
41

Locality and The Fast File System

When the UNIX operating system was first introduced, the UNIX wizard
himself Ken Thompson wrote the first file system. Let’s call that the “old
UNIX file system”, and it was really simple. Basically, its data structures
looked like this on the disk:

S Inodes Data

The super block (S) contained information about the entire file system:
how big the volume is, how many inodes there are, a pointer to the head
of a free list of blocks, and so forth. The inode region of the disk contained
all the inodes for the file system. Finally, most of the disk was taken up
by data blocks.

The good thing about the old file system was that it was simple, and
supported the basic abstractions the file system was trying to deliver: files
and the directory hierarchy. This easy-to-use system was a real step for-
ward from the clumsy, record-based storage systems of the past, and the
directory hierarchy was a true advance over simpler, one-level hierarchies
provided by earlier systems.

41.1 The Problem: Poor Performance

The problem: performance was terrible. As measured by Kirk McKu-
sick and his colleagues at Berkeley [MJLF84], performance started off bad
and got worse over time, to the point where the file system was delivering
only 2% of overall disk bandwidth!

The main issue was that the old UNIX file system treated the disk like it
was a random-access memory; data was spread all over the place without
regard to the fact that the medium holding the data was a disk, and thus
had real and expensive positioning costs. For example, the data blocks of
a file were often very far away from its inode, thus inducing an expensive
seek whenever one first read the inode and then the data blocks of a file
(a pretty common operation).

1



2 LOCALITY AND THE FAST FILE SYSTEM

Worse, the file system would end up getting quite fragmented, as the
free space was not carefully managed. The free list would end up point-
ing to a bunch of blocks spread across the disk, and as files got allocated,
they would simply take the next free block. The result was that a logi-
cally contiguous file would be accessed by going back and forth across
the disk, thus reducing performance dramatically.

For example, imagine the following data block region, which contains
four files (A, B, C, and D), each of size 2 blocks:

A1 A2 B1 B2 C1 C2 D1 D2

If B and D are deleted, the resulting layout is:

A1 A2 C1 C2

As you can see, the free space is fragmented into two chunks of two
blocks, instead of one nice contiguous chunk of four. Let’s say you now
wish to allocate a file E, of size four blocks:

A1 A2 E1 E2 C1 C2 E3 E4

You can see what happens: E gets spread across the disk, and as a
result, when accessing E, you don’t get peak (sequential) performance
from the disk. Rather, you first read E1 and E2, then seek, then read E3
and E4. This fragmentation problem happened all the time in the old
UNIX file system, and it hurt performance. A side note: this problem is
exactly what disk defragmentation tools help with; they reorganize on-
disk data to place files contiguously and make free space for one or a few
contiguous regions, moving data around and then rewriting inodes and
such to reflect the changes.

One other problem: the original block size was too small (512 bytes).
Thus, transferring data from the disk was inherently inefficient. Smaller
blocks were good because they minimized internal fragmentation (waste
within the block), but bad for transfer as each block might require a posi-
tioning overhead to reach it. Thus, the problem:

THE CRUX:
HOW TO ORGANIZE ON-DISK DATA TO IMPROVE PERFORMANCE

How can we organize file system data structures so as to improve per-
formance? What types of allocation policies do we need on top of those
data structures? How do we make the file system “disk aware”?

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCALITY AND THE FAST FILE SYSTEM 3

41.2 FFS: Disk Awareness Is The Solution

A group at Berkeley decided to build a better, faster file system, which
they cleverly called the Fast File System (FFS). The idea was to design
the file system structures and allocation policies to be “disk aware” and
thus improve performance, which is exactly what they did. FFS thus ush-
ered in a new era of file system research; by keeping the same interface
to the file system (the same APIs, including open(), read(), write(),
close(), and other file system calls) but changing the internal implemen-
tation, the authors paved the path for new file system construction, work
that continues today. Virtually all modern file systems adhere to the ex-
isting interface (and thus preserve compatibility with applications) while
changing their internals for performance, reliability, or other reasons.

41.3 Organizing Structure: The Cylinder Group

The first step was to change the on-disk structures. FFS divides the
disk into a number of cylinder groups. A single cylinder is a set of tracks
on different surfaces of a hard drive that are the same distance from the
center of the drive; it is called a cylinder because of its clear resemblance
to the so-called geometrical shape. FFS aggregates N consecutive cylin-
ders into a group, and thus the entire disk can thus be viewed as a collec-
tion of cylinder groups. Here is a simple example, showing the four outer
most tracks of a drive with six platters, and a cylinder group that consists
of three cylinders:

Single track (e.g., dark gray)

C
y
lin

d
e
r:

T
ra

c
k
s
 a

t 
s
a
m

e
 d

is
ta

n
c
e
 f
ro

m
 c

e
n
te

r
o
f 
d
ri
v
e
 a

c
ro

s
s
 d

if
fe

re
n
t 
s
u
rf

a
c
e
s

[a
ll 

tr
a
c
k
s
 w

it
h
 s

a
m

e
 c

o
lo

r]

C
y
lin

d
e
r 

G
ro

u
p
:

S
e
t 
o
f 
N

 c
o
n
s
e
c
u
ti
v
e
 c

y
lin

d
e
rs

[i
f 
N

=
3
, 
fi
rs

t 
g
ro

u
p
 d

o
e
s

n
o
t 
in

c
lu

d
e
 b

la
c
k
 t
ra

c
k
]

Note that modern drives do not export enough information for the
file system to truly understand whether a particular cylinder is in use;
as discussed previously [AD14a], disks export a logical address space of
blocks and hide details of their geometry from clients. Thus, modern file

© 2008–21, ARPACI-DUSSEAU
THREE

EASY

PIECES



4 LOCALITY AND THE FAST FILE SYSTEM

systems (such as Linux ext2, ext3, and ext4) instead organize the drive
into block groups, each of which is just a consecutive portion of the disk’s
address space. The picture below illustrates an example where every 8
blocks are organized into a different block group (note that real groups
would consist of many more blocks):

Group 0 Group 1 Group 2

Whether you call them cylinder groups or block groups, these groups
are the central mechanism that FFS uses to improve performance. Crit-
ically, by placing two files within the same group, FFS can ensure that
accessing one after the other will not result in long seeks across the disk.

To use these groups to store files and directories, FFS needs to have the
ability to place files and directories into a group, and track all necessary
information about them therein. To do so, FFS includes all the structures
you might expect a file system to have within each group, e.g., space for
inodes, data blocks, and some structures to track whether each of those
are allocated or free. Here is a depiction of what FFS keeps within a single
cylinder group:

S ib db Inodes Data

Let’s now examine the components of this single cylinder group in
more detail. FFS keeps a copy of the super block (S) in each group for
reliability reasons. The super block is needed to mount the file system;
by keeping multiple copies, if one copy becomes corrupt, you can still
mount and access the file system by using a working replica.

Within each group, FFS needs to track whether the inodes and data
blocks of the group are allocated. A per-group inode bitmap (ib) and
data bitmap (db) serve this role for inodes and data blocks in each group.
Bitmaps are an excellent way to manage free space in a file system be-
cause it is easy to find a large chunk of free space and allocate it to a file,
perhaps avoiding some of the fragmentation problems of the free list in
the old file system.

Finally, the inode and data block regions are just like those in the pre-
vious very-simple file system (VSFS). Most of each cylinder group, as
usual, is comprised of data blocks.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCALITY AND THE FAST FILE SYSTEM 5

ASIDE: FFS FILE CREATION

As an example, think about what data structures must be updated when
a file is created; assume, for this example, that the user creates a new file
/foo/bar.txt and that the file is one block long (4KB). The file is new,
and thus needs a new inode; thus, both the inode bitmap and the newly-
allocated inode will be written to disk. The file also has data in it and
thus it too must be allocated; the data bitmap and a data block will thus
(eventually) be written to disk. Hence, at least four writes to the current
cylinder group will take place (recall that these writes may be buffered
in memory for a while before they take place). But this is not all! In
particular, when creating a new file, you must also place the file in the
file-system hierarchy, i.e., the directory must be updated. Specifically, the
parent directory foo must be updated to add the entry for bar.txt; this
update may fit in an existing data block of foo or require a new block to
be allocated (with associated data bitmap). The inode of foo must also
be updated, both to reflect the new length of the directory as well as to
update time fields (such as last-modified-time). Overall, it is a lot of work
just to create a new file! Perhaps next time you do so, you should be more
thankful, or at least surprised that it all works so well.

41.4 Policies: How To Allocate Files and Directories

With this group structure in place, FFS now has to decide how to place
files and directories and associated metadata on disk to improve perfor-
mance. The basic mantra is simple: keep related stuff together (and its corol-
lary, keep unrelated stuff far apart).

Thus, to obey the mantra, FFS has to decide what is “related” and
place it within the same block group; conversely, unrelated items should
be placed into different block groups. To achieve this end, FFS makes use
of a few simple placement heuristics.

The first is the placement of directories. FFS employs a simple ap-
proach: find the cylinder group with a low number of allocated direc-
tories (to balance directories across groups) and a high number of free
inodes (to subsequently be able to allocate a bunch of files), and put the
directory data and inode in that group. Of course, other heuristics could
be used here (e.g., taking into account the number of free data blocks).

For files, FFS does two things. First, it makes sure (in the general case)
to allocate the data blocks of a file in the same group as its inode, thus
preventing long seeks between inode and data (as in the old file system).
Second, it places all files that are in the same directory in the cylinder
group of the directory they are in. Thus, if a user creates four files, /a/b,
/a/c, /a/d, and b/f, FFS would try to place the first three near one
another (same group) and the fourth far away (in some other group).

Let’s look at an example of such an allocation. In the example, as-
sume that there are only 10 inodes and 10 data blocks in each group (both

© 2008–21, ARPACI-DUSSEAU
THREE

EASY

PIECES



6 LOCALITY AND THE FAST FILE SYSTEM

unrealistically small numbers), and that the three directories (the root di-
rectory /, /a, and /b) and four files (/a/c, /a/d, /a/e, /b/f) are
placed within them per the FFS policies. Assume the regular files are each
two blocks in size, and that the directories have just a single block of data.
For this figure, we use the obvious symbols for each file or directory (i.e.,
/ for the root directory, a for /a, f for /b/f, and so forth).

group inodes data

0 /--------- /---------

1 acde------ accddee---

2 bf-------- bff-------

3 ---------- ----------

4 ---------- ----------

5 ---------- ----------

6 ---------- ----------

7 ---------- ----------

Note that the FFS policy does two positive things: the data blocks of
each file are near each file’s inode, and files in the same directory are
near one another (namely, /a/c, /a/d, and /a/e are all in Group 1, and
directory /b and its file /b/f are near one another in Group 2).

In contrast, let’s now look at an inode allocation policy that simply
spreads inodes across groups, trying to ensure that no group’s inode table
fills up quickly. The final allocation might thus look something like this:

group inodes data

0 /--------- /---------

1 a--------- a---------

2 b--------- b---------

3 c--------- cc--------

4 d--------- dd--------

5 e--------- ee--------

6 f--------- ff--------

7 ---------- ----------

As you can see from the figure, while this policy does indeed keep file
(and directory) data near its respective inode, files within a directory are
arbitrarily spread around the disk, and thus name-based locality is not
preserved. Access to files /a/c, /a/d, and /a/e now spans three groups
instead of one as per the FFS approach.

The FFS policy heuristics are not based on extensive studies of file-
system traffic or anything particularly nuanced; rather, they are based on
good old-fashioned common sense (isn’t that what CS stands for after

all?)1. Files in a directory are often accessed together: imagine compil-
ing a bunch of files and then linking them into a single executable. Be-

1Some people refer to common sense as horse sense, especially people who work regu-
larly with horses. However, we have a feeling that this idiom may be lost as the “mechanized
horse”, a.k.a. the car, gains in popularity. What will they invent next? A flying machine??!!

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCALITY AND THE FAST FILE SYSTEM 7

0 2 4 6 8 10
0%

20%

40%

60%

80%

100%
FFS Locality

Path Difference

C
u
m

u
la

ti
v
e
 F

re
q
u
e
n
c
y

Trace
Random

Figure 41.1: FFS Locality For SEER Traces

cause such namespace-based locality exists, FFS will often improve per-
formance, making sure that seeks between related files are nice and short.

41.5 Measuring File Locality

To understand better whether these heuristics make sense, let’s ana-
lyze some traces of file system access and see if indeed there is namespace
locality. For some reason, there doesn’t seem to be a good study of this
topic in the literature.

Specifically, we’ll use the SEER traces [K94] and analyze how “far
away” file accesses were from one another in the directory tree. For ex-
ample, if file f is opened, and then re-opened next in the trace (before
any other files are opened), the distance between these two opens in the
directory tree is zero (as they are the same file). If a file f in directory
dir (i.e., dir/f) is opened, and followed by an open of file g in the same
directory (i.e., dir/g), the distance between the two file accesses is one,
as they share the same directory but are not the same file. Our distance
metric, in other words, measures how far up the directory tree you have
to travel to find the common ancestor of two files; the closer they are in the
tree, the lower the metric.

Figure 41.1 shows the locality observed in the SEER traces over all
workstations in the SEER cluster over the entirety of all traces. The graph
plots the difference metric along the x-axis, and shows the cumulative
percentage of file opens that were of that difference along the y-axis.
Specifically, for the SEER traces (marked “Trace” in the graph), you can
see that about 7% of file accesses were to the file that was opened previ-

© 2008–21, ARPACI-DUSSEAU
THREE

EASY

PIECES



8 LOCALITY AND THE FAST FILE SYSTEM

ously, and that nearly 40% of file accesses were to either the same file or
to one in the same directory (i.e., a difference of zero or one). Thus, the
FFS locality assumption seems to make sense (at least for these traces).

Interestingly, another 25% or so of file accesses were to files that had a
distance of two. This type of locality occurs when the user has structured
a set of related directories in a multi-level fashion and consistently jumps
between them. For example, if a user has a src directory and builds
object files (.o files) into an obj directory, and both of these directories
are sub-directories of a main proj directory, a common access pattern
will be proj/src/foo.c followed by proj/obj/foo.o. The distance
between these two accesses is two, as proj is the common ancestor. FFS
does not capture this type of locality in its policies, and thus more seeking
will occur between such accesses.

For comparison, the graph also shows locality for a “Random” trace.
The random trace was generated by selecting files from within an existing
SEER trace in random order, and calculating the distance metric between
these randomly-ordered accesses. As you can see, there is less namespace
locality in the random traces, as expected. However, because eventually
every file shares a common ancestor (e.g., the root), there is some locality,
and thus random is useful as a comparison point.

41.6 The Large-File Exception

In FFS, there is one important exception to the general policy of file
placement, and it arises for large files. Without a different rule, a large
file would entirely fill the block group it is first placed within (and maybe
others). Filling a block group in this manner is undesirable, as it prevents
subsequent “related” files from being placed within this block group, and
thus may hurt file-access locality.

Thus, for large files, FFS does the following. After some number of
blocks are allocated into the first block group (e.g., 12 blocks, or the num-
ber of direct pointers available within an inode), FFS places the next “large”
chunk of the file (e.g., those pointed to by the first indirect block) in an-
other block group (perhaps chosen for its low utilization). Then, the next
chunk of the file is placed in yet another different block group, and so on.

Let’s look at some diagrams to understand this policy better. Without
the large-file exception, a single large file would place all of its blocks into
one part of the disk. We investigate a small example of a file (/a) with 30
blocks in an FFS configured with 10 inodes and 40 data blocks per group.
Here is the depiction of FFS without the large-file exception:

group inodes data

0 /a-------- /aaaaaaaaa aaaaaaaaaa aaaaaaaaaa a---------

1 ---------- ---------- ---------- ---------- ----------

2 ---------- ---------- ---------- ---------- ----------

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCALITY AND THE FAST FILE SYSTEM 9

As you can see in the picture, /a fills up most of the data blocks in
Group 0, whereas other groups remain empty. If some other files are now
created in the root directory (/), there is not much room for their data in
the group.

With the large-file exception (here set to five blocks in each chunk), FFS
instead spreads the file spread across groups, and the resulting utilization
within any one group is not too high:

group inodes data

0 /a-------- /aaaaa---- ---------- ---------- ----------

1 ---------- aaaaa----- ---------- ---------- ----------

2 ---------- aaaaa----- ---------- ---------- ----------

3 ---------- aaaaa----- ---------- ---------- ----------

4 ---------- aaaaa----- ---------- ---------- ----------

5 ---------- aaaaa----- ---------- ---------- ----------

6 ---------- ---------- ---------- ---------- ----------

The astute reader (that’s you) will note that spreading blocks of a file
across the disk will hurt performance, particularly in the relatively com-
mon case of sequential file access (e.g., when a user or application reads
chunks 0 through 29 in order). And you are right, oh astute reader of
ours! But you can address this problem by choosing chunk size carefully.

Specifically, if the chunk size is large enough, the file system will spend
most of its time transferring data from disk and just a (relatively) little
time seeking between chunks of the block. This process of reducing an
overhead by doing more work per overhead paid is called amortization
and is a common technique in computer systems.

Let’s do an example: assume that the average positioning time (i.e.,
seek and rotation) for a disk is 10 ms. Assume further that the disk trans-
fers data at 40 MB/s. If your goal was to spend half our time seeking
between chunks and half our time transferring data (and thus achieve
50% of peak disk performance), you would thus need to spend 10 ms
transferring data for every 10 ms positioning. So the question becomes:
how big does a chunk have to be in order to spend 10 ms in transfer?
Easy, just use our old friend, math, in particular the dimensional analysis
mentioned in the chapter on disks [AD14a]:

40✘✘MB

✟✟sec
·

1024 KB

1✘✘MB
·

1✟✟sec

1000✟✟ms
· 10✟✟ms = 409.6 KB (41.1)

Basically, what this equation says is this: if you transfer data at 40
MB/s, you need to transfer only 409.6KB every time you seek in order to
spend half your time seeking and half your time transferring. Similarly,
you can compute the size of the chunk you would need to achieve 90%
of peak bandwidth (turns out it is about 3.6MB), or even 99% of peak
bandwidth (39.6MB!). As you can see, the closer you want to get to peak,
the bigger these chunks get (see Figure 41.2 for a plot of these values).

FFS did not use this type of calculation in order to spread large files
across groups, however. Instead, it took a simple approach, based on the

© 2008–21, ARPACI-DUSSEAU
THREE

EASY

PIECES



10 LOCALITY AND THE FAST FILE SYSTEM

0% 25% 50% 75% 100%
1K

32K

1M

10M

The Challenges of Amortization

Percent Bandwidth (Desired)

L
o

g
(C

h
u

n
k
 S

iz
e

 N
e

e
d

e
d

)

50%, 409.6K

90%, 3.69M

Figure 41.2: Amortization: How Big Do Chunks Have To Be?

structure of the inode itself. The first twelve direct blocks were placed
in the same group as the inode; each subsequent indirect block, and all
the blocks it pointed to, was placed in a different group. With a block
size of 4KB, and 32-bit disk addresses, this strategy implies that every
1024 blocks of the file (4MB) were placed in separate groups, the lone
exception being the first 48KB of the file as pointed to by direct pointers.

Note that the trend in disk drives is that transfer rate improves fairly
rapidly, as disk manufacturers are good at cramming more bits into the
same surface, but the mechanical aspects of drives related to seeks (disk
arm speed and the rate of rotation) improve rather slowly [P98]. The
implication is that over time, mechanical costs become relatively more
expensive, and thus, to amortize said costs, you have to transfer more
data between seeks.

41.7 A Few Other Things About FFS

FFS introduced a few other innovations too. In particular, the design-
ers were extremely worried about accommodating small files; as it turned
out, many files were 2KB or so in size back then, and using 4KB blocks,
while good for transferring data, was not so good for space efficiency.
This internal fragmentation could thus lead to roughly half the disk be-
ing wasted for a typical file system.

The solution the FFS designers hit upon was simple and solved the
problem. They decided to introduce sub-blocks, which were 512-byte
little blocks that the file system could allocate to files. Thus, if you created
a small file (say 1KB in size), it would occupy two sub-blocks and thus not

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCALITY AND THE FAST FILE SYSTEM 11

0

11

10
9

8

7

6

5

4
3

2

1

Spindle
0

11

5
10

4

9

3

8

2
7

1

6

Spindle

Figure 41.3: FFS: Standard Versus Parameterized Placement

waste an entire 4KB block. As the file grew, the file system will continue
allocating 512-byte blocks to it until it acquires a full 4KB of data. At that
point, FFS will find a 4KB block, copy the sub-blocks into it, and free the
sub-blocks for future use.

You might observe that this process is inefficient, requiring a lot of ex-
tra work for the file system (in particular, a lot of extra I/O to perform the
copy). And you’d be right again! Thus, FFS generally avoided this pes-
simal behavior by modifying the libc library; the library would buffer
writes and then issue them in 4KB chunks to the file system, thus avoid-
ing the sub-block specialization entirely in most cases.

A second neat thing that FFS introduced was a disk layout that was
optimized for performance. In those times (before SCSI and other more
modern device interfaces), disks were much less sophisticated and re-
quired the host CPU to control their operation in a more hands-on way.
A problem arose in FFS when a file was placed on consecutive sectors of
the disk, as on the left in Figure 41.3.

In particular, the problem arose during sequential reads. FFS would
first issue a read to block 0; by the time the read was complete, and FFS
issued a read to block 1, it was too late: block 1 had rotated under the
head and now the read to block 1 would incur a full rotation.

FFS solved this problem with a different layout, as you can see on the
right in Figure 41.3. By skipping over every other block (in the example),
FFS has enough time to request the next block before it went past the
disk head. In fact, FFS was smart enough to figure out for a particular
disk how many blocks it should skip in doing layout in order to avoid the
extra rotations; this technique was called parameterization, as FFS would
figure out the specific performance parameters of the disk and use those
to decide on the exact staggered layout scheme.

You might be thinking: this scheme isn’t so great after all. In fact, you
will only get 50% of peak bandwidth with this type of layout, because
you have to go around each track twice just to read each block once. For-
tunately, modern disks are much smarter: they internally read the entire
track in and buffer it in an internal disk cache (often called a track buffer
for this very reason). Then, on subsequent reads to the track, the disk will

© 2008–21, ARPACI-DUSSEAU
THREE

EASY

PIECES



12 LOCALITY AND THE FAST FILE SYSTEM

TIP: MAKE THE SYSTEM USABLE

Probably the most basic lesson from FFS is that not only did it intro-
duce the conceptually good idea of disk-aware layout, but it also added
a number of features that simply made the system more usable. Long file
names, symbolic links, and a rename operation that worked atomically
all improved the utility of a system; while hard to write a research pa-
per about (imagine trying to read a 14-pager about “The Symbolic Link:
Hard Link’s Long Lost Cousin”), such small features made FFS more use-
ful and thus likely increased its chances for adoption. Making a system
usable is often as or more important than its deep technical innovations.

just return the desired data from its cache. File systems thus no longer
have to worry about these incredibly low-level details. Abstraction and
higher-level interfaces can be a good thing, when designed properly.

Some other usability improvements were added as well. FFS was one
of the first file systems to allow for long file names, thus enabling more
expressive names in the file system instead of the traditional fixed-size
approach (e.g., 8 characters). Further, a new concept was introduced
called a symbolic link. As discussed in a previous chapter [AD14b] ,
hard links are limited in that they both could not point to directories (for
fear of introducing loops in the file system hierarchy) and that they can
only point to files within the same volume (i.e., the inode number must
still be meaningful). Symbolic links allow the user to create an “alias” to
any other file or directory on a system and thus are much more flexible.
FFS also introduced an atomic rename() operation for renaming files.
Usability improvements, beyond the basic technology, also likely gained
FFS a stronger user base.

41.8 Summary

The introduction of FFS was a watershed moment in file system his-
tory, as it made clear that the problem of file management was one of the
most interesting issues within an operating system, and showed how one
might begin to deal with that most important of devices, the hard disk.
Since that time, hundreds of new file systems have developed, but still
today many file systems take cues from FFS (e.g., Linux ext2 and ext3 are
obvious intellectual descendants). Certainly all modern systems account
for the main lesson of FFS: treat the disk like it’s a disk.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



LOCALITY AND THE FAST FILE SYSTEM 13

References

[AD14a] “Operating Systems: Three Easy Pieces” (Chapter: Hard Disk Drives) by Remzi
Arpaci-Dusseau and Andrea Arpaci-Dusseau. Arpaci-Dusseau Books, 2014. There is no way
you should be reading about FFS without having first understood hard drives in some detail. If you try
to do so, please instead go directly to jail; do not pass go, and, critically, do not collect 200 much-needed
simoleons.

[AD14b] “Operating Systems: Three Easy Pieces” (Chapter: File System Implementation) by
Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau . Arpaci-Dusseau Books, 2014. As above,
it makes little sense to read this chapter unless you have read (and understood) the chapter on file
system implementation. Otherwise, we’ll be throwing around terms like “inode” and “indirect block”
and you’ll be like “huh?” and that is no fun for either of us.

[K94] “The Design of the SEER Predictive Caching System” by G. H. Kuenning. MOBICOMM
’94, Santa Cruz, California, December 1994. According to Kuenning, this is the best overview of the
SEER project, which led to (among other things) the collection of these traces.

[MJLF84] “A Fast File System for UNIX” by Marshall K. McKusick, William N. Joy, Sam J.
Leffler, Robert S. Fabry. ACM TOCS, 2:3, August 1984. McKusick was recently honored with the
IEEE Reynold B. Johnson award for his contributions to file systems, much of which was based on
his work building FFS. In his acceptance speech, he discussed the original FFS software: only 1200
lines of code! Modern versions are a little more complex, e.g., the BSD FFS descendant now is in the
50-thousand lines-of-code range.

[P98] “Hardware Technology Trends and Database Opportunities” by David A. Patterson.
Keynote Lecture at SIGMOD ’98, June 1998. A great and simple overview of disk technology trends
and how they change over time.

© 2008–21, ARPACI-DUSSEAU
THREE

EASY

PIECES



14 LOCALITY AND THE FAST FILE SYSTEM

Homework (Simulation)

This section introduces ffs.py, a simple FFS simulator you can use
to understand better how FFS-based file and directory allocation work.
See the README for details on how to run the simulator.

Questions

1. Examine the file in.largefile, and then run the simulator with flag -f

in.largefile and -L 4. The latter sets the large-file exception to 4 blocks.
What will the resulting allocation look like? Run with -c to check.

2. Now run with -L 30. What do you expect to see? Once again, turn on -c

to see if you were right. You can also use -S to see exactly which blocks
were allocated to the file /a.

3. Now we will compute some statistics about the file. The first is something
we call filespan, which is the max distance between any two data blocks of
the file or between the inode and any data block. Calculate the filespan of
/a. Run ffs.py -f in.largefile -L 4 -T -c to see what it is. Do
the same with -L 100. What difference do you expect in filespan as the
large-file exception parameter changes from low values to high values?

4. Now let’s look at a new input file, in.manyfiles. How do you think the
FFS policy will lay these files out across groups? (you can run with -v to
see what files and directories are created, or just cat in.manyfiles). Run
the simulator with -c to see if you were right.

5. A metric to evaluate FFS is called dirspan. This metric calculates the spread
of files within a particular directory, specifically the max distance between
the inodes and data blocks of all files in the directory and the inode and data
block of the directory itself. Run with in.manyfiles and the -T flag, and
calculate the dirspan of the three directories. Run with -c to check. How
good of a job does FFS do in minimizing dirspan?

6. Now change the size of the inode table per group to 5 (-I 5). How do you
think this will change the layout of the files? Run with -c to see if you were
right. How does it affect the dirspan?

7. Which group should FFS place inode of a new directory in? The default
(simulator) policy looks for the group with the most free inodes. A different
policy looks for a set of groups with the most free inodes. For example, if
you run with -A 2, when allocating a new directory, the simulator will look
at groups in pairs and pick the best pair for the allocation. Run ./ffs.py

-f in.manyfiles -I 5 -A 2 -c to see how allocation changes with
this strategy. How does it affect dirspan? Why might this policy be good?

8. One last policy change we will explore relates to file fragmentation. Run
./ffs.py -f in.fragmented -v and see if you can predict how the
files that remain are allocated. Run with -c to confirm your answer. What
is interesting about the data layout of file /i? Why is it problematic?

9. A new policy, which we call contiguous allocation (-C), tries to ensure that
each file is allocated contiguously. Specifically, with -C n, the file system
tries to ensure that n contiguous blocks are free within a group before al-
locating a block. Run ./ffs.py -f in.fragmented -v -C 2 -c to
see the difference. How does layout change as the parameter passed to -C

increases? Finally, how does -C affect filespan and dirspan?

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG


