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Flash-based SSDs

After decades of hard-disk drive dominance, a new form of persistent
storage device has recently gained significance in the world. Generi-
cally referred to as solid-state storage, such devices have no mechani-
cal or moving parts like hard drives; rather, they are simply built out of
transistors, much like memory and processors. However, unlike typical
random-access memory (e.g., DRAM), such a solid-state storage device
(a.k.a., an SSD) retains information despite power loss, and thus is an
ideal candidate for use in persistent storage of data.

The technology we’ll focus on is known as flash (more specifically,
NAND-based flash), which was created by Fujio Masuoka in the 1980s
[M+14]. Flash, as we’ll see, has some unique properties. For example, to
write to a given chunk of it (i.e., a flash page), you first have to erase a big-
ger chunk (i.e., a flash block), which can be quite expensive. In addition,
writing too often to a page will cause it to wear out. These two properties
make construction of a flash-based SSD an interesting challenge:

CRUX: How To BUILD A FLASH-BASED SSD
How can we build a flash-based SSD? How can we handle the expen-
sive nature of erasing? How can we build a device that lasts a long time,
given that repeated overwrite will wear the device out? Will the march of
progress in technology ever cease? Or cease to amaze?

Storing a Single Bit

Flash chips are designed to store one or more bits in a single transis-
tor; the level of charge trapped within the transistor is mapped to a binary
value. In a single-level cell (SLC) flash, only a single bit is stored within
a transistor (i.e., 1 or 0); with a multi-level cell (MLC) flash, two bits are
encoded into different levels of charge, e.g., 00, 01, 10, and 11 are repre-
sented by low, somewhat low, somewhat high, and high levels. There is
even triple-level cell (TLC) flash, which encodes 3 bits per cell. Overall,
SLC chips achieve higher performance and are more expensive.
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T1P: BE CAREFUL WITH TERMINOLOGY

You may have noticed that some terms we have used many times before
(blocks, pages) are being used within the context of a flash, but in slightly
different ways than before. New terms are not created to make your life
harder (although they may be doing just that), but arise because there is
no central authority where terminology decisions are made. What is a
block to you may be a page to someone else, and vice versa, depending
on the context. Your job is simple: to know the appropriate terms within
each domain, and use them such that people well-versed in the discipline
can understand what you are talking about. It’s one of those times where
the only solution is simple but sometimes painful: use your memory.

Of course, there are many details as to exactly how such bit-level stor-
age operates, down at the level of device physics. While beyond the scope
of this book, you can read more about it on your own [J10].

From Bits to Banks/Planes

As they say in ancient Greece, storing a single bit (or a few) does not
a storage system make. Hence, flash chips are organized into banks or
planes which consist of a large number of cells.

A bank is accessed in two different sized units: blocks (sometimes
called erase blocks), which are typically of size 128 KB or 256 KB, and
pages, which are a few KB in size (e.g., 4KB). Within each bank there are
a large number of blocks; within each block, there are a large number of
pages. When thinking about flash, you must remember this new termi-
nology, which is different than the blocks we refer to in disks and RAIDs
and the pages we refer to in virtual memory.

Figure 44.1 shows an example of a flash plane with blocks and pages;
there are three blocks, each containing four pages, in this simple exam-
ple. We'll see below why we distinguish between blocks and pages; it
turns out this distinction is critical for flash operations such as reading
and writing, and even more so for the overall performance of the device.
The most important (and weird) thing you will learn is that to write to
a page within a block, you first have to erase the entire block; this tricky
detail makes building a flash-based SSD an interesting and worthwhile
challenge, and the subject of the second-half of the chapter.

Block: 0 1 2
Page: 00 01 02 0304 05 06 07(08 09 10 11
Content: [ [ [ | L [ | L [ |

Figure 44.1: A Simple Flash Chip: Pages Within Blocks

WWW.OSTEP.ORG



44.3

FLASH-BASED SSDs 3

Basic Flash Operations

Given this flash organization, there are three low-level operations that
a flash chip supports. The read command is used to read a page from the
flash; erase and program are used in tandem to write. The details:

* Read (a page): A client of the flash chip can read any page (e.g.,
2KB or 4KB), simply by specifying the read command and appro-
priate page number to the device. This operation is typically quite
fast, 10s of microseconds or so, regardless of location on the device,
and (more or less) regardless of the location of the previous request
(quite unlike a disk). Being able to access any location uniformly
quickly means the device is a random access device.

¢ Erase (a block): Before writing to a page within a flash, the nature
of the device requires that you first erase the entire block the page
lies within. Erase, importantly, destroys the contents of the block
(by setting each bit to the value 1); therefore, you must be sure that
any data you care about in the block has been copied elsewhere
(to memory, or perhaps to another flash block) before executing the
erase. The erase command is quite expensive, taking a few millisec-
onds to complete. Once finished, the entire block is reset and each
page is ready to be programmed.

¢ Program (a page): Once a block has been erased, the program com-
mand can be used to change some of the 1’s within a page to 0’s,
and write the desired contents of a page to the flash. Program-
ming a page is less expensive than erasing a block, but more costly
than reading a page, usually taking around 100s of microseconds
on modern flash chips.

One way to think about flash chips is that each page has a state asso-
ciated with it. Pages start in an INVALID state. By erasing the block that
a page resides within, you set the state of the page (and all pages within
that block) to ERASED, which resets the content of each page in the block
but also (importantly) makes them programmable. When you program a
page, its state changes to VALID, meaning its contents have been set and
can be read. Reads do not affect these states (although you should only
read from pages that have been programmed). Once a page has been pro-
grammed, the only way to change its contents is to erase the entire block
within which the page resides. Here is an example of states transition
after various erase and program operations within a 4-page block:

iiii  Initial: pages in block are invalid (1)

Erase() — EEEE  State of pages in block set to erased (E)
Program(0) — VEEE Program page 0; state set to valid (V)
Program(0) — error  Cannot re-program page after programming
Program(l) — VVEE Program page 1

Erase() — EEEE  Contents erased; all pages programmable
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A Detailed Example

Because the process of writing (i.e., erasing and programming) is so un-
usual, let’s go through a detailed example to make sure it makes sense.
In this example, imagine we have the following four 8-bit pages, within
a 4-page block (both unrealistically small sizes, but useful within this ex-
ample); each page is VALID as each has been previously programmed.

Page 0 Page 1 Page 2 Page 3
| 00011000 [ 11001110 [ 00000001 [ 00111111 |
VALID VALID VALID VALID

Now say we wish to write to page 0, filling it with new contents. To
write any page, we must first erase the entire block. Let’s assume we do
so, thus leaving the block in this state:

Page 0 Page 1 Page 2 Page 3
[ [ [ [ 111111 |
ERASED ERASED ERASED ERASED

Good news! We could now go ahead and program page 0, for exam-
ple with the contents 00000011, overwriting the old page 0 (contents
00011000) as desired. After doing so, our block looks like this:

Page 0 Page 1 Page 2 Page 3
[ 00000011 [ 11111111 [ 1111111 [ 11111111 ]
VALID ERASED ERASED ERASED

And now the bad news: the previous contents of pages 1, 2, and 3
are all gone! Thus, before overwriting any page within a block, we must
first move any data we care about to another location (e.g., memory, or
elsewhere on the flash). The nature of erase will have a strong impact on
how we design flash-based SSDs, as we’ll soon learn about.

Summary

To summarize, reading a page is easy: just read the page. Flash chips
do this quite well, and quickly; in terms of performance, they offer the
potential to greatly exceed the random read performance of modern disk
drives, which are slow due to mechanical seek and rotation costs.
Writing a page is trickier; the entire block must first be erased (taking
care to first move any data we care about to another location), and then
the desired page programmed. Not only is this expensive, but frequent
repetitions of this program/erase cycle can lead to the biggest reliability
problem flash chips have: wear out. When designing a storage system
with flash, the performance and reliability of writing is a central focus.
We’ll soon learn more about how modern SSDs attack these issues, deliv-
ering excellent performance and reliability despite these limitations.

WWW.OSTEP.ORG
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Read Program Erase

Device (18) (us) (us)
SLC 25 200-300  1500-2000
MLC 50 600-900 3000
TLC “75  7900-1350 4500

Figure 44.2: Raw Flash Performance Characteristics
Flash Performance And Reliability

Because we're interested in building a storage device out of raw flash
chips, it is worthwhile to understand their basic performance character-
istics. Figure 44.2 presents a rough summary of some numbers found in
the popular press [V12]. Therein, the author presents the basic operation
latency of reads, programs, and erases across SLC, MLC, and TLC flash,
which store 1, 2, and 3 bits of information per cell, respectively.

As we can see from the table, read latencies are quite good, taking just
10s of microseconds to complete. Program latency is higher and more
variable, as low as 200 microseconds for SLC, but higher as you pack
more bits into each cell; to get good write performance, you will have
to make use of multiple flash chips in parallel. Finally, erases are quite
expensive, taking a few milliseconds typically. Dealing with this cost is
central to modern flash storage design.

Let’s now consider reliability of flash chips. Unlike mechanical disks,
which can fail for a wide variety of reasons (including the gruesome and
quite physical head crash, where the drive head actually makes contact
with the recording surface), flash chips are pure silicon and in that sense
have fewer reliability issues to worry about. The primary concern is wear
out; when a flash block is erased and programmed, it slowly accrues a
little bit of extra charge. Over time, as that extra charge builds up, it
becomes increasingly difficult to differentiate between a 0 and a 1. At the
point where it becomes impossible, the block becomes unusable.

The typical lifetime of a block is currently not well known. Manufac-
turers rate MLC-based blocks as having a 10,000 P/E (Program/Erase)
cycle lifetime; that is, each block can be erased and programmed 10,000
times before failing. SLC-based chips, because they store only a single bit
per transistor, are rated with a longer lifetime, usually 100,000 P/E cycles.
However, recent research has shown that lifetimes are much longer than
expected [BD10].

One other reliability problem within flash chips is known as distur-
bance. When accessing a particular page within a flash, it is possible that
some bits get flipped in neighboring pages; such bit flips are known as
read disturbs or program disturbs, depending on whether the page is
being read or programmed, respectively.
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TiP: THE IMPORTANCE OF BACKWARDS COMPATIBILITY
Backwards compatibility is always a concern in layered systems. By
defining a stable interface between two systems, one enables innovation
on each side of the interface while ensuring continued interoperability.
Such an approach has been quite successful in many domains: operating
systems have relatively stable APIs for applications, disks provide the
same block-based interface to file systems, and each layer in the IP net-
working stack provides a fixed unchanging interface to the layer above.

Not surprisingly, there can be a downside to such rigidity, as interfaces
defined in one generation may not be appropriate in the next. In some
cases, it may be useful to think about redesigning the entire system en-
tirely. An excellent example is found in the Sun ZFS file system [B07];
by reconsidering the interaction of file systems and RAID, the creators of
ZFS envisioned (and then realized) a more effective integrated whole.

From Raw Flash to Flash-Based SSDs

Given our basic understanding of flash chips, we now face our next
task: how to turn a basic set of flash chips into something that looks like
a typical storage device. The standard storage interface is a simple block-
based one, where blocks (sectors) of size 512 bytes (or larger) can be read
or written, given a block address. The task of the flash-based SSD is to
provide that standard block interface atop the raw flash chips inside it.

Internally, an SSD consists of some number of flash chips (for persis-
tent storage). An SSD also contains some amount of volatile (i.e., non-
persistent) memory (e.g., SRAM); such memory is useful for caching and
buffering of data as well as for mapping tables, which we’ll learn about
below. Finally, an SSD contains control logic to orchestrate device opera-
tion. See Agrawal et. al for details [A+08]; a simplified block diagram is
seen in Figure 44.3 (page 7).

One of the essential functions of this control logic is to satisfy client
reads and writes, turning them into internal flash operations as need be.
The flash translation layer, or FTL, provides exactly this functionality.
The FTL takes read and write requests on logical blocks (that comprise the
device interface) and turns them into low-level read, erase, and program
commands on the underlying physical blocks and physical pages (that com-
prise the actual flash device). The FTL should accomplish this task with
the goal of delivering excellent performance and high reliability.

Excellent performance, as we’ll see, can be realized through a com-
bination of techniques. One key will be to utilize multiple flash chips
in parallel; although we won’t discuss this technique much further, suf-
fice it to say that all modern SSDs use multiple chips internally to obtain
higher performance. Another performance goal will be to reduce write
amplification, which is defined as the total write traffic (in bytes) issued
to the flash chips by the FTL divided by the total write traffic (in bytes) is-
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|
Flash Flash | Flash @ Flash
Controller |

Figure 44.3: A Flash-based SSD: Logical Diagram

sued by the client to the SSD. As we’ll see below, naive approaches to FTL
construction will lead to high write amplification and low performance.

High reliability will be achieved through the combination of a few dif-
ferent approaches. One main concern, as discussed above, is wear out. If
a single block is erased and programmed too often, it will become unus-
able; as a result, the FTL should try to spread writes across the blocks of
the flash as evenly as possible, ensuring that all of the blocks of the device
wear out at roughly the same time; doing so is called wear leveling and
is an essential part of any modern FTL.

Another reliability concern is program disturbance. To minimize such
disturbance, FTLs will commonly program pages within an erased block
in order, from low page to high page. This sequential-programming ap-
proach minimizes disturbance and is widely utilized.

Interface Logic

FTL Organization: A Bad Approach

The simplest organization of an FTL would be something we call di-
rect mapped. In this approach, a read to logical page N is mapped di-
rectly to a read of physical page N. A write to logical page N is more
complicated; the FTL first has to read in the entire block that page N is
contained within; it then has to erase the block; finally, the FTL programs
the old pages as well as the new one.

As you can probably guess, the direct-mapped FTL has many prob-
lems, both in terms of performance as well as reliability. The performance
problems come on each write: the device has to read in the entire block
(costly), erase it (quite costly), and then program it (costly). The end re-
sult is severe write amplification (proportional to the number of pages
in a block) and as a result, terrible write performance, even slower than
typical hard drives with their mechanical seeks and rotational delays.

Even worse is the reliability of this approach. If file system metadata
or user file data is repeatedly overwritten, the same block is erased and
programmed, over and over, rapidly wearing it out and potentially los-
ing data. The direct mapped approach simply gives too much control
over wear out to the client workload; if the workload does not spread
write load evenly across its logical blocks, the underlying physical blocks
containing popular data will quickly wear out. For both reliability and
performance reasons, a direct-mapped FTL is a bad idea.
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A Log-Structured FTL

For these reasons, most FTLs today are log structured, an idea useful
in both storage devices (as we’ll see now) and file systems above them (as
we’ll see in the chapter on log-structured file systems). Upon a write to
logical block N, the device appends the write to the next free spot in the
currently-being-written-to block; we call this style of writing logging. To
allow for subsequent reads of block IV, the device keeps a mapping table
(in its memory, and persistent, in some form, on the device); this table
stores the physical address of each logical block in the system.

Let’s go through an example to make sure we understand how the
basic log-based approach works. To the client, the device looks like a
typical disk, in which it can read and write 512-byte sectors (or groups of
sectors). For simplicity, assume that the client is reading or writing 4-KB
sized chunks. Let us further assume that the SSD contains some large
number of 16-KB sized blocks, each divided into four 4-KB pages; these
parameters are unrealistic (flash blocks usually consist of more pages) but
will serve our didactic purposes quite well.

Assume the client issues the following sequence of operations:

Write(100) with contents a1l
Write(101) with contents a2
Write(2000) with contents b1
Write(2001) with contents b2

These logical block addresses (e.g., 100) are used by the client of the
SSD (e.g., a file system) to remember where information is located.
Internally, the device must transform these block writes into the erase
and program operations supported by the raw hardware, and somehow
record, for each logical block address, which physical page of the SSD
stores its data. Assume that all blocks of the SSD are currently not valid,
and must be erased before any page can be programmed. Here we show
the initial state of our SSD, with all pages marked INVALID (i):
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: | [ | | [ [ | [ [ |
State: i i @ Qi@ 0 0 i ioio0 i
When the first write is received by the SSD (to logical block 100), the
FTL decides to write it to physical block 0, which contains four physical
pages: 0,1, 2, and 3. Because the block is not erased, we cannot write to
it yet; the device must first issue an erase command to block 0. Doing so
leads to the following state:

