
55

Access Control

Chapter by Peter Reiher (UCLA)

55.1 Introduction

So we know what our security goals are, we have at least a general
sense of the security policies we’d like to enforce, and we have some ev-
idence about who is requesting various system services that might (or
might not) violate our policies. Now we need to take that information
and turn it into something actionable, something that a piece of software
can perform for us.

There are two important steps here:

1. Figure out if the request fits within our security policy.
2. If it does, perform the operation. If not, make sure it isn’t done.

The first step is generally referred to as access control. We will deter-
mine which system resources or services can be accessed by which par-
ties in which ways under which circumstances. Basically, it boils down
to another of those binary decisions that fit so well into our computing
paradigms: yes or no. But how to make that decision? To make the prob-
lem more concrete, consider this case. User X wishes to read and write
file /var/foo. Under the covers, this case probably implies that a process
being run under the identity of User X issued a system call such as:

open(”/var/foo”, O RDWR)

Note here that we’re not talking about the Linux open() call, which
is a specific implementation that handles access control a specific way.
We’re talking about the general idea of how you might be able to control
access to a file open system call. Hence the different font, to remind you.

How should the system handle this request from the process, making
sure that the file is not opened if the security policy to be enforced forbids
it, but equally making sure that the file is opened if the policy allows it?
We know that the system call will trap to the operating system, giving
it the opportunity to do something to make this decision. Mechanically
speaking, what should that “something” be?

1



2 ACCESS CONTROL

THE CRUX OF THE PROBLEM:
HOW TO DETERMINE IF AN ACCESS REQUEST SHOULD BE GRANTED?

How can the operating system decide if a particular request made by
a particular process belonging to a particular user at some given moment
should or should not be granted? What information will be used to make
this decision? How can we set this information to encode the security
policies we want to enforce for our system?

55.2 Important Aspects Of The Access Control Problem

As usual, the system will run some kind of algorithm to make this
decision. It will take certain inputs and produce a binary output, a yes-or-
no decision on granting access. At the high level, access control is usually
spoken of in terms of subjects, objects, and access. A subject is the entity
that wants to perform the access, perhaps a user or a process. An object
is the thing the subject wants to access, perhaps a file or a device. Access
is some particular mode of dealing with the object, such as reading it or
writing it. So an access control decision is about whether a particular
subject is allowed to perform a particular mode of access on a particular
object. We sometimes refer to the process of determining if a particular

subject is allowed to perform a particular form of access on a particular1

object as authorization.
One relevant issue is when will access control decisions be made? The

system must run whatever algorithm it uses every time it makes such a
decision. The code that implements this algorithm is called a reference
monitor, and there is an obvious incentive to make sure it is implemented
both correctly and efficiently. If it’s not correct, you make the wrong ac-
cess decisions – obviously bad. Its efficiency is important because it will
inject some overhead whenever it is used. Perhaps we wish to minimize
these overheads by not checking access control on every possible oppor-
tunity. On the other hand, remember that principle of complete medi-
ation we introduced a couple of chapters back? That principle said we
should check security conditions every time someone asked for some-
thing.

Clearly, we’ll need to balance costs against security benefits. But if
we can find some beneficial special cases where we can achieve low cost
without compromising security, we can possibly manage to avoid trading
off one for the other, at least in those cases.

One way to do so is to give subjects objects that belong only to them.
If the object is inherently theirs, by its very nature and unchangeably so,
the system can let the subject (a process, in the operating system case) ac-

1Wow. You know how hard it is to get so many instances of the word “particular” to line
up like this? It’s a column of particulars! But, perhaps, not particularly interesting.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



ACCESS CONTROL 3

cess it freely. Virtualization allows us to create virtual objects of this kind.
Virtual memory is an excellent example. A process is allowed to access its

virtual memory freely2, with no special operating system access control
check at the moment the process tries to use it. A good thing, too, since
otherwise we would need to run our access control algorithm on every
process memory reference, which would lead to a ridiculously slow sys-
tem. We can play similar virtualization tricks with peripheral devices. If
a process is given access to some virtual device, which is actually backed
up by a real physical device controlled by the OS, and if no other process
is allowed to use that device, the operating system need not check for
access control every time the process wants to use it. For example, a pro-
cess might be granted control of a GPU based on an initial access control
decision, after which the process can write to the GPU’s memory or issue
instructions directly to it without further intervention by the OS.

Of course, as discussed earlier, virtualization is mostly an operating-
system provided illusion. Processes share memory, devices, and other
computing resources. What appears to be theirs alone is actually shared,
with the operating system running around behind the scenes to keep the
illusion going, sometimes assisted by special hardware. That means the
operating system, without the direct knowledge and participation of the
applications using the virtualized resource, still has to make sure that
only proper forms of access to it are allowed. So merely relying on vir-
tualization to ensure proper access just pushes the problem down to pro-
tecting the virtualization functionality of the OS. Even if we leave that
issue aside, sooner or later we have to move past cheap special cases and
deal with the general problem. Subject X wants to read and write object
/tmp/foo. Maybe it’s allowable, maybe it isn’t. Now what?

Computer scientists have come up with two basic approaches to solv-
ing this question, relying on different data structures and different meth-
ods of making the decision. One is called access control lists and the
other is called capabilities. It’s actually a little inaccurate to claim that
computer scientists came up with these approaches, since they’ve been in
use in non-computer contexts for millennia. Let’s look at them in a more
general perspective before we consider operating system implementa-
tions.

Let’s say we want to start an exclusive nightclub (called, perhaps,

Chez Andrea3) restricted to only the best operating system researchers
and developers. We don’t want to let any of those database or program-
ming language people slip in, so we’ll need to make sure only our ap-
proved customers get through the door. How might we do that? One

2Almost. Remember the bits in the page table that determine whether a particular page
can be read, written, or executed? But it’s not the operating system doing the runtime check
here, it’s the virtual memory hardware.

3The authors Arpaci-Dusseau would like to note that author Reiher is in charge of these
name choices for the security chapters, and did not strong-arm him into using their names
throughout this and other examples. We now return you to your regular reading...

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



4 ACCESS CONTROL

way would be to hire a massive intimidating bouncer who has a list of
all the approved members. When someone wants to enter the club, they
would prove their identity to the bouncer, and the bouncer would see
if they were on the list. If it was Linus Torvalds or Barbara Liskov, the
bouncer would let them in, but would keep out the hoi polloi networking
folks who had failed to distinguish themselves in operating systems.

Another approach would be to put a really great lock on the door of
the club and hand out keys to that lock to all of our OS buddies. If Jerome
Saltzer wanted to get in to Chez Andrea, he’d merely pull out his key and
unlock the door. If some computer architects with no OS chops wanted
to get in, they wouldn’t have a key and thus would be stuck outside.
Compared to the other approach, we’d save on the salary of the bouncer,

though we would have to pay for the locks and keys4. As new luminaries
in the OS field emerge who we want to admit, we’ll need new keys for
them, and once in a while we may make a mistake and hand out a key to
someone who doesn’t deserve it, or a member might lose a key, in which
case we need to make sure that key no longer opens the club door.

The same ideas can be used in computer systems. Early computer sci-
entists decided to call the approach that’s kind of like locks and keys a
capability-based system, while the approach based on the bouncer and
the list of those to admit was called an access control list system. Ca-
pabilities are thus like keys, or tickets to a movie, or tokens that let you
ride a subway. Access control lists are thus like, well, lists. How does this
work in an operating system? If you’re using capabilities, when a pro-
cess belonging to user X wants to read and write file /tmp/foo, it hands
a capability specific to that file to the system. (And precisely what, you
may ask, is a capability in this context? Good question! We’ll get to that.)
If you’re using access control lists (ACLs, for short), the system looks up
user X on an ACL associated with /tmp/foo, only allowing the access if
the user is on the list. In either case, the check can be made at the moment
the access (an open() call, in our example) is requested. The check is
made after trapping to the operating system, but before the access is ac-
tually permitted, with an early exit and error code returned if the access
control check fails.

At a high level, these two options may not sound very different, but
when you start thinking about the algorithm you’ll need to run and the
data structures required to support that algorithm, you’ll quickly see that
there are major differences. Let’s walk through each in turn.

4Note that for both access control lists and capabilities, we are assuming we’ve already
authenticated the person trying to enter the club. If some nobody wearing a Linus Torvalds or
Barbara Liskov mask gets past our bouncer, or if we aren’t careful to determine that it really
is Jerome Saltzer before handing a random person the key, we’re not going to keep the riffraff
out. Abandoning the cute analogy, absolutely the same issue applies in real computer systems,
which is why the previous chapter discussed authentication in detail.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



ACCESS CONTROL 5

55.3 Using ACLs For Access Control

What if, in the tradition of old British clubs, Chez Andrea gives each
member his own private room, in addition to access to the library, the
dining room, the billiard parlor, and other shared spaces? In this case,
we need to ensure not just that only members get into the club at all, but
that Ken Thompson (known to be a bit of a scamp [T84]) can’t slip into
Whitfield Diffie’s room and short-sheet his bed. We could have one big
access control list that specifies allowable access to every room, but that
would get unmanageable. Instead, why not have one ACL for each room
in the club?

We do the same thing with files in a typical OS that relies on ACLs
for access control. Each file has its own access control list, resulting in
simpler, shorter lists and quicker access control checks. So our open()
call in an ACL system will examine a list for /tmp/foo, not an ACL
encoding all accesses for every file in the system.

When this open() call traps to the operating system, the OS consults
the running process’s PCB to determine who owns the process. That data
structure indicates that user X owns the process. The system then must
get hold of the access control list for /tmp/foo. This ACL is more file
metadata, akin to the things we discussed in the chapter titled ”Files and
Directories.” So it’s likely to be stored with or near the rest of the metadata
for this file. Somehow, we obtain that list from persistent storage. We now
look up X on the list. Either X is there or isn’t. If not, no access for X. If
yes, we’ll typically go a step further to determine if the ACL entry for X
allows the type of access being requested. In our example, X wanted to
open /tmp/foo for read and write. Perhaps the ACL allows X to open
that file for read, but not for write. In that case, the system will deny the
access and return an error to the process.

In principle, this isn’t too complicated, but remember the devil being
in the details? He’s still there. Consider some of those details. For ex-
ample, where exactly is the ACL persistently stored? It really does need
to be persistent for most resources, since the ACLs effectively encode our
chosen security policy, which is probably not changing very often. So it’s
somewhere on the flash drive or disk. Unless it’s cached, we’ll need to
read it off that device every time someone tries to open the file. In most
file systems, as was discussed in the sections on persistence, you already
need to perform several device reads to actually obtain any information
from a file. Are we going to require another read to also get the ACL for
the file? If so, where on the device do we put the ACL to ensure that it’s
quick to access? It would be best if it was close to, or even part of, some-
thing we’re already reading, which suggests a few possible locations: the
file’s directory entry, the file’s inode, or perhaps the first data block of the
file. At the minimum, we want to have the ACL close to one of those
locations, and it might be better if it was actually in one of them, such as
the inode.

That leads to another vexing detail: how big is this list? If we do the

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



6 ACCESS CONTROL

obvious thing and create a list of actual user IDs and access modes, in
principle the list could be of arbitrary size, up to the number of users
known to the system. For some systems, that could be thousands of en-
tries. But typically files belong to one user and are often available only to
that user and perhaps a couple friends. So we wouldn’t want to reserve
enough space in every ACL for every possible user to be listed, since most
users wouldn’t appear in most ACLs. With some exceptions, of course:
a lot of files should be available in some mode (perhaps read or execute)
to all users. After all, commonly used executables (like ls and mv) are
stored in files, and we’ll be applying access control to them, just like any
other file. Our users will share the same font files, configuration files for
networking, and so forth. We have to allow all users to access these files
or they won’t be able to do much of anything on the system.

So the obvious implementation would reserve a big per-file list that
would be totally filled for some files and nearly empty for others. That’s
clearly wasteful. For the totally filled lists, there’s another worrying de-
tail: every time we want to check access in the list, we’ll need to search it.
Modern computers can search a list of a thousand entries rather quickly,
but if we need to perform such searches all the time, we’ll add a lot of
undesirable overhead to our system. We could solve the problem with
variable-sized access control lists, only allocating the space required for
each list. Spend a few moments thinking about how you would fit that
kind of metadata into the types of file systems we’ve studied, and the
implications for performance.

Fortunately, in most circumstances we can benefit from a bit of legacy
handed down to us from the original Bell Labs Unix system. Back in
those primeval days when computer science giants roamed the Earth (or
at least certain parts of New Jersey), persistent storage was in short sup-
ply and pretty expensive. There was simply no way they could afford to
store large ACLs for each file. In fact, when they worked it out, they fig-
ured they could afford about nine bits for each file’s ACL. Nine bits don’t
go far, but fortunately those early Unix designers had plenty of clever-
ness to make up for their lack of hardware. They thought about their
problem and figured out that there were effectively three modes of access
they cared about (read, write, and execute, for most files), and they could
handle most security policies with only three entries on each access con-
trol list. Of course, if they were going to use one bit per access mode per
entry, they would have already used up their nine bits, leaving no bits
to specify who the entry pertained to. So they cleverly partitioned the
entries on their access control list into three groups. One is the owner of
the file, whose identity they had already stored in the inode. One is the
members of a particular group or users; this group ID was also stored in
the inode. The final one is everybody else, i.e., everybody who wasn’t the
owner or a member of his group. No need to use any bits to store that,
since it was just the complement of the user and group.

This solution not only solved the problem of the amount of storage
eaten up by ACLs, but also solved the problem of the cost of accessing

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



ACCESS CONTROL 7

and checking them. You already needed to access a file’s inode to do
almost anything with it, so if the ACL was embedded in the inode, there
would be no extra seeks and reads to obtain it. And instead of a search
of an arbitrary sized list, a little simple logic on a few bits would provide
the answer to the access control question. And that logic is still providing
the answer in most systems that use Posix-compliant file systems to this
very day. Of course, the approach has limitations, since it cannot express
complex access modes and sharing relationships. For that reason, some
modern systems (such as Windows) allow extensions that permit the use
of more general ACLs, but many rely on the tried-and-true Unix-style

nine-bit ACLs5.
There are some good features of ACLs and some limiting features.

Good points first. First, what if you want to figure out who is allowed
to access a resource? If you’re using ACLs, that’s an easy question to an-
swer, since you can simply look at the ACL itself. Second, if you want to
change the set of subjects who can access an object, you merely need to
change the ACL, since nothing else can give the user access. Third, since
the ACL is typically kept either with or near the file itself, if you can get
to the file, you can get to all relevant access control information. This is
particularly important in distributed systems, but it also has good perfor-
mance implications for all systems, as long as your design keeps the ACL
near the file or its inode.

Now for the less desirable features. First, ACLs require you to solve
problems we mentioned earlier: having to store the access control infor-
mation somewhere near the file and dealing with potentially expensive
searches of long lists. We described some practical solutions that work
pretty well in most systems, but these solutions limit what ACLs can do.
Second, what if you want to figure out the entire set of resources some
principal (a process or a user) is permitted to access? You’ll need to check
every single ACL in the system, since that principal might be on any of
them. Third, in a distributed environment, you need to have a common
view of identity across all the machines for ACLs to be effective. If a user
on cs.ucla.edu wants to access a file stored on cs.wisconsin.edu,
the Wisconsin machine is going to check some identity provided by UCLA
against an access control list stored at Wisconsin. Does user remzi at
UCLA actually refer to the same principal as user remzi at Wisconsin?
If not, you may allow a remote user to access something he shouldn’t.
But trying to maintain a consistent name space of users across multiple
different computing domains is challenging.

5The history is a bit more complicated than this. The CTSS system offered a more limited
form of condensed ACL than Unix did [C+63], and the Multics system included the concept of
groups in a more general access control list consisting of character string names of users and
groups [S74]. Thus, the Unix approach was a cross-breeding of these even earlier systems.

