chunk of data to disk,
RAID-4 can perform a simple optimization known as a full-stripe write.
For example, imagine the case where the blocks 0, 1, 2, and 3 have been
sent to the RAID as part of a write request (Figure 38.5).

In this case, the RAID can simply calculate the new value of P0 (by
performing an XOR across the blocks 0, 1, 2, and 3) and then write all of
the blocks (including the parity block) to the five disks above in parallel
(highlighted in gray in the figure). Thus, full-stripe writes are the most
efficient way for RAID-4 to write to disk.

Once we understand the full-stripe write, calculating the performance
of sequential writes on RAID-4 is easy; the effective bandwidth is also
(N −1) ·S MB/s. Even though the parity disk is constantly in use during
the operation, the client does not gain performance advantage from it.

Now let us analyze the performance of random reads. As you can also
see from the figure above, a set of 1-block random reads will be spread
across the data disks of the system but not the parity disk. Thus, the
effective performance is: (N − 1) ·R MB/s.

Random writes, which we have saved for last, present the most in-
teresting case for RAID-4. Imagine we wish to overwrite block 1 in the
example above. We could just go ahead and overwrite it, but that would
leave us with a problem: the parity block P0 would no longer accurately
reflect the correct parity value of the stripe; in this example, P0 must also
be updated. How can we update it both correctly and efficiently?

It turns out there are two methods. The first, known as additive parity,
requires us to do the following. To compute the value of the new parity
block, read in all of the other data blocks in the stripe in parallel (in the
example, blocks 0, 2, and 3) and XOR those with the new block (1). The
result is your new parity block. To complete the write, you can then write
the new data and new parity to their respective disks, also in parallel.

The problem with this technique is that it scales with the number of
disks, and thus in larger RAIDs requires a high number of reads to com-
pute parity. Thus, the subtractive parity method.

For example, imagine this string of bits (4 data bits, one parity):

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 13

C0 C1 C2 C3 P
0 0 1 1 XOR(0,0,1,1) = 0

Let’s imagine that we wish to overwrite bit C2 with a new value which
we will call C2new . The subtractive method works in three steps. First,
we read in the old data at C2 (C2old = 1) and the old parity (Pold = 0).
Then, we compare the old data and the new data; if they are the same
(e.g., C2new = C2old), then we know the parity bit will also remain the
same (i.e., Pnew = Pold). If, however, they are different, then we must flip
the old parity bit to the opposite of its current state, that is, if (Pold == 1),
Pnew will be set to 0; if (Pold == 0), Pnew will be set to 1. We can express
this whole mess neatly with XOR (where ⊕ is the XOR operator):

Pnew = (Cold ⊕ Cnew) ⊕ Pold (38.1)

Because we are dealing with blocks, not bits, we perform this calcula-
tion over all the bits in the block (e.g., 4096 bytes in each block multiplied
by 8 bits per byte). Thus, in most cases, the new block will be different
than the old block and thus the new parity block will too.

You should now be able to figure out when we would use the additive
parity calculation and when we would use the subtractive method. Think
about how many disks would need to be in the system so that the additive
method performs fewer I/Os than the subtractive method; what is the
cross-over point?

For this performance analysis, let us assume we are using the subtrac-
tive method. Thus, for each write, the RAID has to perform 4 physical
I/Os (two reads and two writes). Now imagine there are lots of writes
submitted to the RAID; how many can RAID-4 perform in parallel? To
understand, let us again look at the RAID-4 layout (Figure 38.6).