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: | | [ | [ [ ] [ [ ]

State: E E E E|[i i i i|i i i i

WWW.OSTEP.ORG
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Block 0 is now ready to be programmed. Most SSDs will write pages
in order (i.e., low to high), reducing reliability problems related to pro-
gram disturbance. The SSD then directs the write of logical block 100
into physical page 0:

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [at] [ | [ [ ] [ [ ]

State: V E E E|i i i ifi i i ‘i

But what if the client wants to read logical block 100? How can it find

where it is? The SSD must transform a read issued to logical block 100
into a read of physical page 0. To accommodate such functionality, when
the FTL writes logical block 100 to physical page 0, it records this fact in
an in-memory mapping table. We will track the state of this mapping
table in the diagrams as well:

Table: 100 =0 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07(08 09 10 11 Flash
Content: [a1] [ | | | | | | | Chip

State: V E E E|i i i if[i i i i

Now you can see what happens when the client writes to the SSD.
The SSD finds a location for the write, usually just picking the next free
page; it then programs that page with the block’s contents, and records
the logical-to-physical mapping in its mapping table. Subsequent reads
simply use the table to translate the logical block address presented by
the client into the physical page number required to read the data.

Let’s now examine the rest of the writes in our example write stream:
101, 2000, and 2001. After writing these blocks, the state of the device is:

Table: 100 =0 101 =1 2000—2 20013 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [a1]a2]bt|o2] | | | | [ ] Chip

State: V V. V. V[i i i ifi i i i

The log-based approach by its nature improves performance (erases
only being required once in a while, and the costly read-modify-write of
the direct-mapped approach avoided altogether), and greatly enhances
reliability. The FTL can now spread writes across all pages, performing
what is called wear leveling and increasing the lifetime of the device;
we’ll discuss wear leveling further below.
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ASIDE: FTL MAPPING INFORMATION PERSISTENCE
You might be wondering: what happens if the device loses power? Does
the in-memory mapping table disappear? Clearly, such information can-
not truly be lost, because otherwise the device would not function as a
persistent storage device. An SSD must have some means of recovering
mapping information.

The simplest thing to do is to record some mapping information with
each page, in what is called an out-of-band (OOB) area. When the device
loses power and is restarted, it must reconstruct its mapping table by
scanning the OOB areas and reconstructing the mapping table in mem-
ory. This basic approach has its problems; scanning a large SSD to find
all necessary mapping information is slow. To overcome this limitation,
some higher-end devices use more complex logging and checkpointing
techniques to speed up recovery; learn more about logging by reading
chapters on crash consistency and log-structured file systems [AD14].

Unfortunately, this basic approach to log structuring has some down-
sides. The first is that overwrites of logical blocks lead to something we
call garbage, i.e., old versions of data around the drive and taking up
space. The device has to periodically perform garbage collection (GC) to
find said blocks and free space for future writes; excessive garbage collec-
tion drives up write amplification and lowers performance. The second
is high cost of in-memory mapping tables; the larger the device, the more
memory such tables need. We now discuss each in turn.

Garbage Collection

The first cost of any log-structured approach such as this one is that
garbage is created, and therefore garbage collection (i.e., dead-block recla-
mation) must be performed. Let’s use our continued example to make
sense of this. Recall that logical blocks 100, 101, 2000, and 2001 have been
written to the device.

Now, let’s assume that blocks 100 and 101 are written to again, with
contents c1 and c2. The writes are written to the next free pages (in this
case, physical pages 4 and 5), and the mapping table is updated accord-
ingly. Note that the device must have first erased block 1 to make such
programming possible:

Table: 100 -4 101 -»5 20002 2001-»3 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [a1]a2]b1]b2]ct1]c2| | | [ ] Chip

State: V V V V|V V E E|i i i i
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The problem we have now should be obvious: physical pages 0 and
1, although marked VALID, have garbage in them, i.e., the old versions
of blocks 100 and 101. Because of the log-structured nature of the de-
vice, overwrites create garbage blocks, which the device must reclaim to
provide free space for new writes to take place.

The process of finding garbage blocks (also called dead blocks) and
reclaiming them for future use is called garbage collection, and it is an
important component of any modern SSD. The basic process is simple:
find a block that contains one or more garbage pages, read in the live
(non-garbage) pages from that block, write out those live pages to the
log, and (finally) reclaim the entire block for use in writing.

Let’s now illustrate with an example. The device decides it wants to
reclaim any dead pages within block 0 above. Block 0 has two dead blocks
(pages 0 and 1) and two live blocks (pages 2 and 3, which contain blocks
2000 and 2001, respectively). To do so, the device will:

* Read live data (pages 2 and 3) from block 0
¢ Write live data to end of the log
¢ Erase block 0 (freeing it for later usage)

For the garbage collector to function, there must be enough informa-
tion within each block to enable the SSD to determine whether each page
is live or dead. One natural way to achieve this end is to store, at some
location within each block, information about which logical blocks are
stored within each page. The device can then use the mapping table to
determine whether each page within the block holds live data or not.

From our example above (before the garbage collection has taken place),
block 0 held logical blocks 100, 101, 2000, 2001. By checking the mapping
table (which, before garbage collection, contained 100->4, 101->5,
2000->2, 2001->3), the device can readily determine whether each of
the pages within the SSD block holds live information. For example, 2000
and 2001 clearly are still pointed to by the map; 100 and 101 are not and
therefore are candidates for garbage collection.

When this garbage collection process is complete in our example, the
state of the device is:

Table: 100 =4 101 =5 2000-6 2001-»7 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: | [ [ | c1|c2]b1]b2 | [ ] Chip

State: E E E E|V V. V V|i i i i

As you can see, garbage collection can be expensive, requiring reading
and rewriting of live data. The ideal candidate for reclamation is a block
that consists of only dead pages; in this case, the block can immediately
be erased and used for new data, without expensive data migration.
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ASIDE: A NEW STORAGE API KNOWN AS TRIM

When we think of hard drives, we usually just think of the most ba-
sic interface to read and write them: read and write (there is also usu-
ally some kind of cache flush command, ensuring that writes have actu-
ally been persisted, but sometimes we omit that for simplicity). With
log-structured SSDs, and indeed, any device that keeps a flexible and
changing mapping of logical-to-physical blocks, a new interface is use-
ful, known as the trim operation.

The trim operation takes an address (and possibly a length) and simply
informs the device that the block(s) specified by the address (and length)
have been deleted; the device thus no longer has to track any informa-
tion about the given address range. For a standard hard drive, trim isn’t
particularly useful, because the drive has a static mapping of block ad-
dresses to specific platter, track, and sector(s). For a log-structured SSD,
however, it is highly useful to know that a block is no longer needed, as
the SSD can then remove this information from the FTL and later reclaim
the physical space during garbage collection.

Although we sometimes think of interface and implementation as sepa-
rate entities, in this case, we see that the implementation shapes the inter-
face. With complex mappings, knowledge of which blocks are no longer
needed makes for a more effective implementation.

To reduce GC costs, some SSDs overprovision the device [A+08]; by
adding extra flash capacity, cleaning can be delayed and pushed to the
background, perhaps done at a time when the device is less busy. Adding
more capacity also increases internal bandwidth, which can be used for
cleaning and thus not harm perceived bandwidth to the client. Many
modern drives overprovision in this manner, one key to achieving excel-
lent overall performance.

Mapping Table Size

The second cost of log-structuring is the potential for extremely large
mapping tables, with one entry for each 4-KB page of the device. With a
large 1-TB SSD, for example, a single 4-byte entry per 4-KB page results
in 1 GB of memory needed by the device, just for these mappings! Thus,
this page-level FTL scheme is impractical.

Block-Based Mapping

One approach to reduce the costs of mapping is to only keep a pointer per
block of the device, instead of per page, reducing the amount of mapping

information by a factor of S;fz i*;’:g"s . This block-level FTL is akin to having
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bigger page sizes in a virtual memory system; in that case, you use fewer
bits for the VPN and have a larger offset in each virtual address.

Unfortunately, using a block-based mapping inside a log-based FTL
does not work very well for performance reasons. The biggest problem
arises when a “small write” occurs (i.e., one that is less than the size of
a physical block). In this case, the FTL must read a large amount of live
data from the old block and copy it into a new one (along with the data
from the small write). This data copying increases write amplification
greatly and thus decreases performance.

To make this issue more clear, let’s look at an example. Assume the
client previously wrote out logical blocks 2000, 2001, 2002, and 2003 (with
contents, a, b, c, d), and that they are located within physical block
1 at physical pages 4, 5, 6, and 7. With per-page mappings, the transla-
tion table would have to record four mappings for these logical blocks:
2000—4, 2001—5, 2002—6, 2003—7.

If, instead, we use block-level mapping, the FTL only needs to record
a single address translation for all of this data. The address mapping,
however, is slightly different than our previous examples. Specifically,
we think of the logical address space of the device as being chopped into
chunks that are the size of the physical blocks within the flash. Thus,
the logical block address consists of two portions: a chunk number and
an offset. Because we are assuming four logical blocks fit within each
physical block, the offset portion of the logical addresses requires 2 bits;
the remaining (most significant) bits form the chunk number.

Logical blocks 2000, 2001, 2002, and 2003 all have the same chunk
number (500), and have different offsets (0, 1, 2, and 3, respectively).
Thus, with a block-level mapping, the FIL records that chunk 500 maps
to block 1 (starting at physical page 4), as shown in this diagram:

Table: 500 =>4 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07(08 09 10 11 Flash
Content: | | | | Talbolec]d] [ [ | Chip

State: i i i i |V V V V|i i i i

In a block-based FTL, reading is easy. First, the FTL extracts the chunk
number from the logical block address presented by the client, by taking
the topmost bits out of the address. Then, the FTL looks up the chunk-
number to physical-page mapping in the table. Finally, the FTL computes
the address of the desired flash page by adding the offset from the logical
address to the physical address of the block.

For example, if the client issues a read to logical address 2002, the de-
vice extracts the logical chunk number (500), looks up the translation in
the mapping table (finding 4), and adds the offset from the logical ad-
dress (2) to the translation (4). The resulting physical-page address (6) is
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where the data is located; the FTL can then issue the read to that physical
address and obtain the desired data (c).

But what if the client writes to logical block 2002 (with contents c’)?
In this case, the FTL must read in 2000, 2001, and 2003, and then write
out all four logical blocks in a new location, updating the mapping table
accordingly. Block 1 (where the data used to reside) can then be erased
and reused, as shown here.

Table: 500 =8 Memory

Block: 0 1 2

Page: 00 01 02 03(04 05 06 07(08 09 10 11 Flash
Content: | | [ ] | T | [a]o]c]d Chip

State: i i i i|E E E E|V V V V

As you can see from this example, while block level mappings greatly
reduce the amount of memory needed for translations, they cause signif-
icant performance problems when writes are smaller than the physical
block size of the device; as real physical blocks can be 256KB or larger,
such writes are likely to happen quite often. Thus, a better solution is
needed. Can you sense that this is the part of the chapter where we tell
you what that solution is? Better yet, can you figure it out yourself, before
reading on?

Hybrid Mapping

To enable flexible writing but also reduce mapping costs, many modern
FTLs employ a hybrid mapping technique. With this approach, the FTL
keeps a few blocks erased and directs all writes to them; these are called
log blocks. Because the FTL wants to be able to write any page to any
location within the log block without all the copying required by a pure
block-based mapping, it keeps per-page mappings for these log blocks.

The FTL thus logically has two types of mapping table in its memory: a
small set of per-page mappings in what we’ll call the log table, and a larger
set of per-block mappings in the data table. When looking for a particular
logical block, the FTL will first consult the log table; if the logical block’s
location is not found there, the FTL will then consult the data table to find
its location and then access the requested data.

The key to the hybrid mapping strategy is keeping the number of log
blocks small. To keep the number of log blocks small, the FTL has to pe-
riodically examine log blocks (which have a pointer per page) and switch
them into blocks that can be pointed to by only a single block pointer.
This switch is accomplished by one of three main techniques, based on
the contents of the block [KK+02].

For example, let’s say the FTL had previously written out logical pages
1000, 1001, 1002, and 1003, and placed them in physical block 2 (physical
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pages 8, 9, 10, 11); assume the contents of the writes to 1000, 1001, 1002,
and 1003 are a, b, ¢, and d, respectively.

Log Table:
Data Table: 250 =8 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: | [ | | | T | [a]bo]c]d Chip
State: i i i i|i i i i|V V V V

Now assume that the client overwrites each of these blocks (with data
a’,b’,c’,and d’), in the exact same order, in one of the currently avail-
able log blocks, say physical block 0 (physical pages 0, 1, 2, and 3). In this
case, the FTL will have the following state:

Log Table: 10000 1001==1 1002->2 1003->3
Data Table: 250 —+8 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [a[p][c[d] | | | [alb]c]d Chip
State: V V V V|i i i i|V V V V

Because these blocks have been written exactly in the same manner as
before, the FTL can perform what is known as a switch merge. In this
case, the log block (0) now becomes the storage location for blocks 0, 1, 2,
and 3, and is pointed to by a single block pointer; the old block (2) is now
erased and used as a log block. In this best case, all the per-page pointers

required replaced by a single block pointer.

Log Table:
Data Table: 250 =0 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [a' [ [c[d] [ [ | | [ ] Chip
State: V V. V. V|i i i i|i i i i

This switch merge is the best case for a hybrid FTL. Unfortunately,
sometimes the FTL is not so lucky. Imagine the case where we have
the same initial conditions (logical blocks 1000 ... 1003 stored in physi-
cal block 2) but then the client overwrites logical blocks 1000 and 1001.

What do you think happens in this case? Why is it more challenging
to handle? (think before looking at the result on the next page)
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Log Table: 1000—+0 1001—+>1

Data Table: 250 =8 Memory
Block: 0 1 2
Page: 00 01 02 0304 05 06 07(08 09 10 11 Flash
Content: [a'[b [ | | T | [a]o]c]d Chip
State: V.V i i|i i i i|V V V V

To reunite the other pages of this physical block, and thus be able to re-
fer to them by only a single block pointer, the FTL performs what is called
a partial merge. In this operation, logical blocks 1002 and 1003 are read
from physical block 2, and then appended to the log. The resulting state
of the SSD is the same as the switch merge above; however, in this case,
the FTL had to perform extra I/O to achieve its goals, thus increasing
write amplification.

The final case encountered by the FTL known as a full merge, and re-
quires even more work. In this case, the FTL must pull together pages
from many other blocks to perform cleaning. For example, imagine that
logical blocks 0, 4, 8, and 12 are written to log block A. To switch this log
block into a block-mapped page, the FTL must first create a data block
containing logical blocks 0, 1, 2, and 3, and thus the FTL must read 1, 2,
and 3 from elsewhere and then write out 0, 1, 2, and 3 together. Next, the
merge must do the same for logical block 4, finding 5, 6, and 7 and recon-
ciling them into a single physical block. The same must be done for logi-
cal blocks 8 and 12, and then (finally), the log block A can be freed. Fre-
quent full merges, as is not surprising, can seriously harm performance
and thus should be avoided when at all possible [GY+09].

Page Mapping Plus Caching

Given the complexity of the hybrid approach above, others have sug-
gested simpler ways to reduce the memory load of page-mapped FTLs.
Probably the simplest is just to cache only the active parts of the FTL in
memory, thus reducing the amount of memory needed [GY+09].

This approach can work well. For example, if a given workload only
accesses a small set of pages, the translations of those pages will be stored
in the in-memory FTL, and performance will be excellent without high
memory cost. Of course, the approach can also perform poorly. If mem-
ory cannot contain the working set of necessary translations, each access
will minimally require an extra flash read to first bring in the missing
mapping before being able to access the data itself. Even worse, to make
room for the new mapping, the FTL might have to evict an old map-
ping, and if that mapping is dirty (i.e., not yet written to the flash per-
sistently), an extra write will also be incurred. However, in many cases,
the workload will display locality, and this caching approach will both
reduce memory overheads and keep performance high.
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Wear Leveling

Finally, a related background activity that modern FTLs must imple-
ment is wear leveling, as introduced above. The basic idea is simple:
because multiple erase/program cycles will wear out a flash block, the
FTL should try its best to spread that work across all the blocks of the de-
vice evenly. In this manner, all blocks will wear out at roughly the same
time, instead of a few “popular” blocks quickly becoming unusable.

The basic log-structuring approach does a good initial job of spreading
out write load, and garbage collection helps as well. However, sometimes
a block will be filled with long-lived data that does not get over-written;
in this case, garbage collection will never reclaim the block, and thus it
does not receive its fair share of the write load.

To remedy this problem, the FTL must periodically read all the live
data out of such blocks and re-write it elsewhere, thus making the block
available for writing again. This process of wear leveling increases the
write amplification of the SSD, and thus decreases performance as extra
I/0 is required to ensure that all blocks wear at roughly the same rate.
Many different algorithms exist in the literature [A+08, M+14]; read more
if you are interested.

SSD Performance And Cost

Before closing, let’s examine the performance and cost of modern SSDs,
to better understand how they will likely be used in persistent storage
systems. In both cases, we’ll compare to classic hard-disk drives (HDDs),
and highlight the biggest differences between the two.

Performance

Unlike hard disk drives, flash-based SSDs have no mechanical compo-
nents, and in fact are in many ways more similar to DRAM, in that they
are “random access” devices. The biggest difference in performance, as
compared to disk drives, is realized when performing random reads and
writes; while a typical disk drive can only perform a few hundred ran-
dom I/Os per second, SSDs can do much better. Here, we use some data
from modern SSDs to see just how much better SSDs perform; we're par-
ticularly interested in how well the FTLs hide the performance issues of
the raw chips.

Table 44.4 shows some performance data for three different SSDs and
one top-of-the-line hard drive; the data was taken from a few different
online sources [S13, T15]. The left two columns show random I/O per-
formance, and the right two columns sequential; the first three rows show
data for three different SSDs (from Samsung, Seagate, and Intel), and the
last row shows performance for a hard disk drive (or HDD), in this case
a Seagate high-end drive.

We can learn a few interesting facts from the table. First, and most
dramatic, is the difference in random I/O performance between the SSDs
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Random Sequential
Reads Writes Reads  Writes

Device (MB/s) (MB/s) (MB/s) (MB/s)
Samsung 840 Pro SSD 103 287 421 384
Seagate 600 SSD 84 252 424 374
Intel SSD 335 SSD 39 222 344 354
Seagate Savvio 15K.3 HDD | 2 2 223 223

Figure 44.4: SSDs And Hard Drives: Performance Comparison

and the lone hard drive. While the SSDs obtain tens or even hundreds of
MB/s in random I/Os, this “high performance” hard drive has a peak of
just a couple MB/s (in fact, we rounded up to get to 2 MB/s). Second, you
can see that in terms of sequential performance, there is much less of a dif-
ference; while the SSDs perform better, a hard drive is still a good choice
if sequential performance is all you need. Third, you can see that SSD ran-
dom read performance is not as good as SSD random write performance.
The reason for such unexpectedly good random-write performance is
due to the log-structured design of many SSDs, which transforms ran-
dom writes into sequential ones and improves performance. Finally, be-
cause SSDs exhibit some performance difference between sequential and
random I/Os, many of the techniques we will learn in subsequent chap-
ters about how to build file systems for hard drives are still applicable to
SSDs; although the magnitude of difference between sequential and ran-
dom I/Os is smaller, there is enough of a gap to carefully consider how
to design file systems to reduce random I/Os.

Cost

As we saw above, the performance of SSDs greatly outstrips modern hard
drives, even when performing sequential I/O. So why haven’t SSDs com-
pletely replaced hard drives as the storage medium of choice? The an-
swer is simple: cost, or more specifically, cost per unit of capacity. Cur-
rently [A15], an SSD costs something like $150 for a 250-GB drive; such
an SSD costs 60 cents per GB. A typical hard drive costs roughly $50 for
1-TB of storage, which means it costs 5 cents per GB. There is still more
than a 10x difference in cost between these two storage media.

These performance and cost differences dictate how large-scale stor-
age systems are built. If performance is the main concern, SSDs are a
terrific choice, particularly if random read performance is important. If,
on the other hand, you are assembling a large data center and wish to
store massive amounts of information, the large cost difference will drive
you towards hard drives. Of course, a hybrid approach can make sense
— some storage systems are being assembled with both SSDs and hard
drives, using a smaller number of SSDs for more popular “hot” data and
delivering high performance, while storing the rest of the “colder” (less
used) data on hard drives to save on cost. As long as the price gap exists,
hard drives are here to stay.
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Summary

Flash-based SSDs are becoming a common presence in laptops, desk-
tops, and servers inside the datacenters that power the world’s economy.
Thus, you should probably know something about them, right?

Here’s the bad news: this chapter (like many in this book) is just the
first step in understanding the state of the art. Some places to get some
more information about the raw technology include research on actual
device performance (such as that by Chen et al. [CK+09] and Grupp et
al. [GC+09]), issues in FTL design (including works by Agrawal et al.
[A+08], Gupta et al. [GY+09], Huang et al. [H+14], Kim et al. [KK+02],
Lee et al. [L+07], and Zhang et al. [Z+12]), and even distributed systems
comprised of flash (including Gordon [CG+09] and CORFU [B+12]). And,
if we may say so, a really good overview of all the things you need to do
to extract high performance from an SSD can be found in a paper on the
“unwritten contract” [HK+17].

Don’t just read academic papers; also read about recent advances in
the popular press (e.g., [V12]). Therein you'll learn more practical (but
still useful) information, such as Samsung’s use of both TLC and SLC cells
within the same SSD to maximize performance (SLC can buffer writes
quickly) as well as capacity (TLC can store more bits per cell). And this
is, as they say, just the tip of the iceberg. Dive in and learn more about
this “iceberg” of research on your own, perhaps starting with Ma et al.’s
excellent (and recent) survey [M+14]. Be careful though; icebergs can sink
even the mightiest of ships [W15].
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ASIDE: KEY SSD TERMS

A flash chip consists of many banks, each of which is organized into
erase blocks (sometimes just called blocks). Each block is further
subdivided into some number of pages.

Blocks are large (128KB-2MB) and contain many pages, which are
relatively small (1KB-8KB).

To read from flash, issue a read command with an address and
length; this allows a client to read one or more pages.

Writing flash is more complex. First, the client must erase the en-
tire block (which deletes all information within the block). Then,
the client can program each page exactly once, thus completing the
write.

A new trim operation is useful to tell the device when a particular
block (or range of blocks) is no longer needed.

Flash reliability is mostly determined by wear out; if a block is
erased and programmed too often, it will become unusable.

A flash-based solid-state storage device (SSD) behaves as if it were
a normal block-based read /write disk; by using a flash translation
layer (FTL), it transforms reads and writes from a client into reads,
erases, and programs to underlying flash chips.

Most FTLs are log-structured, which reduces the cost of writing
by minimizing erase/program cycles. An in-memory translation
layer tracks where logical writes were located within the physical
medium.

One key problem with log-structured FTLs is the cost of garbage
collection, which leads to write amplification.

Another problem is the size of the mapping table, which can be-
come quite large. Using a hybrid mapping or just caching hot
pieces of the FTL are possible remedies.

One last problem is wear leveling; the FTL must occasionally mi-
grate data from blocks that are mostly read in order to ensure said
blocks also receive their share of the erase/program load.
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Homework (Simulation)

This section introduces ssd.py, a simple SSD simulator you can use
to understand better how SSDs work. Read the README for details on
how to run the simulator. It is a long README, so boil a cup of tea (caf-
feinated likely necessary), put on your reading glasses, let the cat curl up

on your lap’, and get to work.

Questions

1.

The homework will mostly focus on the log-structured SSD, which
is simulated with the “-T log” flag. We'll use the other types of
SSDs for comparison. First, run with flags -T log -s 1 -n 10
-g. Can you figure out which operations took place? Use -c to
check your answers (or just use —C instead of -q -c). Use different
values of —s to generate different random workloads.

. Now just show the commands and see if you can figure out the

intermediate states of the Flash. Run with flags -T log -s 2 -n
10 -C to show each command. Now, determine the state of the
Flash between each command; use —F to show the states and see if
you were right. Use different random seeds to test your burgeoning
expertise.

. Let’s make this problem ever so slightly more interesting by adding

the -r 20 flag. What differences does this cause in the commands?
Use —c again to check your answers.

. Performance is determined by the number of erases, programs, and

reads (we assume here that trims are free). Run the same workload
again as above, but without showing any intermediate states (e.g.,
-T log -s 1 -n 10). Can you estimate how long this workload
will take to complete? (default erase time is 1000 microseconds,
program time is 40, and read time is 10) Use the -S flag to check
your answer. You can also change the erase, program, and read
times with the -E, -W, -Rflags.

. Now, compare performance of the log-structured approach and the

(very bad) direct approach (-T direct instead of -T log). First,
estimate how you think the direct approach will perform, then check
your answer with the -s flag. In general, how much better will the
log-structured approach perform than the direct one?

. Let us next explore the behavior of the garbage collector. To do

so, we have to set the high (-G) and low (-g) watermarks appro-
priately. First, let’s observe what happens when you run a larger
workload to the log-structured SSD but without any garbage col-
lection. To do this, run with flags -T log -n 1000 (the high wa-

'Now you might complain, “But I'm a dog person!” To this, we say, too bad! Get a cat,
put it on your lap, and do the homework! How else will you learn, if you can’t even follow
the most basic of instructions?
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termark default is 10, so the GC won't run in this configuration).
What do you think will happen? Use ~C and perhaps -F to see.

. To turn on the garbage collector, use lower values. The high water-

mark (-G N) tells the system to start collecting once N blocks have
been used; the low watermark (-G M) tells the system to stop col-
lecting once there are only M blocks in use. What watermark values
do you think will make for a working system? Use -C and -F to
show the commands and intermediate device states and see.

. One other useful flag is —J, which shows what the collector is doing

when it runs. Run with flags -T log -n 1000 -C -Jtoseeboth
the commands and the GC behavior. What do you notice about the
GC? The final effect of GC, of course, is performance. Use -S to
look at final statistics; how many extra reads and writes occur due
to garbage collection? Compare this to the ideal SSD (-T ideal);
how much extra reading, writing, and erasing is there due to the
nature of Flash? Compare it also to the direct approach; in what
way (erases, reads, programs) is the log-structured approach supe-
rior?

. One last aspect to explore is workload skew. Adding skew to the

workload changes writes such that more writes occur to some smaller
fraction of the logical block space. For example, running with -K
80/20 makes 80% of the writes go to 20% of the blocks. Pick some
different skews and perform many randomly-chosen operations (e.g.,
-n 1000), using first -T direct tounderstand the skew, and then
~-T log to see the impact on a log-structured device. What do you
expect will happen? One other small skew control to explore is —k
100; by adding this flag to a skewed workload, the first 100 writes
are not skewed. The idea is to first create a lot of data, but then only
update some of it. What impact might that have upon a garbage
collector?

WWW.OSTEP.ORG