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



8 ACCESS CONTROL

ASIDE: NAME SPACES

We just encountered one of the interesting and difficult problems in dis-
tributed systems: what do names mean on different machines? This name
space problem is relatively easy on a single computer. If the name chosen
for a new thing is already in use, don’t allow it to be assigned. So when a
particular name is issued on that system by any user or process, it means
the same thing. /etc/password is the same file for you and for all the
other users on your computer.

But what about distributed systems composed of multiple computers?
If you want the same guarantee about unique names understood by all,
you need to make sure someone on a machine at UCLA does not create a
name already being used at the University of Wisconsin. How to do that?

Different answers have different pluses and minuses. One approach is
not to bother and to understand that the namespaces are different – that’s
what we do with process IDs, for example. Another approach is to require
an authority to approve name selection – that’s more or less how AFS
handles file name creation. Another approach is to hand out portions of
the name space to each participant and allow them to assign any name
from that portion, but not any other name – that’s how the World Wide
Web and the IPv4 address space handle the issue. None of these answers
are universally right or wrong. Design your name space for your needs,
but understand the implications.

55.4 Using Capabilities For Access Control

Access control lists are not your only option for controlling access in
computer systems. Almost, but not quite. You can also use capabilities,
the option that’s more like keys or tickets. Chez Andrea could give keys
to its members to allow admission. Different rooms could have different
keys, preventing the more mischievous members from leaving little sur-
prises in other members’ rooms. Each member would carry around a set
of keys that would admit him or her to the particular areas of the club
she should have access to. Like ACLs, capabilities have a long history of
use in computer systems, with Dennis and van Horn [DV64] being per-
haps the earliest example. Wulf et al. [W+74] describe the Hydra Operat-
ing System, which used capabilities as a fundamental control mechanism.
Levy [L84] gives a book-length summary of the use of capabilities in early
hardware and software systems. In capability systems, a running process
has some set of capabilities that specify its access permissions. If you’re
using a pure capability system, there is no ACL anywhere, and this set
is the entire encoding of the access permissions for this process. That’s
not how Linux or Windows work, but other operating systems, such as
Hydra, examined this approach to handling access control.

How would we perform that open() call in this kind of pure capabil-

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



ACCESS CONTROL 9

ity system? When the call is made, either your application would provide
a capability permitting your process to open the file in question as a pa-
rameter, or the operating system would find the capability for you. In
either case, the operating system would check that the capability does or
does not allow you to perform a read/write open on file /tmp/foo. If
it does, the OS opens it for you. If not, back comes an error to your pro-
cess, chiding it for trying to open a file it does not have a capability for.
(Remember, we’re not talking about Linux here. Linux uses ACLs, not
capabilities, to determine if an open() call should be allowed.)

There are some obvious questions here. What, precisely, is a capabil-
ity? Clearly we’re not talking about metal keys or paper tickets. Also,
how does the OS check the validity of capability? And where do capa-
bilities come from, in the first place? Just like all other information in
a computer, capabilities are bunches of bits. They are data. Given that
there are probably lots of resources to protect, and capabilities must be
specific to a resource, capabilities are likely to be fairly long, and perhaps
fairly complex. But, ultimately, they’re just bits. Anything composed of a
bunch of bits has certain properties we must bear in mind. For example,
anyone can create any bunch of bits they want. There are no proprietary
or reserved bit patterns that processes cannot create. Also, if a process
has one copy of a particular set of bits, it’s trivial to create more copies of
it. The first characteristic implies that it’s possible for anyone at all to cre-
ate any capability they want. The second characteristic implies that once
someone has a working capability, they can make as many copies of it as
they want, and can potentially store them anywhere they want, including
on an entirely different machine.

That doesn’t sound so good from a security perspective. If a process
needs a capability with a particular bit pattern to open /tmp/foo for read
and write, maybe it can just generate that bit pattern and successfully
give itself the desired access to the file. That’s not what we’re looking for
in an access control mechanism. We want capabilities to be unforgeable.
Even if we can get around that problem, the ability to copy a capability
would suggest we can’t take access permission away, once granted, since

the process might have copies of the capability stashed away elsewhere6.
Further, perhaps the process can grant access to another process merely
by using IPC to transfer a copy of the capability to that other process.

We typically deal with these issues when using capabilities for access
control by never letting a process get its metaphoric hands on any ca-
pability. The operating system controls and maintains capabilities, stor-
ing them somewhere in its protected memory space. Processes can per-
form various operations on capabilities, but only with the mediation of
the operating system. If, for example, process A wishes to give process
B read/write access to file /tmp/foo using capabilities, A can’t merely

6This ability is commonly called revocation. Revocation is easy with ACLs, since you
just go to the ACL and change it. Depending on implementation, it can be easy or hard for
capabilities.

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



10 ACCESS CONTROL

send B the appropriate bit pattern. Instead, A must make a system call
requesting the operating system to give the appropriate capability to B.
That gives the OS a chance to decide whether its security policy permits
B to access /tmp/foo and deny the capability transfer if it does not.

So if we want to rely on capabilities for access control, the operating
system will need to maintain its own protected capability list for each pro-
cess. That’s simple enough, since the OS already has a per-process pro-
tected data structure, the PCB. Slap a pointer to the capability list (stored
in kernel memory) into the process’ PCB and you’re all set. Now when
the process attempts to open /tmp/foo for read/write, the call traps to
the OS, the OS consults the capability list for that process to see if there is a
relevant capability for the operation on the list and proceeds accordingly.

In a general system, keeping an on-line capability list of literally every-
thing some principal is permitted to access would incur high overheads.
If we used capabilities for file-based access control, a user might have
thousands of capabilities, one for each file the user was allowed to access
in any way. Generally, if one is using capabilities, the system persistently
stores the capabilities somewhere safe, and imports them as needed. So a
capability list attached to a process is not necessarily very long, but there
is an issue of deciding which capabilities of the immense set users have
at their discretion to give to each process they run.

There is another option. Capabilities need not be stored in the oper-
ating system. Instead, they can be cryptographically protected. If capa-
bilities are relatively long and are created with strong cryptography, they
cannot be guessed in a practical way and can be left in the user’s hands.
Cryptographic capabilities make most sense in a distributed system, so
we’ll talk about them in the chapter on distributed system security.

There are good and bad points about capabilities, just as there were for
access control lists. With capabilities, it’s easy to determine which system
resources a given principal can access. Just look through the principal’s
capability list. Revoking access merely requires removing the capability
from the list, which is easy enough if the OS has exclusive access to the ca-
pability (but much more difficult if it does not). If you have the capability
readily available in memory, it can be quite cheap to check it, particularly
since the capability can itself contain a pointer to the data or software
associated with the resource it protects. Perhaps merely having such a
pointer is the system’s core implementation of capabilities.

On the other hand, determining the entire set of principals who can
access a resource becomes more expensive. Any principal might have a
capability for the resource, so you must check all principals’ capability
lists to tell. Simple methods for making capability lists short and man-
ageable have not been as well developed as the Unix method of providing
short ACLs. Also, the system must be able to create, store, and retrieve
capabilities in a way that overcomes the forgery problem, which can be
challenging.

One neat aspect of capabilities is that they offer a good way to create
processes with limited privileges. With access control lists, a process in-

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



ACCESS CONTROL 11

herits the identity of its parent process, also inheriting all of the privileges
of that principal. It’s hard to give the process just a subset of the parent’s
privileges. Either you need to create a new principal with those limited
privileges, change a bunch of access control lists, and set the new pro-
cess’s identity to that new principal, or you need some extension to your
access control model that doesn’t behave quite the way access control lists
ordinarily do. With capabilities, it’s easy. If the parent has capabilities for
X, Y, and Z, but only wants the child process to have the X and Y capabil-
ities, when the child is created, the parent transfers X and Y, not Z.

In practice, user-visible access control mechanisms tend to use access
control lists, not capabilities, for a number of reasons. However, under
the covers operating systems make extensive use of capabilities. For ex-
ample, in a typical Linux system, that open() call we were discussing
uses ACLs for access control. However, assuming the Linux open() was
successful, as long as the process keeps the file open, the ACL is not ex-
amined on subsequent reads and writes. Instead, Linux creates a data
structure that amounts to a capability indicating that the process has read
and write privileges for that file. This structure is attached to the process’s
PCB. On each read or write operation, the OS can simply consult this data
structure to determine if reading and writing are allowed, without hav-
ing to find the file’s access control list. If the file is closed, this capability-
like structure is deleted from the PCB and the process can no longer access
the file without performing another open() which goes back to the ACL.
Similar techniques can be used to control access to hardware devices and
IPC channels, especially since UNIX-like systems treat these resources as
if they were files. This combined use of ACLs and capabilities allows the
system to avoid some of the problems associated with each mechanism.
The cost of checking an access control list on every operation is saved be-
cause this form of capability is easy to check, being merely the presence
or absence of a pointer in an operating system data structure. The cost of
managing capabilities for all accessible objects is avoided because the ca-
pability is only set up after a successful ACL check. If the object is never
accessed by a process, the ACL is never checked and no capability is re-
quired. Since any given process typically opens only a tiny fraction of all
the files it is permitted to open, the scaling issue doesn’t usually arise.

55.5 Mandatory And Discretionary Access Control

Who gets to decide what the access control on a computer resource
should be? For most people, the answer seems obvious: whoever owns
the resource. In the case of a user’s file, the user should determine access
control settings. In the case of a system resource, the system administra-
tor, or perhaps the owner of the computer, should determine them. How-
ever, for some systems and some security policies, that’s not the right an-
swer. In particular, the parties who care most about information security
sometimes want tighter controls than that.

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



12 ACCESS CONTROL

The military is the most obvious example. We’ve all heard of Top Se-
cret information, and probably all understand that even if you are al-
lowed to see Top Secret information, you’re not supposed to let other
people see it, too. And that’s true even if the information in question is in
a file that you created yourself, such as a report that contains statistics or
quotations from some other Top Secret document. In these cases, the sim-
ple answer of the creator controlling access permissions isn’t right. Who-
ever is in overall charge of information security in the organization needs
to make those decisions, which implies that principal has the power to
set the access controls for information created by and belonging to other
users, and that those users can’t override his decisions. The more com-
mon case is called discretionary access control. Whether almost anyone
or almost no one is given access to a resource is at the discretion of the
owning user. The more restrictive case is called mandatory access con-
trol. At least some elements of the access control decisions in such sys-
tems are mandated by an authority, who can override the desires of the
owner of the information. The choice of discretionary or mandatory ac-
cess control is orthogonal to whether you use ACLs or capabilities, and
is often independent of other aspects of the access control mechanism,
such as how access information is stored and handled. A mandatory ac-
cess control system can also include discretionary elements, which allow
further restriction (but not loosening) of mandatory controls.

Many people will never work with a system running mandatory ac-
cess controls, so we won’t go further into how they work, beyond ob-
serving that clearly the operating system is going to be involved in en-
forcing them. Should you ever need to work in an environment where
mandatory access control is important, you can be sure you will hear
about it. You should learn more about it at that point, since when some-
one cares enough to use mandatory access control mechanisms, they also
care enough to punish users who don’t follow the rules. Loscocco [L01]
describes a special version of Linux that incorporates mandatory access
control. This is a good paper to start with if you want to learn more about
the characteristics of such systems.

55.6 Practicalities Of Access Control Mechanisms

Most systems expose either a simple or more powerful access control
list mechanism to their users, and most of them use discretionary access
control. However, given that a modern computer can easily have hun-
dreds of thousands, or even millions of files, having human users indi-
vidually set access control permissions on them is infeasible. Generally,
the system allows each user to establish a default access permission that
is used for every file he creates. If one uses the Linux open() call to cre-
ate a file, one can specify which access permissions to initially assign to
that file. Access permissions on newly created files in Unix/Linux sys-
tems can be further controlled by the umask() call, which applies to all
new file creations by the process that performed it.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



ACCESS CONTROL 13

ASIDE: THE ANDROID ACCESS CONTROL MODEL

The Android system is one of the leading software platforms for today’s mobile
computing devices, especially smart phones. These devices pose different access
control challenges than classic server computers, or even personal desktop com-
puters or laptops. Their functionality is based on the use of many relatively small
independent applications, commonly called apps, that are downloaded, installed,
and run on a device belonging to only a single user. Thus, there is no issue of
protecting multiple users on one machine from each other. If one used a standard
access control model, these apps would run under that user’s identity. But apps
are developed by many entities, and some may be malicious. Further, most apps
have no legitimate need for most of the resources on the device. If they are granted
too many privileges, a malicious app can access the phone owner’s contacts, make
phone calls, or buy things over the network, among many other undesirable be-
haviors. The principle of least privilege implies that we should not give apps the
full privileges belonging to owner, but they must have some privileges if they are
to do anything interesting.

Android runs on top of a version of Linux, and an application’s access limitations
are achieved in part by generating a new user ID for each installed app. The app
runs under that ID and its accesses can be controlled on that basis. However, the
Android middleware offers additional facilities for controlling access. Application
developers define accesses required by their app. When a user considers installing
an app on their device, they are shown what permissions it requires. The user can
either grant the app those permissions, not install the app, or limit its permissions,
though the latter choice may also limit app utility. Also, the developer specifies
ways in which other apps can communicate with the new app. The data structure
used to encode this access information is called a permission label. An app’s
permission labels (both what it can access and what it provides to others) are set
at app design time, and encoded into a particular Android system at the moment
the app is installed on that machine.

Permission labels are thus like capabilities, since possession of them by the app
allows the app to do something, while lacking a label prevents the app from doing
that thing. An app’s set of permission labels is set statically at install time. The user
can subsequently change those permissions, although limiting them may damage
app functionality. Permission labels are a form of mandatory access control. The
Android security model is discussed in detail by Enck et al. [E+09].

The Android security approach is interesting, but not perfect. In particular, users
are not always aware of the implications of granting an application access to some-
thing, and, faced with the choice of granting the access or not being able to effec-
tively use the app, they will often grant it. This behavior can be problematic, if the
app is malicious.

If desired, the owner can alter that initial ACL, but experience shows
that users rarely do. This tendency demonstrates the importance of prop-
erly chosen defaults. Here, as in many other places in an operating sys-
tem, a theoretically changeable or tunable setting will, in practice, be used
unaltered by almost everyone almost always.

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



14 ACCESS CONTROL

However, while many will never touch access controls on their re-
sources, for an important set of users and systems these controls are of
vital importance to achieve their security goals. Even if you mostly rely
on defaults, many software installation packages use some degree of care
in setting access controls on executables and configuration files they cre-
ate. Generally, you should exercise caution in fiddling around with access
controls in your system. If you don’t know what you’re doing, you might
expose sensitive information or allow attackers to alter critical system set-
tings. If you tighten existing access controls, you might suddenly cause a
bunch of daemon programs running in the background to stop working.

One practical issue that many large institutions discovered when try-
ing to use standard access control methods to implement their security
policies is that people performing different roles within the organization
require different privileges. For example, in a hospital, all doctors might
have a set of privileges not given to all pharmacists, who themselves have
privileges not given to the doctors. Organizing access control on the ba-
sis of such roles and then assigning particular users to the roles they are
allowed to perform makes implementation of many security policies eas-
ier. This approach is particularly valuable if certain users are permitted to
switch roles depending on the task they are currently performing, since
then one need not worry about setting or changing the individual’s access
permissions on the fly, but simply switch their role from one to another.
Usually they will hold the role’s permission only as long as they maintain
that role. Once they exit the particular role (perhaps to enter a different
role with different privileges), they lose the privileges of the role they exit.

This observation led to the development of Role-Based Access Con-
trol, or RBAC. The core ideas had been around for some time before
they were more formally laid out in a research paper by Ferraiolo and
Kuhn [FK92]. Now RBAC is in common use in many organizations, par-
ticularly large ones. Large organizations face more serious management
challenges than small ones, so approaches like RBAC that allow groups of
users to be dealt with in one operation can significantly ease the manage-
ment task. For example, if a company determines that all programmers
should be granted access to a new library that has been developed, but
accountants should not, RBAC would achieve this effect with a single op-
eration that assigns the necessary privilege to the Programmer role. If a
programmer is promoted to a management position for which access to
the library is unnecessary, the company can merely remove the Program-
mer role from the set of roles the manager could take on.

Such restrictions do not necessarily imply that you suspect your ac-
countants of being dishonest and prone to selling your secret library code

to competitors7. Remember the principle of least privilege: when you
give someone access to something, you are relying not just on their hon-
esty, but on their caution. If accountants can’t access the library at all,

7Dishonest accountants are generally good to avoid, so you probably did your best to hire
honest ones, after all. Unless you’re Bernie Madoff [W20], perhaps...

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



ACCESS CONTROL 15

then neither malice nor carelessness on their part can lead to an accoun-
tant’s privileges leaking your library code. Least privilege is not just a
theoretically good idea, but a vital part of building secure systems in the
real world.

RBAC sounds a bit like using groups in access control lists, and there
is some similarity, but RBAC systems are a good deal more powerful than
mere group access permissions; RBAC systems allow a particular user to
take on multiple disjoint roles. Perhaps our programmer was promoted
to a management position, but still needs access to the library, for exam-
ple when another team member’s code needs to be tested. An RBAC sys-
tem would allow our programmer to switch between the role of manager
and programmer, temporarily leaving behind rights associated with the
manager and gaining rights associated with the programmer role. When
the manager tested someone else’s new code, the manager would have
permission to access the library, but would not have permission to ac-
cess team member performance reviews. Thus, if a sneaky programmer
slipped malicious code into the library (e.g., that tried to read other team
members’ performance reviews, or learn their salaries), the manager run-
ning that code would not unintentionally leak that information; using the
proper role at the proper time prevents it.

These systems often require a new authentication step to take on an
RBAC role, and usually taking on Role A requires relinquishing priv-
ileges associated with one’s previous role, say Role B. The manager’s
switch to the code testing role would result in temporarily relinquish-
ing privileges to examine the performance reviews. On completing the
testing, the manager would switch back to the role allowing access to the
reviews, losing privilege to access the library. RBAC systems may also
offer finer granularity than merely being able to read or write a file. A
particular role (Salesperson, for instance) might be permitted to add a pur-
chase record for a particular product to a file, but would not be permitted
to add a re-stocking record for the same product to the same file, since
salespeople don’t do re-stocking. This degree of control is sometimes
called type enforcement. It associates detailed access rules to particular
objects using what is commonly called a security context for that object.
How exactly this is done has implications for performance, storage of the
security context information, and authentication.

One can build a very minimal RBAC system under Linux and similar
OSes using ACLs and groups. These systems have a feature in their ac-
cess control mechanism called privilege escalation. Privilege escalation
allows careful extension of privileges, typically by allowing a particular
program to run with a set of privileges beyond those of the user who in-
vokes them. In Unix and Linux systems, this feature is called setuid,
and it allows a program to run with privileges associated with a different
user, generally a user who has privileges not normally available to the
user who runs the program. However, those privileges are only granted
during the run of that program and are lost when the program exits. A
carefully written setuid program will only perform a limited set of oper-

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



16 ACCESS CONTROL

TIP: PRIVILEGE ESCALATION CONSIDERED DANGEROUS

We just finished talking about how we could use privilege escalation to
temporarily change what one of our users can do, and how this offers us
new security options. But there’s a dangerous side to privilege escalation.
An attacker who breaks into your system frequently compromises a pro-
gram running under an identity with very limited privileges. Perhaps all
it’s supposed to be able to do is work with a few simple informational
files and provide remote users with their content, and maybe run stan-
dard utilities on those files. It might not even have write access to its files.
You might think that this type of compromise has done little harm to the
system, since the attacker cannot use the access to do very much.

This is where the danger of privilege escalation comes into play. Attack-
ers who have gained any kind of a foothold on a system will then look
around for ways to escalate their privileges. Even a fairly unprivileged
application can do a lot of things that an outsider cannot directly do, so at-
tackers look for flaws in the code or configuration that the compromised
application can access. Such attempts to escalate privilege are usually an
attacker’s first order of business upon successful compromise of a system.

In many systems, there is a special user, often called the superuser or
root user. This user has a lot more privilege than any other user on the
system, since its purpose is to allow for the most vital and far-reaching
system administration changes on that system. The paramount goal of
an attacker with a foothold on your system is to use privilege escalation
to become the root user. An attacker who can do that will effectively
have total control of your system. Such an attacker can look at any file,
alter any program, change any configuration, and perhaps even install a
different operating system. This danger should point out how critical it
is to be careful in allowing any path that permits privilege escalation up
to superuser privilege.

ations using those privileges, ensuring that privileges cannot be abused8.
One could create a simple RBAC system by defining an artificial user for
each role and associating desired privileges with that user. Programs us-
ing those privileges could be designated as setuid to that user.

The Linux sudo command, which we encountered in the authentica-
tion chapter, offers this kind of functionality, allowing some designated
users to run certain programs under another identity. For example,

sudo -u Programmer install newprogram

would run this install command under the identity of user Programmer,
rather than the identity of the user who ran the command, assuming that
user was on a system-maintained list of users allowed to take on the iden-
tity Programmer. Secure use of this approach requires careful configura-

8Unfortunately, not all programs run with the setuid feature are carefully written, which
has led to many security problems over the years. Perhaps true for all security features, alas?

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG



ACCESS CONTROL 17

tion of system files controlling who is allowed to execute which programs
under which identities. Usually the sudo command requires a new au-
thentication step, as with other RBAC systems.

For more advanced purposes, RBAC systems typically support finer
granularity and more careful tracking of role assignment than setuid

and sudo operations allow. Such an RBAC system might be part of the
operating system or might be some form of add-on to the system, or per-
haps a programming environment. Often, if you’re using RBAC, you
also run some degree of mandatory access control. If not, in the example
of sudo above, the user running under the Programmer identity could
run a command to change the access permissions on files, making the
install command available to non- programmers. With mandatory ac-
cess control, a user could take on the role of Programmer to do the in-
stallation, but could not use that role to allow salespeople or accountants
to perform the installation.

55.7 Summary

Implementing most security policies requires controlling which users
can access which resources in which ways. Access control mechanisms
built in to the operating system provide the necessary functionality. A
good access control mechanism will provide complete mediation (or close
to it) of security-relevant accesses through use of a carefully designed and
implemented reference monitor.

Access control lists and capabilities are the two fundamental mecha-
nisms used by most access control systems. Access control lists specify
precisely which subjects can access which objects in which ways. Pres-
ence or absence on the relevant list determines if access is granted. Ca-
pabilities work more like keys in a lock. Possession of the correct ca-
pability is sufficient proof that access to a resource should be permitted.
User-visible access control is more commonly achieved with a form of
access control list, but capabilities are often built in to the operating sys-
tem at a level below what the user sees. Neither of these access control
mechanisms is inherently better or worse than the other. Rather, like so
many options in system design, they have properties that are well suited
to some situations and uses and poorly suited to others. You need to
understand how to choose which one to use in which circumstance.

Access control mechanisms can be discretionary or mandatory. Some
systems include both. Enhancements like type enforcement and role-
based access control can make it easier to achieve the security policy you
require.

Even if the access control mechanism is completely correct and ex-
tremely efficient, it can do no more than implement the security policies
that it is given. Security failures due to faulty access control mechanisms
are rare. Security failures due to poorly designed policies implemented
by those mechanisms are not.

c© 2008–20, ARPACI-DUSSEAU (OSTEP)
c© 2019–20, REIHER (SECURITY)

THREE

EASY

PIECES



18 ACCESS CONTROL

References

[C+63] “The Compatible Time Sharing System: A Programmer’s Guide” by F. J. Corbato, M.
M. Daggett, R. C. Daley, R. J. Creasy, J. D. Hellwig, R. H. Orenstein, and L. K. Korn. M.I.T. Press,
1963. The programmer’s guide for the early and influential CTSS time sharing system. Referenced here
because it used an early version of an access control list approach to protecting data stored on disk.

[DV64] “Programming Semantics for Multiprogrammed Computations” by Jack B. Dennis and
Earl. C. van Horn. Communications of the ACM, Vol. 9, No. 3, March 1966. The earliest discus-
sion of the use of capabilities to perform access control in a computer. Though the authors themselves
point to the “program reference table” used in the Burroughs B5000 system as an inspiration for this
notion.

[E+09] “Understanding Android Security” by William Enck, Machigar Ongtang, and Patrick
McDaniel. IEEE Security and Privacy, Vol. 7, No. 1, January/February 1999. An interesting
approach to providing access control in a particular and important kind of machine. The approach has
not been uniformly successful, but it is worth understanding in more detail than we discuss in this
chapter.

[FK92] “Role-Based Access Controls” by David Ferraiolo and D. Richard Kuhn. 15th National
Computer Security Conference, October 1992. The concepts behind RBAC were floating around
since at least the 70s, but this paper is commonly regarded as the first discussion of RBAC as a formal
concept with particular properties.

[L84] “Capability-Based Computer Systems” by Henry Levy. Digital Press, 1984. A full book
on the use of capabilities in computer systems, as of 1984. It includes coverage of both hardware using
capabilities and operating systems, like Hydra, that used them.

[L01] “Integrating Flexible Support for Security Policies Into the Linux Operating System” by
Peter Loscocco. Proceedings of the FREENIX Track at the USENIX Annual Technical Confer-
ence 2001. The NSA built this version of Linux that incorporates mandatory access control and other
security features into Linux. A good place to dive into the world of mandatory access control, if either
necessity or interest motivates you to do so.

[S74] “Protection and Control of Information Sharing in Multics” by Jerome Saltzer. Commu-
nications of the ACM, Vol. 17, No. 7, July 1974. Sometimes it seems that every system idea not
introduced in CTSS was added in Multics. In this case, it’s the general use of groups in access control
lists.

[T84] “Reflections on Trusting Trust” by Ken Thompson. Communications of the ACM, Vol.
27, No. 8, August 1984. Ken Thompson’s Turing Award lecture, in which he pointed out how sly
systems developers can slip in backdoors without anyone being aware of it. People have wondered ever
since if he actually did what he talked about...

[W20] “Bernie Madoff” by Wikipedia. https://en.wikipedia.org/wiki/Bernie Madoff.
Bernie Madoff (painfully, pronounced “made off”, as in “made off with your money”) built a sophisti-
cated Ponzi scheme, a fraud of unimaginable proportions (nearly 100 billion dollars). He is, as Wikipedia
says, an “American charlatan”. As relevant here, he probably hired dishonest accountants, or was one
himself.

[W+74] “Hydra: The Kernel of a Multiprocessor Operating System” by W. Wulf, E. Cohen, W.
Corwin, A. Jones, R. Levin, C. Pearson, and F. Pollack. Communications of the ACM, Vol. 17,
No. 6, June 1974. A paper on a well-known operating system that made extensive and sophisticated
use of capabilities to handle access control.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG