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4
0 1 2 3 P0
∗4 5 6 7 +P1
8 9 10 11 P2

12 ∗13 14 15 +P3

Figure 38.6: Example: Writes To 4, 13, And Respective Parity Blocks

Now imagine there were 2 small writes submitted to the RAID-4 at
about the same time, to blocks 4 and 13 (marked with ∗ in the diagram).
The data for those disks is on disks 0 and 1, and thus the read and write
to data could happen in parallel, which is good. The problem that arises
is with the parity disk; both the requests have to read the related parity
blocks for 4 and 13, parity blocks 1 and 3 (marked with +). Hopefully, the
issue is now clear: the parity disk is a bottleneck under this type of work-
load; we sometimes thus call this the small-write problem for parity-
based RAIDs. Thus, even though the data disks could be accessed in

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



14 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

parallel, the parity disk prevents any parallelism from materializing; all
writes to the system will be serialized because of the parity disk. Because
the parity disk has to perform two I/Os (one read, one write) per logical
I/O, we can compute the performance of small random writes in RAID-4
by computing the parity disk’s performance on those two I/Os, and thus
we achieve (R/2) MB/s. RAID-4 throughput under random small writes
is terrible; it does not improve as you add disks to the system.

We conclude by analyzing I/O latency in RAID-4. As you now know,
a single read (assuming no failure) is just mapped to a single disk, and
thus its latency is equivalent to the latency of a single disk request. The
latency of a single write requires two reads and then two writes; the reads
can happen in parallel, as can the writes, and thus total latency is about
twice that of a single disk (with some differences because we have to wait
for both reads to complete and thus get the worst-case positioning time,
but then the updates don’t incur seek cost and thus may be a better-than-
average positioning cost).

38.7 RAID Level 5: Rotating Parity

To address the small-write problem (at least, partially), Patterson, Gib-
son, and Katz introduced RAID-5. RAID-5 works almost identically to
RAID-4, except that it rotates the parity block across drives (Figure 38.7).

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

0 1 2 3 P0

5 6 7 P1 4

10 11 P2 8 9

15 P3 12 13 14

P4 16 17 18 19

Figure 38.7: RAID-5 With Rotated Parity

As you can see, the parity block for each stripe is now rotated across
the disks, in order to remove the parity-disk bottleneck for RAID-4.

RAID-5 Analysis

Much of the analysis for RAID-5 is identical to RAID-4. For example, the
effective capacity and failure tolerance of the two levels are identical. So
are sequential read and write performance. The latency of a single request
(whether a read or a write) is also the same as RAID-4.

Random read performance is a little better, because we can now utilize
all disks. Finally, random write performance improves noticeably over
RAID-4, as it allows for parallelism across requests. Imagine a write to
block 1 and a write to block 10; this will turn into requests to disk 1 and
disk 4 (for block 1 and its parity) and requests to disk 0 and disk 2 (for

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 15

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N ·B (N ·B)/2 (N − 1) ·B (N − 1) ·B
Reliability 0 1 (for sure) 1 1

N
2

(if lucky)
Throughput

Sequential Read N · S (N/2) · S1 (N − 1) · S (N − 1) · S
Sequential Write N · S (N/2) · S1 (N − 1) · S (N − 1) · S
Random Read N ·R N ·R (N − 1) ·R N ·R
Random Write N ·R (N/2) ·R 1

2
·R N

4
R

Latency
Read T T T T
Write T T 2T 2T

Figure 38.8: RAID Capacity, Reliability, and Performance

block 10 and its parity). Thus, they can proceed in parallel. In fact, we
can generally assume that given a large number of random requests, we
will be able to keep all the disks about evenly busy. If that is the case,
then our total bandwidth for small writes will be N

4
·R MB/s. The factor

of four loss is due to the fact that each RAID-5 write still generates 4 total
I/O operations, which is simply the cost of using parity-based RAID.

Because RAID-5 is basically identical to RAID-4 except in the few cases
where it is better, it has almost completely replaced RAID-4 in the market-
place. The only place where it has not is in systems that know they will
never perform anything other than a large write, thus avoiding the small-
write problem altogether [HLM94]; in those cases, RAID-4 is sometimes
used as it is slightly simpler to build.

38.8 RAID Comparison: A Summary

We now summarize our simplified comparison of RAID levels in Fig-
ure 38.8. Note that we have omitted a number of details to simplify our
analysis. For example, when writing in a mirrored system, the average
seek time is a little higher than when writing to just a single disk, because
the seek time is the max of two seeks (one on each disk). Thus, random
write performance to two disks will generally be a little less than random
write performance of a single disk. Also, when updating the parity disk
in RAID-4/5, the first read of the old parity will likely cause a full seek
and rotation, but the second write of the parity will only result in rotation.
Finally, sequential I/O to mirrored RAIDs pay a 2× performance penalty

as compared to other approaches1.

1The 1/2 penalty assumes a naive read/write pattern for mirroring; a more sophisticated
approach that issued large I/O requests to differing parts of each mirror could potentially
achieve full bandwidth. Think about this to see if you can figure out why.

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



16 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

However, the comparison in Figure 38.8 does capture the essential dif-
ferences, and is useful for understanding tradeoffs across RAID levels.
For the latency analysis, we simply use T to represent the time that a
request to a single disk would take.

To conclude, if you strictly want performance and do not care about
reliability, striping is obviously best. If, however, you want random I/O
performance and reliability, mirroring is the best; the cost you pay is in
lost capacity. If capacity and reliability are your main goals, then RAID-
5 is the winner; the cost you pay is in small-write performance. Finally,
if you are always doing sequential I/O and want to maximize capacity,
RAID-5 also makes the most sense.

38.9 Other Interesting RAID Issues

There are a number of other interesting ideas that one could (and per-
haps should) discuss when thinking about RAID. Here are some things
we might eventually write about.

For example, there are many other RAID designs, including Levels 2
and 3 from the original taxonomy, and Level 6 to tolerate multiple disk
faults [C+04]. There is also what the RAID does when a disk fails; some-
times it has a hot spare sitting around to fill in for the failed disk. What
happens to performance under failure, and performance during recon-
struction of the failed disk? There are also more realistic fault models,
to take into account latent sector errors or block corruption [B+08], and
lots of techniques to handle such faults (see the data integrity chapter for
details). Finally, you can even build RAID as a software layer: such soft-
ware RAID systems are cheaper but have other problems, including the
consistent-update problem [DAA05].

38.10 Summary

We have discussed RAID. RAID transforms a number of independent
disks into a large, more capacious, and more reliable single entity; impor-
tantly, it does so transparently, and thus hardware and software above is
relatively oblivious to the change.

There are many possible RAID levels to choose from, and the exact
RAID level to use depends heavily on what is important to the end-user.
For example, mirrored RAID is simple, reliable, and generally provides
good performance but at a high capacity cost. RAID-5, in contrast, is
reliable and better from a capacity standpoint, but performs quite poorly
when there are small writes in the workload. Picking a RAID and setting
its parameters (chunk size, number of disks, etc.) properly for a particular
workload is challenging, and remains more of an art than a science.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 17

References

[B+08] “An Analysis of Data Corruption in the Storage Stack” by Lakshmi N. Bairavasun-
daram, Garth R. Goodson, Bianca Schroeder, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau. FAST ’08, San Jose, CA, February 2008. Our own work analyzing how often disks actu-
ally corrupt your data. Not often, but sometimes! And thus something a reliable storage system must
consider.

[BJ88] “Disk Shadowing” by D. Bitton and J. Gray. VLDB 1988. One of the first papers to discuss
mirroring, therein called “shadowing”.

[CL95] “Striping in a RAID level 5 disk array” by Peter M. Chen and Edward K. Lee. SIGMET-
RICS 1995. A nice analysis of some of the important parameters in a RAID-5 disk array.

[C+04] “Row-Diagonal Parity for Double Disk Failure Correction” by P. Corbett, B. English, A.
Goel, T. Grcanac, S. Kleiman, J. Leong, S. Sankar. FAST ’04, February 2004. Though not the first
paper on a RAID system with two disks for parity, it is a recent and highly-understandable version of
said idea. Read it to learn more.

[DAA05] “Journal-guided Resynchronization for Software RAID” by Timothy E. Denehy, A.
Arpaci-Dusseau, R. Arpaci-Dusseau. FAST 2005. Our own work on the consistent-update problem.
Here we solve it for Software RAID by integrating the journaling machinery of the file system above
with the software RAID beneath it.

[HLM94] “File System Design for an NFS File Server Appliance” by Dave Hitz, James Lau,
Michael Malcolm. USENIX Winter 1994, San Francisco, California, 1994. The sparse paper intro-
ducing a landmark product in storage, the write-anywhere file layout or WAFL file system that underlies
the NetApp file server.

[K86] “Synchronized Disk Interleaving” by M.Y. Kim. IEEE Transactions on Computers, Vol-
ume C-35: 11, November 1986. Some of the earliest work on RAID is found here.

[K88] “Small Disk Arrays – The Emerging Approach to High Performance” by F. Kurzweil.
Presentation at Spring COMPCON ’88, March 1, 1988, San Francisco, California. Another early
RAID reference.

[P+88] “Redundant Arrays of Inexpensive Disks” by D. Patterson, G. Gibson, R. Katz. SIG-
MOD 1988. This is considered the RAID paper, written by famous authors Patterson, Gibson, and
Katz. The paper has since won many test-of-time awards and ushered in the RAID era, including the
name RAID itself!

[PB86] “Providing Fault Tolerance in Parallel Secondary Storage Systems” by A. Park, K. Bal-
asubramaniam. Department of Computer Science, Princeton, CS-TR-O57-86, November 1986.
Another early work on RAID.

[SG86] “Disk Striping” by K. Salem, H. Garcia-Molina. IEEE International Conference on Data
Engineering, 1986. And yes, another early RAID work. There are a lot of these, which kind of came
out of the woodwork when the RAID paper was published in SIGMOD.

[S84] “Byzantine Generals in Action: Implementing Fail-Stop Processors” by F.B. Schneider.
ACM Transactions on Computer Systems, 2(2):145154, May 1984. Finally, a paper that is not
about RAID! This paper is actually about how systems fail, and how to make something behave in a
fail-stop manner.

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES



18 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

Homework (Simulation)

This section introduces raid.py, a simple RAID simulator you can
use to shore up your knowledge of how RAID systems work. See the
README for details.

Questions

1. Use the simulator to perform some basic RAID mapping tests. Run
with different levels (0, 1, 4, 5) and see if you can figure out the
mappings of a set of requests. For RAID-5, see if you can figure out
the difference between left-symmetric and left-asymmetric layouts.
Use some different random seeds to generate different problems
than above.

2. Do the same as the first problem, but this time vary the chunk size
with -C. How does chunk size change the mappings?

3. Do the same as above, but use the -r flag to reverse the nature of
each problem.

4. Now use the reverse flag but increase the size of each request with
the -S flag. Try specifying sizes of 8k, 12k, and 16k, while varying
the RAID level. What happens to the underlying I/O pattern when
the size of the request increases? Make sure to try this with the
sequential workload too (-W sequential); for what request sizes
are RAID-4 and RAID-5 much more I/O efficient?

5. Use the timing mode of the simulator (-t) to estimate the perfor-
mance of 100 random reads to the RAID, while varying the RAID
levels, using 4 disks.

6. Do the same as above, but increase the number of disks. How does
the performance of each RAID level scale as the number of disks
increases?

7. Do the same as above, but use all writes (-w 100) instead of reads.
How does the performance of each RAID level scale now? Can you
do a rough estimate of the time it will take to complete the workload
of 100 random writes?

8. Run the timing mode one last time, but this time with a sequen-
tial workload (-W sequential). How does the performance vary
with RAID level, and when doing reads versus writes? How about
when varying the size of each request? What size should you write
to a RAID when using RAID-4 or RAID-5?

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG


