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Log-structured File Systems

In the early 90’s, a group at Berkeley led by Professor John Ousterhout
and graduate student Mendel Rosenblum developed a new file system
known as the log-structured file system [RO91]. Their motivation to do
so was based on the following observations:

• System memories are growing: As memory gets bigger, more data
can be cached in memory. As more data is cached, disk traffic in-
creasingly consists of writes, as reads are serviced by the cache.
Thus, file system performance is largely determined by its write
performance.

• There is a large gap between random I/O performance and se-
quential I/O performance: Hard-drive transfer bandwidth has in-
creased a great deal over the years [P98]; as more bits are packed
into the surface of a drive, the bandwidth when accessing said bits
increases. Seek and rotational delay costs, however, have decreased
slowly; it is challenging to make cheap and small motors spin the
platters faster or move the disk arm more quickly. Thus, if you are
able to use disks in a sequential manner, you gain a sizeable perfor-
mance advantage over approaches that cause seeks and rotations.

• Existing file systems perform poorly on many common workloads:
For example, FFS [MJLF84] would perform a large number of writes
to create a new file of size one block: one for a new inode, one to
update the inode bitmap, one to the directory data block that the
file is in, one to the directory inode to update it, one to the new data
block that is a part of the new file, and one to the data bitmap to
mark the data block as allocated. Thus, although FFS places all of
these blocks within the same block group, FFS incurs many short
seeks and subsequent rotational delays and thus performance falls
far short of peak sequential bandwidth.

• File systems are not RAID-aware: For example, both RAID-4 and
RAID-5 have the small-write problem where a logical write to a
single block causes 4 physical I/Os to take place. Existing file sys-
tems do not try to avoid this worst-case RAID writing behavior.
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2 LOG-STRUCTURED FILE SYSTEMS

TIP: DETAILS MATTER

All interesting systems are comprised of a few general ideas and a num-
ber of details. Sometimes, when you are learning about these systems,
you think to yourself “Oh, I get the general idea; the rest is just details,”
and you use this to only half-learn how things really work. Don’t do this!
Many times, the details are critical. As we’ll see with LFS, the general idea
is easy to understand, but to really build a working system, you have to
think through all of the tricky cases.

An ideal file system would thus focus on write performance, and try
to make use of the sequential bandwidth of the disk. Further, it would
perform well on common workloads that not only write out data but also
update on-disk metadata structures frequently. Finally, it would work
well on RAIDs as well as single disks.

The new type of file system Rosenblum and Ousterhout introduced
was called LFS, short for the Log-structured File System. When writ-
ing to disk, LFS first buffers all updates (including metadata!) in an in-
memory segment; when the segment is full, it is written to disk in one
long, sequential transfer to an unused part of the disk. LFS never over-
writes existing data, but rather always writes segments to free locations.
Because segments are large, the disk (or RAID) is used efficiently, and
performance of the file system approaches its zenith.

THE CRUX:
HOW TO MAKE ALL WRITES SEQUENTIAL WRITES?

How can a file system transform all writes into sequential writes? For
reads, this task is impossible, as the desired block to be read may be any-
where on disk. For writes, however, the file system always has a choice,
and it is exactly this choice we hope to exploit.

43.1 Writing To Disk Sequentially

We thus have our first challenge: how do we transform all updates to
file-system state into a series of sequential writes to disk? To understand
this better, let’s use a simple example. Imagine we are writing a data block
D to a file. Writing the data block to disk might result in the following
on-disk layout, with D written at disk address A0:

D

A0
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LOG-STRUCTURED FILE SYSTEMS 3

However, when a user writes a data block, it is not only data that gets
written to disk; there is also other metadata that needs to be updated.
In this case, let’s also write the inode (I) of the file to disk, and have it
point to the data block D. When written to disk, the data block and inode
would look something like this (note that the inode looks as big as the
data block, which generally isn’t the case; in most systems, data blocks
are 4 KB in size, whereas an inode is much smaller, around 128 bytes):

D

A0

I

b[0]:A0

This basic idea, of simply writing all updates (such as data blocks,
inodes, etc.) to the disk sequentially, sits at the heart of LFS. If you un-
derstand this, you get the basic idea. But as with all complicated systems,
the devil is in the details.

43.2 Writing Sequentially And Effectively

Unfortunately, writing to disk sequentially is not (alone) enough to
guarantee efficient writes. For example, imagine if we wrote a single
block to address A, at time T . We then wait a little while, and write to
the disk at address A + 1 (the next block address in sequential order),
but at time T + δ. In-between the first and second writes, unfortunately,
the disk has rotated; when you issue the second write, it will thus wait
for most of a rotation before being committed (specifically, if the rotation
takes time Trotation, the disk will wait Trotation − δ before it can commit
the second write to the disk surface). And thus you can hopefully see
that simply writing to disk in sequential order is not enough to achieve
peak performance; rather, you must issue a large number of contiguous
writes (or one large write) to the drive in order to achieve good write
performance.

To achieve this end, LFS uses an ancient technique known as write

buffering1. Before writing to the disk, LFS keeps track of updates in
memory; when it has received a sufficient number of updates, it writes
them to disk all at once, thus ensuring efficient use of the disk.

The large chunk of updates LFS writes at one time is referred to by
the name of a segment. Although this term is over-used in computer
systems, here it just means a large-ish chunk which LFS uses to group
writes. Thus, when writing to disk, LFS buffers updates in an in-memory

1Indeed, it is hard to find a good citation for this idea, since it was likely invented by many
and very early on in the history of computing. For a study of the benefits of write buffering,
see Solworth and Orji [SO90]; to learn about its potential harms, see Mogul [M94].
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4 LOG-STRUCTURED FILE SYSTEMS

segment, and then writes the segment all at once to the disk. As long as
the segment is large enough, these writes will be efficient.

Here is an example, in which LFS buffers two sets of updates into a
small segment; actual segments are larger (a few MB). The first update is
of four block writes to file j; the second is one block being added to file k.
LFS then commits the entire segment of seven blocks to disk at once. The
resulting on-disk layout of these blocks is as follows:

D j,0

A0

D j,1

A1

D j,2

A2

D j,3

A3

b[0]:A0
b[1]:A1
b[2]:A2
b[3]:A3

Inode j

Dk,0

A5

b[0]:A5

Inode k

43.3 How Much To Buffer?

This raises the following question: how many updates should LFS
buffer before writing to disk? The answer, of course, depends on the disk
itself, specifically how high the positioning overhead is in comparison to
the transfer rate; see the FFS chapter for a similar analysis.

For example, assume that positioning (i.e., rotation and seek over-
heads) before each write takes roughly Tposition seconds. Assume further
that the disk transfer rate is Rpeak MB/s. How much should LFS buffer
before writing when running on such a disk?

The way to think about this is that every time you write, you pay a
fixed overhead of the positioning cost. Thus, how much do you have
to write in order to amortize that cost? The more you write, the better
(obviously), and the closer you get to achieving peak bandwidth.

To obtain a concrete answer, let’s assume we are writing out D MB.
The time to write out this chunk of data (Twrite) is the positioning time
Tposition plus the time to transfer D ( D

Rpeak
), or:

Twrite = Tposition +
D

Rpeak

(43.1)

And thus the effective rate of writing (Reffective), which is just the
amount of data written divided by the total time to write it, is:

Reffective =
D

Twrite

=
D

Tposition + D
Rpeak

. (43.2)

What we’re interested in is getting the effective rate (Reffective) close
to the peak rate. Specifically, we want the effective rate to be some fraction
F of the peak rate, where 0 < F < 1 (a typical F might be 0.9, or 90% of
the peak rate). In mathematical form, this means we want Reffective =
F ×Rpeak.
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LOG-STRUCTURED FILE SYSTEMS 5

At this point, we can solve for D:

Reffective =
D

Tposition + D
Rpeak

= F ×Rpeak (43.3)

D = F ×Rpeak × (Tposition +
D

Rpeak

) (43.4)

D = (F ×Rpeak × Tposition) + (F ×Rpeak ×
D

Rpeak

) (43.5)

D =
F

1− F
×Rpeak × Tposition (43.6)

Let’s do an example, with a disk with a positioning time of 10 mil-
liseconds and peak transfer rate of 100 MB/s; assume we want an ef-
fective bandwidth of 90% of peak (F = 0.9). In this case, D = 0.9

0.1
×

100 MB/s × 0.01 seconds = 9 MB. Try some different values to see
how much we need to buffer in order to approach peak bandwidth. How
much is needed to reach 95% of peak? 99%?

43.4 Problem: Finding Inodes

To understand how we find an inode in LFS, let us briefly review how
to find an inode in a typical UNIX file system. In a typical file system such
as FFS, or even the old UNIX file system, finding inodes is easy, because
they are organized in an array and placed on disk at fixed locations.

For example, the old UNIX file system keeps all inodes at a fixed por-
tion of the disk. Thus, given an inode number and the start address, to
find a particular inode, you can calculate its exact disk address simply by
multiplying the inode number by the size of an inode, and adding that
to the start address of the on-disk array; array-based indexing, given an
inode number, is fast and straightforward.

Finding an inode given an inode number in FFS is only slightly more
complicated, because FFS splits up the inode table into chunks and places
a group of inodes within each cylinder group. Thus, one must know how
big each chunk of inodes is and the start addresses of each. After that, the
calculations are similar and also easy.

In LFS, life is more difficult. Why? Well, we’ve managed to scatter the
inodes all throughout the disk! Worse, we never overwrite in place, and
thus the latest version of an inode (i.e., the one we want) keeps moving.

43.5 Solution Through Indirection: The Inode Map

To remedy this, the designers of LFS introduced a level of indirection
between inode numbers and the inodes through a data structure called
the inode map (imap). The imap is a structure that takes an inode number
as input and produces the disk address of the most recent version of the
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6 LOG-STRUCTURED FILE SYSTEMS

TIP: USE A LEVEL OF INDIRECTION

People often say that the solution to all problems in Computer Science is
simply a level of indirection. This is clearly not true; it is just the solution
to most problems (yes, this is still too strong of a comment, but you get the
point). You certainly can think of every virtualization we have studied,
e.g., virtual memory, or the notion of a file, as simply a level of indirection.
And certainly the inode map in LFS is a virtualization of inode numbers.
Hopefully you can see the great power of indirection in these examples,
allowing us to freely move structures around (such as pages in the VM
example, or inodes in LFS) without having to change every reference to
them. Of course, indirection can have a downside too: extra overhead. So
next time you have a problem, try solving it with indirection, but make
sure to think about the overheads of doing so first. As Wheeler famously
said, “All problems in computer science can be solved by another level of
indirection, except of course for the problem of too many indirections.”

inode. Thus, you can imagine it would often be implemented as a simple
array, with 4 bytes (a disk pointer) per entry. Any time an inode is written
to disk, the imap is updated with its new location.

The imap, unfortunately, needs to be kept persistent (i.e., written to
disk); doing so allows LFS to keep track of the locations of inodes across
crashes, and thus operate as desired. Thus, a question: where should the
imap reside on disk?

It could live on a fixed part of the disk, of course. Unfortunately, as it
gets updated frequently, this would then require updates to file structures
to be followed by writes to the imap, and hence performance would suffer
(i.e., there would be more disk seeks, between each update and the fixed
location of the imap).

Instead, LFS places chunks of the inode map right next to where it is
writing all of the other new information. Thus, when appending a data
block to a file k, LFS actually writes the new data block, its inode, and a
piece of the inode map all together onto the disk, as follows:

D

A0

I[k]

b[0]:A0

A1

imap

m[k]:A1

In this picture, the piece of the imap array stored in the block marked
imap tells LFS that the inode k is at disk address A1; this inode, in turn,
tells LFS that its data block D is at address A0.
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LOG-STRUCTURED FILE SYSTEMS 7

43.6 Completing The Solution: The Checkpoint Region

The clever reader (that’s you, right?) might have noticed a problem
here. How do we find the inode map, now that pieces of it are also now
spread across the disk? In the end, there is no magic: the file system must
have some fixed and known location on disk to begin a file lookup.

LFS has just such a fixed place on disk for this, known as the check-
point region (CR). The checkpoint region contains pointers to (i.e., ad-
dresses of) the latest pieces of the inode map, and thus the inode map
pieces can be found by reading the CR first. Note the checkpoint region
is only updated periodically (say every 30 seconds or so), and thus perfor-
mance is not ill-affected. Thus, the overall structure of the on-disk layout
contains a checkpoint region (which points to the latest pieces of the in-
ode map); the inode map pieces each contain addresses of the inodes; the
inodes point to files (and directories) just like typical UNIX file systems.

Here is an example of the checkpoint region (note it is all the way at
the beginning of the disk, at address 0), and a single imap chunk, inode,
and data block. A real file system would of course have a much bigger
CR (indeed, it would have two, as we’ll come to understand later), many
imap chunks, and of course many more inodes, data blocks, etc.

imap
[k...k+N]:

A2

CR
0

D

A0

I[k]

b[0]:A0

A1

imap

m[k]:A1

A2

43.7 Reading A File From Disk: A Recap

To make sure you understand how LFS works, let us now walk through
what must happen to read a file from disk. Assume we have nothing in
memory to begin. The first on-disk data structure we must read is the
checkpoint region. The checkpoint region contains pointers (i.e., disk ad-
dresses) to the entire inode map, and thus LFS then reads in the entire in-
ode map and caches it in memory. After this point, when given an inode
number of a file, LFS simply looks up the inode-number to inode-disk-
address mapping in the imap, and reads in the most recent version of the
inode. To read a block from the file, at this point, LFS proceeds exactly
as a typical UNIX file system, by using direct pointers or indirect pointers
or doubly-indirect pointers as need be. In the common case, LFS should
perform the same number of I/Os as a typical file system when reading a
file from disk; the entire imap is cached and thus the extra work LFS does
during a read is to look up the inode’s address in the imap.
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8 LOG-STRUCTURED FILE SYSTEMS

43.8 What About Directories?

Thus far, we’ve simplified our discussion a bit by only considering in-
odes and data blocks. However, to access a file in a file system (such as
/home/remzi/foo, one of our favorite fake file names), some directo-
ries must be accessed too. So how does LFS store directory data?

Fortunately, directory structure is basically identical to classic UNIX

file systems, in that a directory is just a collection of (name, inode number)
mappings. For example, when creating a file on disk, LFS must both write
a new inode, some data, as well as the directory data and its inode that
refer to this file. Remember that LFS will do so sequentially on the disk
(after buffering the updates for some time). Thus, creating a file foo in a
directory would lead to the following new structures on disk:

Dk

A0

I[k]
b[0]:A0

A1

(foo, k)

Ddir

A2

I[dir]
b[0]:A2

A3

m[k]:A1
m[dir]:A3

imap

The piece of the inode map contains the information for the location of
both the directory file dir as well as the newly-created file f . Thus, when
accessing file foo (with inode number k), you would first look in the
inode map (usually cached in memory) to find the location of the inode
of directory dir (A3); you then read the directory inode, which gives you
the location of the directory data (A2); reading this data block gives you
the name-to-inode-number mapping of (foo, k). You then consult the
inode map again to find the location of inode number k (A1), and finally
read the desired data block at address A0.

There is one other serious problem in LFS that the inode map solves,
known as the recursive update problem [Z+12]. The problem arises
in any file system that never updates in place (such as LFS), but rather
moves updates to new locations on the disk.

Specifically, whenever an inode is updated, its location on disk changes.
If we hadn’t been careful, this would have also entailed an update to
the directory that points to this file, which then would have mandated
a change to the parent of that directory, and so on, all the way up the file
system tree.

LFS cleverly avoids this problem with the inode map. Even though
the location of an inode may change, the change is never reflected in the
directory itself; rather, the imap structure is updated while the directory
holds the same name-to-inode-number mapping. Thus, through indirec-
tion, LFS avoids the recursive update problem.
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LOG-STRUCTURED FILE SYSTEMS 9

43.9 A New Problem: Garbage Collection

You may have noticed another problem with LFS; it repeatedly writes
the latest version of a file (including its inode and data) to new locations
on disk. This process, while keeping writes efficient, implies that LFS
leaves old versions of file structures scattered throughout the disk. We
(rather unceremoniously) call these old versions garbage.

For example, let’s imagine the case where we have an existing file re-
ferred to by inode number k, which points to a single data block D0.
We now update that block, generating both a new inode and a new data
block. The resulting on-disk layout of LFS would look something like this
(note we omit the imap and other structures for simplicity; a new chunk
of imap would also have to be written to disk to point to the new inode):

D0

A0

I[k]
b[0]:A0

(garbage)

D0

A4

I[k]
b[0]:A4

In the diagram, you can see that both the inode and data block have
two versions on disk, one old (the one on the left) and one current and
thus live (the one on the right). By the simple act of (logically) updating
a data block, a number of new structures must be persisted by LFS, thus
leaving old versions of said blocks on the disk.

As another example, imagine we instead append a block to that orig-
inal file k. In this case, a new version of the inode is generated, but the
old data block is still pointed to by the inode. Thus, it is still live and very
much part of the current file system:

D0

A0

I[k]
b[0]:A0

(garbage)

D1

A4

b[0]:A0
b[1]:A4

I[k]

So what should we do with these older versions of inodes, data blocks,
and so forth? One could keep those older versions around and allow
users to restore old file versions (for example, when they accidentally
overwrite or delete a file, it could be quite handy to do so); such a file
system is known as a versioning file system because it keeps track of the
different versions of a file.

However, LFS instead keeps only the latest live version of a file; thus
(in the background), LFS must periodically find these old dead versions
of file data, inodes, and other structures, and clean them; cleaning should
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10 LOG-STRUCTURED FILE SYSTEMS

thus make blocks on disk free again for use in subsequent writes. Note
that the process of cleaning is a form of garbage collection, a technique
that arises in programming languages that automatically free unused mem-
ory for programs.

Earlier we discussed segments as important as they are the mechanism
that enables large writes to disk in LFS. As it turns out, they are also quite
integral to effective cleaning. Imagine what would happen if the LFS
cleaner simply went through and freed single data blocks, inodes, etc.,
during cleaning. The result: a file system with some number of free holes
mixed between allocated space on disk. Write performance would drop
considerably, as LFS would not be able to find a large contiguous region
to write to disk sequentially and with high performance.

Instead, the LFS cleaner works on a segment-by-segment basis, thus
clearing up large chunks of space for subsequent writing. The basic clean-
ing process works as follows. Periodically, the LFS cleaner reads in a
number of old (partially-used) segments, determines which blocks are
live within these segments, and then write out a new set of segments
with just the live blocks within them, freeing up the old ones for writing.
Specifically, we expect the cleaner to read in M existing segments, com-
pact their contents into N new segments (where N < M ), and then write
the N segments to disk in new locations. The old M segments are then
freed and can be used by the file system for subsequent writes.

We are now left with two problems, however. The first is mechanism:
how can LFS tell which blocks within a segment are live, and which are
dead? The second is policy: how often should the cleaner run, and which
segments should it pick to clean?

43.10 Determining Block Liveness

We address the mechanism first. Given a data block D within an on-
disk segment S, LFS must be able to determine whether D is live. To do
so, LFS adds a little extra information to each segment that describes each
block. Specifically, LFS includes, for each data block D, its inode number
(which file it belongs to) and its offset (which block of the file this is). This
information is recorded in a structure at the head of the segment known
as the segment summary block.

Given this information, it is straightforward to determine whether a
block is live or dead. For a block D located on disk at address A, look
in the segment summary block and find its inode number N and offset
T . Next, look in the imap to find where N lives and read N from disk
(perhaps it is already in memory, which is even better). Finally, using
the offset T , look in the inode (or some indirect block) to see where the
inode thinks the Tth block of this file is on disk. If it points exactly to disk
address A, LFS can conclude that the block D is live. If it points anywhere
else, LFS can conclude that D is not in use (i.e., it is dead) and thus know
that this version is no longer needed. Here is a pseudocode summary:
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LOG-STRUCTURED FILE SYSTEMS 11

(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)

// block D is alive

else

// block D is garbage

Here is a diagram depicting the mechanism, in which the segment
summary block (marked SS) records that the data block at address A0
is actually a part of file k at offset 0. By checking the imap for k, you can
find the inode, and see that it does indeed point to that location.

D

A0

I[k]

b[0]:A0

A1

imap

m[k]:A1A0:
(k,0)

ss

There are some shortcuts LFS takes to make the process of determining
liveness more efficient. For example, when a file is truncated or deleted,
LFS increases its version number and records the new version number in
the imap. By also recording the version number in the on-disk segment,
LFS can short circuit the longer check described above simply by compar-
ing the on-disk version number with a version number in the imap, thus
avoiding extra reads.

43.11 A Policy Question: Which Blocks To Clean, And When?

On top of the mechanism described above, LFS must include a set of
policies to determine both when to clean and which blocks are worth
cleaning. Determining when to clean is easier; either periodically, dur-
ing idle time, or when you have to because the disk is full.

Determining which blocks to clean is more challenging, and has been
the subject of many research papers. In the original LFS paper [RO91], the
authors describe an approach which tries to segregate hot and cold seg-
ments. A hot segment is one in which the contents are being frequently
over-written; thus, for such a segment, the best policy is to wait a long
time before cleaning it, as more and more blocks are getting over-written
(in new segments) and thus being freed for use. A cold segment, in con-
trast, may have a few dead blocks but the rest of its contents are relatively
stable. Thus, the authors conclude that one should clean cold segments
sooner and hot segments later, and develop a heuristic that does exactly
that. However, as with most policies, this policy isn’t perfect; later ap-
proaches show how to do better [MR+97].
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12 LOG-STRUCTURED FILE SYSTEMS

43.12 Crash Recovery And The Log

One final problem: what happens if the system crashes while LFS is
writing to disk? As you may recall in the previous chapter about jour-
naling, crashes during updates are tricky for file systems, and thus some-
thing LFS must consider as well.

During normal operation, LFS buffers writes in a segment, and then
(when the segment is full, or when some amount of time has elapsed),
writes the segment to disk. LFS organizes these writes in a log, i.e., the
checkpoint region points to a head and tail segment, and each segment
points to the next segment to be written. LFS also periodically updates the
checkpoint region. Crashes could clearly happen during either of these
operations (write to a segment, write to the CR). So how does LFS handle
crashes during writes to these structures?

Let’s cover the second case first. To ensure that the CR update happens
atomically, LFS actually keeps two CRs, one at either end of the disk, and
writes to them alternately. LFS also implements a careful protocol when
updating the CR with the latest pointers to the inode map and other infor-
mation; specifically, it first writes out a header (with timestamp), then the
body of the CR, and then finally one last block (also with a timestamp). If
the system crashes during a CR update, LFS can detect this by seeing an
inconsistent pair of timestamps. LFS will always choose to use the most
recent CR that has consistent timestamps, and thus consistent update of
the CR is achieved.

Let’s now address the first case. Because LFS writes the CR every 30
seconds or so, the last consistent snapshot of the file system may be quite
old. Thus, upon reboot, LFS can easily recover by simply reading in the
checkpoint region, the imap pieces it points to, and subsequent files and
directories; however, the last many seconds of updates would be lost.

To improve upon this, LFS tries to rebuild many of those segments
through a technique known as roll forward in the database community.
The basic idea is to start with the last checkpoint region, find the end of
the log (which is included in the CR), and then use that to read through
the next segments and see if there are any valid updates within it. If there
are, LFS updates the file system accordingly and thus recovers much of
the data and metadata written since the last checkpoint. See Rosenblum’s
award-winning dissertation for details [R92].

43.13 Summary

LFS introduces a new approach to updating the disk. Instead of over-
writing files in places, LFS always writes to an unused portion of the
disk, and then later reclaims that old space through cleaning. This ap-
proach, which in database systems is called shadow paging [L77] and in
file-system-speak is sometimes called copy-on-write, enables highly effi-
cient writing, as LFS can gather all updates into an in-memory segment
and then write them out together sequentially.
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LOG-STRUCTURED FILE SYSTEMS 13

TIP: TURN FLAWS INTO VIRTUES

Whenever your system has a fundamental flaw, see if you can turn it
around into a feature or something useful. NetApp’s WAFL does this
with old file contents; by making old versions available, WAFL no longer
has to worry about cleaning quite so often (though it does delete old ver-
sions, eventually, in the background), and thus provides a cool feature
and removes much of the LFS cleaning problem all in one wonderful
twist. Are there other examples of this in systems? Undoubtedly, but
you’ll have to think of them yourself, because this chapter is over with a
capital “O”. Over. Done. Kaput. We’re out. Peace!

The large writes that LFS generates are excellent for performance on
many different devices. On hard drives, large writes ensure that posi-
tioning time is minimized; on parity-based RAIDs, such as RAID-4 and
RAID-5, they avoid the small-write problem entirely. Recent research
has even shown that large I/Os are required for high performance on
Flash-based SSDs [H+17]; thus, perhaps surprisingly, LFS-style file sys-
tems may be an excellent choice even for these new mediums.

The downside to this approach is that it generates garbage; old copies
of the data are scattered throughout the disk, and if one wants to re-
claim such space for subsequent usage, one must clean old segments pe-
riodically. Cleaning became the focus of much controversy in LFS, and
concerns over cleaning costs [SS+95] perhaps limited LFS’s initial impact
on the field. However, some modern commercial file systems, including
NetApp’s WAFL [HLM94], Sun’s ZFS [B07], and Linux btrfs [R+13], and
even modern flash-based SSDs [AD14], adopt a similar copy-on-write
approach to writing to disk, and thus the intellectual legacy of LFS lives
on in these modern file systems. In particular, WAFL got around clean-
ing problems by turning them into a feature; by providing old versions of
the file system via snapshots, users could access old files whenever they
deleted current ones accidentally.
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Homework (Simulation)

This section introduces lfs.py, a simple LFS simulator you can use
to understand better how an LFS-based file system works. Read the
README for details on how to run the simulator.

Questions

1. Run ./lfs.py -n 3, perhaps varying the seed (-s). Can you fig-
ure out which commands were run to generate the final file system
contents? Can you tell which order those commands were issued?
Finally, can you determine the liveness of each block in the final
file system state? Use -o to show which commands were run, and
-c to show the liveness of the final file system state. How much
harder does the task become for you as you increase the number of
commands issued (i.e., change -n 3 to -n 5)?

2. If you find the above painful, you can help yourself a little bit by
showing the set of updates caused by each specific command. To do
so, run ./lfs.py -n 3 -i. Now see if it is easier to understand
what each command must have been. Change the random seed to
get different commands to interpret (e.g., -s 1, -s 2, -s 3, etc.).

3. To further test your ability to figure out what updates are made to
disk by each command, run the following: ./lfs.py -o -F -s

100 (and perhaps a few other random seeds). This just shows a
set of commands and does NOT show you the final state of the file
system. Can you reason about what the final state of the file system
must be?

4. Now see if you can determine which files and directories are live
after a number of file and directory operations. Run tt ./lfs.py

-n 20 -s 1 and then examine the final file system state. Can you
figure out which pathnames are valid? Run tt ./lfs.py -n 20

-s 1 -c -v to see the results. Run with -o to see if your answers
match up given the series of random commands. Use different ran-
dom seeds to get more problems.

5. Now let’s issue some specific commands. First, let’s create a file
and write to it repeatedly. To do so, use the -L flag, which lets you
specify specific commands to execute. Let’s create the file ”/foo”
and write to it four times:
-L c,/foo:w,/foo,0,1:w,/foo,1,1:w,/foo,2,1:w,/foo,3,1

-o. See if you can determine the liveness of the final file system
state; use -c to check your answers.

6. Now, let’s do the same thing, but with a single write operation in-
stead of four. Run ./lfs.py -o -L c,/foo:w,/foo,0,4 to
create file ”/foo” and write 4 blocks with a single write operation.
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Compute the liveness again, and check if you are right with -c.
What is the main difference between writing a file all at once (as
we do here) versus doing it one block at a time (as above)? What
does this tell you about the importance of buffering updates in main
memory as the real LFS does?

7. Let’s do another specific example. First, run the following: ./lfs.py
-L c,/foo:w,/foo,0,1. What does this set of commands do?
Now, run ./lfs.py -L c,/foo:w,/foo,7,1. What does this
set of commands do? How are the two different? What can you tell
about the size field in the inode from these two sets of commands?

8. Now let’s look explicitly at file creation versus directory creation.
Run simulations ./lfs.py -L c,/foo and ./lfs.py -L d,/foo

to create a file and then a directory. What is similar about these runs,
and what is different?

9. The LFS simulator supports hard links as well. Run the following
to study how they work:
./lfs.py -L c,/foo:l,/foo,/bar:l,/foo,/goo -o -i.
What blocks are written out when a hard link is created? How is
this similar to just creating a new file, and how is it different? How
does the reference count field change as links are created?

10. LFS makes many different policy decisions. We do not explore
many of them here – perhaps something left for the future – but here
is a simple one we do explore: the choice of inode number. First, run
./lfs.py -p c100 -n 10 -o -a s to show the usual behav-
ior with the ”sequential” allocation policy, which tries to use free
inode numbers nearest to zero. Then, change to a ”random” policy
by running ./lfs.py -p c100 -n 10 -o -a r (the -p c100

flag ensures 100 percent of the random operations are file creations).
What on-disk differences does a random policy versus a sequential
policy result in? What does this say about the importance of choos-
ing inode numbers in a real LFS?

11. One last thing we’ve been assuming is that the LFS simulator al-
ways updates the checkpoint region after each update. In the real
LFS, that isn’t the case: it is updated periodically to avoid long
seeks. Run ./lfs.py -N -i -o -s 1000 to see some opera-
tions and the intermediate and final states of the file system when
the checkpoint region isn’t forced to disk. What would happen if
the checkpoint region is never updated? What if it is updated peri-
odically? Could you figure out how to recover the file system to the
latest state by rolling forward in the log?
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