
54

Authentication

Chapter by Peter Reiher (UCLA)

54.1 Introduction

Given that we need to deal with a wide range of security goals and
security policies that are meant to achieve those goals, what do we need
from our operating system? Operating systems provide services for pro-
cesses, and some of those services have security implications. Clearly, the
operating system needs to be careful in such cases to do the right thing,
security-wise. But the reason operating system services are allowed at all
is that sometimes they need to be done, so any service that the operating
system might be able to perform probably should be performed – under
the right circumstances.

Context will be everything in operating system decisions on whether
to perform some service or to refuse to do so because it will compro-
mise security goals. Perhaps the most important element of that context
is who’s doing the asking. In the real world, if your significant other
asks you to pick up a gallon of milk at the store on the way home, you’ll
probably do so, while if a stranger on the street asks the same thing, you
probably won’t. In an operating system context, if the system admin-
istrator asks the operating system to install a new program, it probably
should, while if a script downloaded from a random web page asks to in-
stall a new program, the operating system should take more care before
performing the installation. In computer security discussions, we often
refer to the party asking for something as the principal. Principals are
security-meaningful entities that can request access to resources, such as
human users, groups of users, or complex software systems.

So knowing who is requesting an operating system service is crucial in
meeting your security goals. How does the operating system know that?
Let’s work a bit backwards here to figure it out.

Operating system services are most commonly requested by system
calls made by particular processes, which trap from user code into the
operating system. The operating system then takes control and performs
some service in response to the system call. Associated with the calling
process is the OS-controlled data structure that describes the process, so

1



2 AUTHENTICATION

the operating system can check that data structure to determine the iden-
tity of the process. Based on that identity, the operating system now has
the opportunity to make a policy-based decision on whether to perform
the requested operation. In computer security discussions, the process
or other active computing entity performing the request on behalf of a
principal is often called its agent.

The request is for access to some particular resource, which we fre-

quently refer to as the object of the access request1. Either the operating
system has already determined this agent process can access the object or
it hasn’t. If it has determined that the process is permitted access, the OS
can remember that decision and it’s merely a matter of keeping track, pre-
sumably in some per-process data structure like the PCB, of that fact. For
example, as we discovered when investigating virtualization of memory,
per-process data structures like page tables show which pages and page
frames can be accessed by a process at any given time. Any form of data
created and managed by the operating system that keeps track of such
access decisions for future reference is often called a credential.

If the operating system has not already produced a credential showing
that an agent process can access a particular object, however, it needs in-
formation about the identity of the process’s principal to determine if its
request should be granted. Different operating systems have used differ-
ent types of identity for principals. For instance, most operating systems
have a notion of a user identity, where the user is, typically, some hu-
man being. (The concept of a user has been expanded over the years to
increase its power, as we’ll see later.) So perhaps all processes run by a
particular person will have the same identity associated with them. An-
other common type of identity is a group of users. In a manufacturing
company, you might want to give all your salespersons access to your
inventory information, so they can determine how many widgets and
whizz-bangs you have in the warehouse, while it wouldn’t be necessary

for your human resources personnel to have access to that information2.
Yet another form of identity is the program that the process is running.
Recall that a process is a running version of a program. In some systems
(such as the Android Operating System), you can grant certain privileges
to particular programs. Whenever they run, they can use these privileges,
but other programs cannot.

Regardless of the kind of identity we use to make our security deci-
sions, we must have some way of attaching that identity to a particu-
lar process. Clearly, this attachment is a crucial security issue. If you

1Another computer science overloading of the word “object.” Here, it does not refer to
“object oriented,” but to the more general concept of a specific resource with boundaries and
behaviors, such as a file or an IPC channel.

2Remember the principle of least privilege from the previous chapter? Here’s an example
of using it. A rogue human services employee won’t be able to order your warehouse emptied
of pop-doodles if you haven’t given such employees the right to do so. As you read through
the security chapters of this book, keep your eyes out for other applications of the security
principles we discussed earlier.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



AUTHENTICATION 3

misidentify a programmer employee process as an accounting depart-
ment employee process, you could end up with an empty bank account.
(Not to mention needing to hire a new programmer.) Or if you fail to
identify your company president correctly when he or she is trying to
give an important presentation to investors, you may find yourself out
of a job once the company determines that you’re the one who derailed
the next round of startup capital, because the system didn’t allow the
president to access the presentation that would have bowled over some
potential investors.

On the other hand, since everything except the operating system’s
own activities are performed by some process, if we can get this right for
processes, we can be pretty sure we will have the opportunity to check
our policy on every important action. But we need to bear in mind one
other important characteristic of operating systems’ usual approach to
authentication: once a principal has been authenticated, systems will al-
most always rely on that authentication decision for at least the lifetime
of the process. This characteristic puts a high premium on getting it right.
Mistakes won’t be readily corrected. Which leads to the crux:

CRUX: HOW TO SECURELY IDENTIFY PROCESSES

For systems that support processes belonging to multiple principals,
how can we be sure that each process has the correct identity attached?
As new processes are created, how can we be sure the new process has
the correct identity? How can we be sure that malicious entities cannot
improperly change the identity of a process?

54.2 Attaching Identities To Processes
Where do processes come from? Usually they are created by other

processes. One simple way to attach an identity to a new process, then,
is to copy the identity of the process that created it. The child inherits
the parent’s identity. Mechanically, when the operating system services
a call from old process A to create new process B (fork, for example), it
consults A’s process control block to determine A’s identity, creates a new
process control block for B, and copies in A’s identity. Simple, no?

That’s all well and good if all processes always have the same identity.
We can create a primal process when our operating system boots, perhaps
assigning it some special system identity not assigned to any human user.
All other processes are its descendants and all of them inherit that single
identity. But if there really is only one identity, we’re not going to be able
to implement any policy that differentiates the privileges of one process
versus another.

We must arrange that some processes have different identities and use
those differences to manage our security policies. Consider a multi-user
system. We can assign identities to processes based on which human user
they belong to. If our security policies are primarily about some people

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



4 AUTHENTICATION

being allowed to do some things and others not being allowed to, we now
have an idea of how we can go about making our decisions.

If processes have a security-relevant identity, like a user ID, we’re go-
ing to have to set the proper user ID for a new process. In most systems,
a user has a process that he or she works with ordinarily: the shell pro-
cess in command line systems, the window manager process in window-
oriented system – you had figured out that both of these had to be pro-
cesses themselves, right? So when you type a command into a shell or
double click on an icon to start a process in a windowing system, you are
asking the operating system to start a new process under your identity.

Great! But we do have another issue to deal with. How did that shell
or window manager get your identity attached to itself? Here’s where a
little operating system privilege comes in handy. When a user first starts
interacting with a system, the operating system can start a process up for
that user. Since the operating system can fiddle with its own data struc-
tures, like the process control block, it can set the new process’s owner-
ship to the user who just joined the system.

Again, well and good, but how did the operating system determine
the user’s identity so it could set process ownership properly? You prob-
ably can guess the answer - the user logged in, implying that the user pro-
vided identity information to the OS proving who the user was. We’ve
now identified a new requirement for the operating system: it must be
able to query identity from human users and verify that they are who
they claim to be, so we can attach reliable identities to processes, so we
can use those identities to implement our security policies. One thing
tends to lead to another in operating systems.

So how does the OS do that? As should be clear, we’re building a tow-
ering security structure with unforeseeable implications based on the OS
making the right decision here, so it’s important. What are our options?

54.3 How To Authenticate Users?

So this human being walks up to a computer...
Assuming we leave aside the possibilities for jokes, what can be done

to allow the system to determine who this person is, with reasonable ac-
curacy? First, if the person is not an authorized user of the system at all,
we should totally reject this attempt to sneak in. Second, if he or she is an
authorized user, we need to determine, which one?

Classically, authenticating the identity of human beings has worked in
one of three ways:

• Authentication based on what you know
• Authentication based on what you have
• Authentication based on what you are

When we say “classically” here, we mean “classically” in the, well,
classical sense. Classically as in going back to the ancient Greeks and

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



AUTHENTICATION 5

Romans. For example, Polybius, writing in the second century B.C., de-
scribes how the Roman army used “watchwords” to distinguish friends
from foes [P-46], an example of authentication based on what you know.
A Roman architect named Celer wrote a letter of recommendation (which
still survives) for one of his slaves to be given to an imperial procurator at
some time in the 2nd century AD [C100] – authentication based on what
the slave had. Even further back, in (literally) Biblical times, the Gilea-
dites required refugees after a battle to say the word “shibboleth,” since
the enemies they sought (the Ephraimites) could not properly pronounce
that word [JB-500]. This was a form of authentication by what you are: a
native speaker of the Gileadites’ dialect or of the Ephraimite dialect.

Having established the antiquity of these methods of authentication,
let’s leap past several centuries of history to the Computer Era to discuss
how we use them in the context of computer authentication.

54.4 Authentication By What You Know

Authentication by what you know is most commonly performed by
using passwords. Passwords have a long (and largely inglorious) history
in computer security, going back at least to the CTSS system at MIT in
the early 1960s [MT79]. A password is a secret known only to the party
to be authenticated. By divulging the secret to the computer’s operating
system when attempting to log in, the party proves their identity. (You
should be wondering about whether that implies that the system must
also know the password, and what further implications that might have.
We’ll get to that.) The effectiveness of this form of authentication de-
pends, obviously, on several factors. We’re assuming other people don’t
know the party’s password. If they do, the system gets fooled. We’re as-
suming that no one else can guess it, either. And, of course, that the party
in question must know (and remember) it.

Let’s deal with the problem of other people knowing a password first.
Leaving aside guessing, how could they know it? Someone who already
knows it might let it slip, so the fewer parties who have to know it, the
fewer parties we have to worry about. The person we’re trying to au-
thenticate has to know it, of course, since we’re authenticating this person
based on the person knowing it. We really don’t want anyone else to be
able to authenticate as that person to our system, so we’d prefer no third
parties know the password. Thinking broadly about what a “third party”
means here, that also implies the user shouldn’t write the password down
on a slip of paper, since anyone who steals the paper now knows the pass-
word. But there’s one more party who would seem to need to know the
password: our system itself. That suggests another possible vulnerability,

since the system’s copy of our password might leak out3.

3 “Might” is too weak a word. The first known incident of such stored passwords leaking
is from 1962 [MT79]; such leaks happen to this day with depressing regularity and much larger
scope. [KA16] discusses a leak of over 100 million passwords stored in usable form.

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



6 AUTHENTICATION

TIP: AVOID STORING SECRETS

Storing secrets like plaintext passwords or cryptographic keys is a haz-
ardous business, since the secrets usually leak out. Protect your system
by not storing them if you don’t need to. If you do need to, store them
in a hashed form using a strong cryptographic hash. If you can’t do that,
encrypt them with a secure cipher. (Perhaps you’re complaining to your-
self that we haven’t told you about those yet. Be patient.) Store them in
as few places, with as few copies, as possible. Don’t forget temporary ed-
itor files, backups, logs, and the like, since the secrets may be there, too.
Remember that anything you embed into an executable you give to oth-
ers will not remain secret, so it’s particularly dangerous to store secrets in
executables. In some cases, even secrets only kept in the heap of an exe-
cuting program have been divulged, so avoid storing and keeping secrets
even in running programs.

Interestingly enough, though, our system does not actually need to
know the password. Think carefully about what the system is doing
when it checks the password the user provides. It’s checking to see if
the user knows it, not what that password actually is. So if the user pro-
vides us the password, but we don’t know the password, how on earth
could our system do that?

You already know the answer, or at least you’ll slap your forehead
and say “I should have thought of that” once you hear it. Store a hash of
the password, not the password itself. When the user provides you with
what he or she claims to be the password, hash the claim and compare
it to the stored hashed value. If it matches, you believe he or she knows
the password. If it doesn’t, you don’t. Simple, no? And now your system
doesn’t need to store the actual password. That means if you’re not too
careful with how you store the authentication information, you haven’t
actually lost the passwords, just their hashes. By their nature, you can’t
reverse hashing algorithms, so the adversary can’t use the stolen hash
to obtain the password. If the attacker provides the hash, instead of the
password, the hash itself gets hashed by the system, and a hash of a hash
won’t match the hash.

There is a little more to it than that. The benefit we’re getting by stor-
ing a hash of the password is that if the stored copy is leaked to an at-
tacker, the attacker doesn’t know the passwords themselves. But it’s not
quite enough just to store something different from the password. We
also want to ensure that whatever we store offers an attacker no help in
guessing what the password is. If an attacker steals the hashed password,
he or she should not be able to analyze the hash to get any clues about
the password itself. There is a special class of hashing algorithms called
cryptographic hashes that make it infeasible to use the hash to figure
out what the password is, other than by actually passing a guess at the
password through the hashing algorithm. One unfortunate characteris-

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



AUTHENTICATION 7

tic of cryptographic hashes is that they’re hard to design, so even smart
people shouldn’t try. They use ones created by experts. That’s what mod-
ern systems should do with password hashing: use a cryptographic hash
that has been thoroughly studied and has no known flaws. At any given
time, which cryptographic hashing algorithms meet those requirements
may vary. At the time of this writing, SHA-3 [B+09] is the US standard
for cryptographic hash algorithms, and is a good choice.

Let’s move on to the other problem: guessing. Can an attacker who
wants to pose as a user simply guess the password? Consider the sim-
plest possible password: a single bit, valued 0 or 1. If your password is
a single bit long, then an attacker can try guessing “0” and have a 50/50
chances of being right. Even if wrong, if a second guess is allowed, the at-
tacker now knows that the password is “1” and will correctly guess that.

Obviously, a one bit password is too easy to guess. How about an 8
bit password? Now there are 256 possible passwords you could choose.
If the attacker guesses 256 times, sooner or later the guess will be right,
taking 128 guesses (on average). Better than only having to guess twice,
but still not good enough. It should be clear to you, at this point, that
the length of the password is critical in being resistant to guessing. The
longer the password, the harder to guess.

But there’s another important factor, since we normally expect hu-
man beings to type in their passwords from keyboards or something
similar. And given that we’ve already ruled out writing the password
down somewhere as insecure, the person has to remember it. Early uses
of passwords addressed this issue by restricting passwords to letters of
the alphabet. While this made them easier to type and remember, it also
cut down heavily on the number of bit patterns an attacker needed to
guess to find someone’s password, since all of the bit patterns that did
not represent alphabetic characters would not appear in passwords. Over
time, password systems have tended to expand the possible characters in
a password, including upper and lower case letters, numbers, and special
characters. The more possibilities, the harder to guess.

So we want long passwords composed of many different types of char-
acters. But attackers know that people don’t choose random strings of
these types of characters as their passwords. They often choose names
or familiar words, because those are easy to remember. Attackers trying
to guess passwords will thus try lists of names and words before trying
random strings of characters. This form of password guessing is called a
dictionary attack, and it can be highly effective. The dictionary here isn’t
Websters (or even the Oxford English Dictionary), but rather is a special-
ized list of words, names, meaningful strings of numbers (like “123456”),
and other character patterns people tend to use for passwords, ordered
by the probability that they will be chosen as the password. A good dic-
tionary attack can figure out 90% of the passwords for a typical site [G13].

If you’re smart in setting up your system, an attacker really should not
be able to run a dictionary attack on a login process remotely. With any
care at all, the attacker will not guess a user’s password in the first five or

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



8 AUTHENTICATION

ASIDE: PASSWORD VAULTS

One way you can avoid the problem of choosing passwords is to use
what’s called a password vault or key chain. This is an encrypted file
kept on your computer that stores passwords. It’s encrypted with a pass-
word of its own. To get passwords out of the vault, you must provide the
password for the vault, reducing the problem of remembering a different
password for every site to remembering one password. Also, it ensures
that attackers can only use your passwords if they not only have the spe-
cial password that opens the vault, but they have access to the vault it-
self. Of course, the benefits of securely storing passwords this way are
limited to the strength of the passwords stored in the vault, since guess-
ing and dictionary attacks will still work. Some password vaults will
generate strong passwords for you – not very memorable ones, but that
doesn’t matter, since it’s the vault that needs to remember it, not you. You
can also find password vaults that store your passwords in the cloud. If
you provide them with cleartext versions of your password to store them,
however, you are sharing a password with another entity that doesn’t re-
ally need to know it, thus taking a risk that perhaps you shouldn’t take. If
the cloud stores only your encrypted passwords, the risk is much lower.

six guesses (alas, sometimes no care is taken and the attacker will), and
there’s no good reason your system should allow a remote user to make
15,000 guesses at an account’s password without getting it right. So by
either shutting off access to an account when too many wrong guesses are
made at its password, or (better) by drastically slowing down the process
of password checking after a few wrong guesses (which makes a long
dictionary attack take an infeasible amount of time), you can protect the
account against such attacks.

But what if the attacker stole your password file? Since we assume
you’ve been paying attention, it contains hashes of passwords, not pass-
words itself. But we also assume you paid attention when we told you
to use a widely known cryptographic hash, and if you know it, so does
the person who stole your password file. If the attacker obtained your
hashed passwords, the hashing algorithm, a dictionary, and some com-
pute power, the attacker can crank away at guessing your passwords at
their leisure. Worse, if everyone used the same cryptographic hashing al-
gorithm (which, in practice, they probably will), the attacker only needs
to run each possible password through the hash once and store the re-
sults (essentially, the dictionary has been translated into hashed form).
So when the attacker steals your password file, he or she would just need
to do string comparisons to your hashed passwords and the newly cre-
ated dictionary of hashed passwords, which is much faster.

There’s a simple fix: before hashing a new password and storing it
in your password file, generate a big random number (say 32 or 64 bits)
and concatenate it to the password. Hash the result and store that. You
also need to store that random number, since when the user tries to log

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



AUTHENTICATION 9

in and provides the correct password, you’ll need to take what the user
provided, concatenate the stored random number, and run that through
the hashing algorithm. Otherwise, the password hashed by itself won’t
match what you stored. You typically store the random number (which
is called a salt) in the password file right next to the hashed password.
This concept was introduced in Robert Morris and Ken Thompson’s early
paper on password security [MT79].

Why does this help? The attacker can no longer create one transla-
tion of passwords in the dictionary to their hashes. What is needed is
one translation for every possible salt, since the password files that were
stolen are likely to have a different salt for every password. If the salt is
32 bits, that’s 2

32 different translations for each word in the dictionary,
which makes the approach of pre-computing the translations infeasible.
Instead, for each entry in the stolen password file, the dictionary attack
must freshly hash each guess with the password’s salt. The attack is still
feasible if you have chosen passwords badly, but it’s not nearly as cheap.
Any good system that uses passwords and cares about security stores
cryptographically hashed and salted passwords. If yours doesn’t, you’re
putting your users at risk.

There are other troubling issues for the use of passwords, but many of
those are not particular to the OS, so we won’t fling further mud at them
here. Suffice it to say that there is a widely held belief in the computer
security community that passwords are a technology of the past, and are
no longer sufficiently secure for today’s environments. At best, they can
serve as one of several authentication mechanisms used in concert. This
idea is called multi-factor authentication, with two-factor authentica-
tion being the version that gets the most publicity. You’re perhaps already
familiar with the concept: to get money out of an ATM, you need to know
your personal identification number (PIN). That’s essentially a password.
But you also need to provide further evidence of your identity...

54.5 Authentication by What You Have

Most of us have probably been in some situation where we had an
identity card that we needed to show to get us into somewhere. At least,
we’ve probably all attended some event where admission depended on
having a ticket for the event. Those are both examples of authentication
based on what you have, an ID card or a ticket, in these cases.

When authenticating yourself to an operating system, things are a bit
different. In special cases, like the ATM mentioned above, the device
(which has, after all, a computer inside – you knew that, right?) has spe-
cial hardware to read our ATM card. That hardware allows it to deter-
mine that, yes, we have that card, thus providing the further proof to go
along with your PIN. Most desktop computers, laptops, tablets, smart
phones, and the like do not have that special hardware. So how can they
tell what we have?

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



10 AUTHENTICATION

ASIDE: LINUX LOGIN PROCEDURES

Linux, in the tradition of earlier Unix systems, authenticates users based on pass-
words and then ties that identity to an initial process associated with the newly
logged in user, much as described above. Here we will provide a more detailed
step-by-step description of what actually goes on when a user steps up to a key-
board and tries to log in to a Unix system, as a solid example of how a real operat-
ing system handles this vital security issue.

1. A special login process running under a privileged system identity displays
a prompt asking for the user to type in his or her identity, in the form of a
generally short user name. The user types in a user name and hits carriage
return. The name is echoed to the terminal.

2. The login process prompts for the user’s password. The user types in the
password, which is not echoed.

3. The login process looks up the name the user provided in the password file.
If it is not found, the login process rejects the login attempt. If it is found,
the login process determines the internal user identifier (a unique user ID
number), the group (another unique ID number) that the user belongs to,
the initial command shell that should be provided to this user once login
is complete, and the home directory that shell should be started in. Also,
the login process finds the salt and the salted, hashed version of the correct
password for this user, which are permanently stored in a secure place in
the system.

4. The login process combines the salt for the user’s password and the pass-
word provided by the user and performs the hash on the combination. It
compares the result to the stored version obtained in the previous step. If
they do not match, the login process rejects the login attempt.

5. If they do match, fork a process. Set the user and group of the forked process
to the values determined earlier, which the privileged identity of the login
process is permitted to do. Change directory to the user’s home directory
and exec the shell process associated with this user (both the directory name
and the type of shell were determined in step 3).

There are some other details associated with ensuring that we can log in another
user on the same terminal after this one logs out that we don’t go into here.

Note that in steps 3 and 4, login can fail either because the user name is not present
in the system or because the password does not match the user name. Linux and
most other systems do not indicate which condition failed, if one of them did. This
choice prevents attackers from learning the names of legitimate users of the system
just by typing in guesses, since they cannot know if they guessed a non-existent
name or guessed the wrong password for a legitimate user name. Not providing
useful information to non-authenticated users is generally a good security idea
that has applicability in other types of systems.

Think a bit about why Linux’s login procedure chooses to echo the typed user
name when it doesn’t echo the password. Is there no security disadvantage to
echoing the user name, is it absolutely necessary to echo the user name, or is it a
tradeoff of security for convenience? Why not echo the password?

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



AUTHENTICATION 11

If we have something that plugs into one of the ports on a computer,
such as a hardware token that uses USB, then, with suitable software sup-
port, the operating system can tell whether the user trying to log in has
the proper device or not. Some security tokens (sometimes called don-
gles, an unfortunate choice of name) are designed to work that way.

In other cases, since we’re trying to authenticate a human user any-
way, we make use of the person’s capabilities to transfer information from
whatever it is he or she has to the system where the authentication is re-
quired. For example, some smart tokens display a number or character
string on a tiny built-in screen. The human user types the information
read off that screen into the computer’s keyboard. The operating system
does not get direct proof that the user has the device, but if only someone
with access to the device could know what information was supposed to
be typed in, the evidence is nearly as good.

These kinds of devices rely on frequent changes of whatever infor-
mation the device passes (directly or indirectly) to the operating system,
perhaps every few seconds, perhaps every time the user tries to authenti-
cate himself or herself. Why? Well, if it doesn’t, anyone who can learn the
static information from the device no longer needs the device to pose as
the user. The authentication mechanism has been converted from “some-
thing you have” to “something you know,” and its security now depends
on how hard it is for an attacker to learn that secret.

One weak point for all forms of authentication based on what you
have is, what if you don’t have it? What if you left your smartphone
on your dresser bureau this morning? What if your dongle slipped out
of your pocket on your commute to work? What if a subtle pickpocket
brushed up against you at the coffee shop and made off with your se-
cret authentication device? You now have a two-fold problem. First, you
don’t have the magic item you need to authenticate yourself to the op-
erating system. You can whine at your computer all you want, but it
won’t care. It will continue to insist that you produce the magic item you
lost. Second, someone else has your magic item, and possibly they can
pretend to be you, fooling the operating system that was relying on au-
thentication by what you have. Note that the multi-factor authentication
we mentioned earlier can save your bacon here, too. If the thief stole your
security token, but doesn’t know your password, the thief will still have

to guess that before they can pose as you4.
If you study system security in practice for very long, you’ll find that

there’s a significant gap between what academics (like me) tell you is safe
and what happens in the real world. Part of this gap is because the real
world needs to deal with real issues, like user convenience. Part of it is
because security academics have a tendency to denigrate anything where
they can think of a way to subvert it, even if that way is not itself partic-
ularly practical. One example in the realm of authentication mechanisms

4Assuming, of course, you haven’t written the password with a Sharpie onto the back of
the smart card the thief stole. Well, it seemed like a good idea at the time...

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



12 AUTHENTICATION

based on what you have is authenticating a user to a system by sending
a text message to the user’s cell phone. The user then types a message
into the computer. Thinking about this in theory, it sounds very weak.
In addition to the danger of losing the phone, security experts like to
think about exotic attacks where the text message is misdirected to the
attacker’s phone, allowing the attacker to provide the secret information
from the text message to the computer.

In practice, people usually have their phone with them and take rea-
sonable care not to lose it. If they do lose it, they notice that quickly and
take equally quick action to fix their problem. So there is likely to be a
relatively small window of time between when your phone is lost and
when systems learn that they can’t authenticate you using that phone.
Also in practice, redirecting text messages sent to cell phones is possible,
but far from trivial. The effort involved is likely to outweigh any benefit
the attacker would get from fooling the authentication system, at least in
the vast majority of cases. So a mechanism that causes security purists to
avert their gazes in horror in actual use provides quite reasonable secu-

rity5. Keep this lesson in mind. Even if it isn’t on the test6, it may come in
handy some time in your later career.

54.6 Authentication by What You Are

If you don’t like methods like passwords and you don’t like having
to hand out smart cards or security tokens to your users, there is another
option. Human beings (who are what we’re talking about authenticating
here) are unique creatures with physical characteristics that differ from all
others, sometimes in subtle ways, sometimes in obvious ones. In addition
to properties of the human body (from DNA at the base up to the appear-
ance of our face at the top), there are characteristics of human behavior
that are unique, or at least not shared by very many others. This obser-
vation suggests that if our operating system can only accurately measure
these properties or characteristics, it can distinguish one person from an-
other, solving our authentication problem.

This approach is very attractive to many people, most especially to
those who have never tried to make it work. Going from the basic obser-
vation to a working, reliable authentication system is far from easy. But it
can be made to work, to much the same extent as the other authentication
mechanisms. We can use it, but it won’t be perfect, and has its own set of
problems and challenges.

5However, in 2016 the United States National Institute of Standards and Technology is-
sued draft guidance deprecating the use of this technique for two-factor authentication, at
least in some circumstances. Here’s another security lesson: what works today might not
work tomorrow.

6We don’t know about you, but every time the word “test” or “quiz” or “exam” comes
up, our heart skips a beat or two. Too many years of being a student will do this to a person.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



AUTHENTICATION 13

Remember that we’re talking about a computer program (either the OS
itself or some separate program it invokes for the purpose) measuring a
human characteristic and determining if it belongs to a particular person.
Think about what that entails. What if we plan to use facial recognition
with the camera on a smart phone to authenticate the owner of the phone?
If we decide it’s the right person, we allow whoever we took the picture
of to use the phone. If not, we give them the raspberry (in the cyber sense)
and keep them out.

You should have identified a few challenges here. First, the camera
is going to take a picture of someone who is, presumably, holding the
phone. Maybe it’s the owner, maybe it isn’t. That’s the point of taking
the picture. If it isn’t, we should assume whoever it is would like to fool
us into thinking that they are the actual owner. What if it’s someone who
looks a lot like the right user, but isn’t? What if the person is wearing a
mask? What if the person holds up a photo of the right user, instead of
their own face? What if the lighting is dim, or the person isn’t fully facing
the camera? Alternately, what if it is the right user and the person is not
facing the camera, or the lighting is dim, or something else has changed
about the person’s look? (e.g., hairstyle)

Computer programs don’t recognize faces the way people do. They
do what programs always do with data: they convert it to zeros and ones
and process it using some algorithm. So that “photo” you took is actually
a collection of numbers, indicating shadow and light, shades of color,
contrasts, and the like. OK, now what? Time to decide if it’s the right
person’s photo or not! How?

If it were a password, we could have stored the right password (or,
better, a hash of the right password) and done a comparison of what got
typed in (or its hash) to what we stored. If it’s a perfect match, authenti-
cate. Otherwise, don’t. Can we do the same with this collection of zeros
and ones that represent the picture we just took? Can we have a picture
of the right user stored permanently in some file (also in the form of zeros
and ones) and compare the data from the camera to that file?

Probably not in the same way we compared the passwords. Consider
one of those factors we just mentioned above: lighting. If the picture we
stored in the file was taken under bright lights and the picture coming out
of the camera was taken under dim lights, the two sets of zeros and ones
are most certainly not going to match. In fact, it’s quite unlikely that two
pictures of the same person, taken a second apart under identical condi-
tions, would be represented by exactly the same set of bits. So clearly we
can’t do a comparison based on bit-for-bit equivalence.

Instead, we need to compare based on a higher-level analysis of the
two photos, the stored one of the right user and the just-taken one of the
person who claims to be that user. Generally this will involve extracting
higher-level features from the photos and comparing those. We might,
for example, try to calculate the length of the nose, or determine the color
of the eyes, or make some kind of model of the shape of the mouth. Then
we would compare the same feature set from the two photos.

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



14 AUTHENTICATION

Sensitivity

E
rr

or
s

False
Positive

Rate

False
Negative

Rate

Figure 54.1: Crossover Error Rate

Even here, though, an exact match is not too likely. The lighting, for
example, might slightly alter the perceived eye color. So we’ll need to
allow some sloppiness in our comparison. If the feature match is “close
enough,” we authenticate. If not, we don’t. We will look for close matches,
not perfect matches, which brings the nose of the camel of tolerances into
our authentication tent. If we are intolerant of all but the closest matches,
on some days we will fail to match the real user’s picture to the stored
version. That’s called a false negative, since we incorrectly decided not
to authenticate. If we are too tolerant of differences in measured versus
stored data, we will authenticate a user whom is not who they claim to
be. That’s a false positive, since we incorrectly decided to authenticate.

The nature of biometrics is that any implementation will have a char-
acteristic false positive and false negative rate. Both are bad, so you’d like
both to be low. For any given implementation of some biometric authen-
tication technique, you can typically tune it to achieve some false positive
rate, or tune it to achieve some false negative rate. But you usually can’t
minimize both. As the false positive rate goes down, the false negative
rate goes up, and vice versa. The sensitivity describes how close the
match must be.

Figure 54.1 shows the typical relationship between these error rates.
Note the circle at the point where the two curves cross. That point repre-
sents the crossover error rate, a common metric for describing the accu-
racy of a biometric. It represents an equal tradeoff between the two kinds
of errors. It’s not always the case that one tunes a biometric system to
hit the crossover error rate, since you might care more about one kind of
error than the other. For example, a smart phone that frequently locks its
legitimate user out because it doesn’t like today’s fingerprint reading is
not going to be popular, while the chances of a thief who stole the phone
having a similar fingerprint are low. Perhaps low false negatives matter

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



AUTHENTICATION 15

more here. On the other hand, if you’re opening a bank vault with a reti-
nal scan, requiring the bank manager to occasionally provide a second
scan isn’t too bad, while allowing a robber to open the vault with a bogus
fake eye would be a disaster. Low false positives might be better here.

Leaving aside the issues of reliability of authentication using biomet-
rics, another big issue for using human characteristics to authenticate is
that many of the techniques for measuring them require special hardware
not likely to be present on most machines. Many computers (including
smart phones, tablets, and laptops) are likely to have cameras, but em-
bedded devices and server machines probably don’t. Relatively few ma-
chines have fingerprint readers, and even fewer are able to measure more
exotic biometrics. While a few biometric techniques (such as measuring
typing patterns) require relatively common hardware that is likely to be
present on many machines anyway, there aren’t many such techniques.
Even if a special hardware device is available, the convenience of using
them for this purpose can be limiting.

One further issue you want to think about when considering using
biometric authentication is whether there is any physical gap between
where the biometric quantity is measured and where it is checked. In par-
ticular, checking biometric readings provided by an untrusted machine
across the network is hazardous. What comes in across the network is
simply a pattern of bits spread across one or more messages, whether it
represents a piece of a web page, a phoneme in a VoIP conversation, or
part of a scanned fingerprint. Bits are bits, and anyone can create any
bit pattern they want. If a remote adversary knows what the bit pattern
representing your fingerprint looks like, they may not need your finger,
or even a fingerprint scanner, to create it and feed it to your machine.
When the hardware performing the scanning is physically attached to
your machine, there is less opportunity to slip in a spurious bit pattern
that didn’t come from the device. When the hardware is on the other side
of the world on a machine you have no control over, there is a lot more
opportunity. The point here is to be careful with biometric authentication
information provided to you remotely.

In all, it sort of sounds like biometrics are pretty terrible for authen-
tication, but that’s the wrong lesson. For that matter, previous sections
probably made it sound like all methods of authentication are terrible.
Certainly none of them are perfect, but your task as a system designer
is not to find the perfect authentication mechanism, but to use mecha-
nisms that are well suited to your system and its environment. A good
fingerprint reader built in to a smart phone might do its job quite well.
A long, unguessable password can provide a decent amount of security.
Well-designed smart cards can make it nearly impossible to authenticate
yourself without having them in your hand. And where each type of
mechanism fails, you can perhaps correct for that failure by using a sec-
ond or third authentication mechanism that doesn’t fail in the same cases.

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



16 AUTHENTICATION

54.7 Authenticating Non-Humans

No, we’re not talking about aliens or extra-dimensional beings, or
even your cat. If you think broadly about how computers are used to-
day, you’ll see that there are many circumstances in which no human
user is associated with a process that’s running. Consider a web server.
There really isn’t some human user logged in whose identity should be
attached to the web server. Or think about embedded devices, such as
a smart light bulb. Nobody logs in to a light bulb, but there is certainly
code running there, and quite likely it is process-oriented code.

Mechanically, the operating system need not have a problem with the
identities of such processes. Simply set up a user called webserver or
lightbulb on the system in question and attach the identity of that
“user” to the processes that are associated with running the web server or
turning the light bulb on and off. But that does lead to the question of how
you make sure that only real web server processes are tagged with that
identity. We wouldn’t want some arbitrary user on the web server ma-
chine creating processes that appear to belong to the server, rather than
to that user.

One approach is to use passwords for these non-human users, as well.
Simply assign a password to the web server user. When does it get used?
When it’s needed, which is when you want to create a process belonging
to the web server, but you don’t already have one in existence. The system
administrator could log in as the web server user, creating a command
shell and using it to generate the actual processes the server needs to do
its business. As usual, the processes created by this shell process would
inherit their parent’s identity, webserver, in this case. More commonly,
we skip the go-between (here, the login) and provide some mechanism
whereby the privileged user is permitted to create processes that belongs
not to that user, but to some other user such as webserver. Alternately,
we can provide a mechanism that allows a process to change its owner-
ship, so the web server processes would start off under some other user’s
identity (such as the system administrator’s) and change their ownership
to webserver. Yet another approach is to allow a temporary change
of process identity, while still remembering the original identity. (We’ll
say more about this last approach in a future chapter.) Obviously, any
of these approaches require strong controls, since they allow one user to
create processes belonging to another user.

As mentioned above, passwords are the most common authentication
method used to determine if a process can be assigned to one of these
non-human users. Sometimes no authentication of the non-human user
is required at all, though. Instead, certain other users (like trusted sys-
tem administrators) are given the right to assign new identities to the
processes they create, without providing any further authentication in-
formation than their own. In Linux and other Unix systems, the sudo
command offers this capability. For example, if you type the following:

sudo -u webserver apache2

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



AUTHENTICATION 17

ASIDE: OTHER AUTHENTICATION POSSIBILITIES

Usually, what you know, what you have, and what you are cover the
useful authentication possibilities, but sometimes there are other options.
Consider going into the Department of Motor Vehicles to apply for a
driver’s license. You probably go up to a counter and talk to some em-
ployee behind that counter, perhaps giving the person a bunch of per-
sonal information, maybe even money to cover a fee for the license. Why
on earth did you believe that person was actually a DMV employee who
was able to get you a legitimate driver’s license? You probably didn’t
know the person; you weren’t shown an official ID card; the person didn’t
recite the secret DMV mantra that proved he or she was an initiate of that
agency. You believed it because the person was standing behind a par-
ticular counter, which is the counter DMV employees stand behind. You
authenticated the person based on location.

Once in a while, that approach can be handy in computer systems, most
frequently in mobile or pervasive computing. If you’re tempted to use it,
think carefully about how you’re obtaining the evidence that the subject
really is in a particular place. It’s actually fairly tricky.

What else? Perhaps you can sometimes authenticate based on what some-
one does. If you’re looking for personally characteristic behavior, like
their typing pattern or delays between commands, that’s a type of bio-
metric. (Google introduced multi-factor authentication of this kind in its
Android phones, for example.) But you might be less interested in au-
thenticating exactly who they are versus authenticating that they belong
to the set of Well Behaved Users. Many web sites, for example, care less
about who their visitors are and more about whether they use the web
site properly. In this case, you might authenticate their membership in
the set by their ongoing interactions with your system.

This would indicate that the apache2 program should be started un-
der the identity of webserver, rather than under the identity of whoever
ran the sudo command. This command might require the user running
it to provide their own authentication credentials (for extra certainty that
it really is the privileged user asking for it, and not some random visi-
tor accessing the computer during the privileged user’s coffee break), but
would not require authentication information associated with webserver.
Any sub-processes created by apache2 would, of course, inherit the iden-
tity of webserver. We’ll say more about sudo in the chapter on access
control.

One final identity issue we alluded to earlier is that sometimes we
wish to identify not just individual users, but groups of users who share
common characteristics, usually security-related characteristics. For ex-
ample, we might have four or five system administrators, any one of
whom is allowed to start up the web server. Instead of associating the

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



18 AUTHENTICATION

privilege with each one individually, it’s advantageous to create a system-
meaningful group of users with that privilege. We would then indicate
that the four or five administrators are members of that group. This kind
of group is another example of a security-relevant principal, since we will
make our decisions on the basis of group membership, rather than indi-
vidual identity. When one of the system administrators wished to do
something requiring group membership, we would check that he or she
was a member. We can either associate a group membership with each
process, or use the process’s individual identity information as an index
into a list of groups that people belong to. The latter is more flexible, since
it allows us to put each user into an arbitrary number of groups.

Most modern operating systems, including Linux and Windows, sup-
port these kinds of groups, since they provide ease and flexibility in deal-
ing with application of security policies. They handle group membership
and group privileges in manners largely analogous to those for individu-
als. For example, a child process will usually have the same group-related
privileges as its parent. When working with such systems, it’s important
to remember that group membership provides a second path by which a
user can obtain access to a resource, which has its benefits and its dangers.

54.8 Summary

If we want to apply security policies to actions taken by processes in
our system, we need to know the identity of the processes, so we can
make proper decisions. We start the entire chain of processes by creating
a process at boot time belonging to some system user whose purpose is
to authenticate users. They log in, providing authentication information
in one or more forms to prove their identity. The system verifies their
identity using this information and assigns their identity to a new process
that allows the user to go about their business, which typically involves
running other processes. Those other processes will inherit the user’s
identity from their parent process. Special secure mechanisms can allow
identities of processes to be changed or to be set to something other than
the parent’s identity. The system can then be sure that processes belong
to the proper user and can make security decisions accordingly.

Historically and practically, the authentication information provided
to the system is either something the authenticating user knows (like a
password or PIN), something the user has (like a smart card or proof of
possession of a smart phone), or something the user is (like the user’s
fingerprint or voice scan). Each of these approaches has its strengths and
weaknesses. A higher degree of security can be obtained by using multi-
factor authentication, which requires a user to provide evidence of more
than one form, such as requiring both a password and a one-time code
that was texted to the user’s smart phone.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



AUTHENTICATION 19

References

[B+09] “The road from Panama to Keccak via RadioGatun” by Guido Bertoni, Joan Daemen,
Michael Peeters, Gilles Van Assche. The authors who developed SHA-3. For a more readable version,
try the Wikipedia page first about SHA-3. There, you learn about the “sponge construction”, which
actually has something to do with cryptographic hashes, and not the cleaning of your kitchen.

[C100] “Letter of recommendation to Tiberius Claudius Hermeros” by Celer the Architect.
Circa 100 A.D.. This letter introduced a slave to the imperial procurator, thus providing said procu-
rator evidence that the slave was who he claimed to be. Read the translation at the following website
http://papyri.info/ddbdp/c.ep.lat;;81.

[G13] “Anatomy of a hack: even your ’complicated’ password is easy to crack” by Dan Goodin.
http://www.wired.co.uk/article/password-cracking, May 2013. A description of
how three experts used dictionary attacks to guess a large number of real passwords, with 90% success.

[JB-500] “Judges 12, verses 5-6” The Bible, roughly 5th century BC. An early example of the use of
biometrics. Failing this authentication had severe consequences, as the Gileadites slew mispronouncers,
some 42,000 of them according to the book of Judges.

[KA16] VK.com Hacked! 100 Million Clear Text Passwords Leaked Online by Swati Khandelwal.
http://thehackernews.com/2016/06/vk-com-data-breach.html. One of many re-
ports of stolen passwords stored in plaintext form.

[MT79] “Password Security: A Case History” by Robert Morris and Ken Thompson. Com-
munications of the ACM, Vol. 22, No. 11, 1979. A description of the use of passwords in early
Unix systems. It also talks about password shortcomings from more than a decade earlier, in the CTSS
system. And it was the first paper to discuss the technique of password salting.

[M+02] “Impact of Artificial “Gummy” Fingers on Fingerprint Systems” by Tsutomu Mat-
sumoto, Hiroyuki Matsumoto, Koji Yamada, and Satoshi Hoshino. SPIE Vol. #4677, January
2002. A neat example of how simple ingenuity can reveal the security weaknesses of systems. In this
case, the researchers showed how easy it was to fool commercial fingerprint reading machines.

[P-46] “The Histories” by Polybius. Circa 146 B.C.. A history of the Roman Republic up to 146 B.C.
Polybius provides a reasonable amount of detail not only about how the Roman Army used watchwords
to authenticate themselves, but how they distributed them where they needed to be, which is still a
critical element of using passwords.

[TR78] “On the Extraordinary: An Attempt at Clarification” by Marcello Truzzi. Zetetic Scholar,
Vol. 1, No. 1, p. 11, 1978. Truzzi was a scholar who investigated various pseudoscience and paranor-
mal claims. He is unusual in this company in that he insisted that one must actually investigate such
claims before dismissing them, not merely assume they are false because they conflict with scientific
orthodoxy.

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES


